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MANTLE XENOLITHS FROM NEMBY, EASTERN PARAGUAY:
O-Sr-Nd ISOTOPES AND TRACE ELEMENTS OF HOSTED CLINOPYROXENES
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The Nemby spinel peridotites (Asuncion-
SapucatVillarrica ~ Graben, Central Eastern
Paraguay) are variable in major element

compositions, ranging from relatively "fertile" to very
depleted in basaltic component. Some of the
xenoliths have exceeding high K,O (HK suite,
distinct from the low K,O, LK-suite) and
incompatible element (IE) contents compared with
the composition of lherzolites which underwent
partial melting during "basalt-extraction" (Fig. 1).

The IE contents of clinopyroxenes encompass
world-wide occurrences. This suggests that
processes, other than depletion, occurred. Demarchi
et al. (1988) have shown that K is mostly partitioned
into glassy patches (blebs) in the xenoliths and glassy
drops in clinopyroxenes. The blebs have been
interpreted as derived from the breakdown of
volatile-bearing wet phases, such as amphibole
and/or phlogopite, which melted during ascent to the
surface; the glassy drops in clinopyroxenes are
generally interpreted as products of incongruent
partial melting induced by decompression (Comin-
Chiaramonti et al., 1986). Both probably represent
the remnants of hydrous phases such as micas
and/or amphiboles, and/or products induced by the
influx of small-volume, volatile-rich melts (Petrini et
al., 1994).

In summary, most of the major element
chemistry of the Nemby xenoliths (except for K,O
and to a lesser extent for Na;O) are consistent with
(1) residual compositions after variable degrees of
partial melting and (2) metasomatic effects shown
by alkali and IE enrichments in both whole rock and
in clinopyroxene (Fig. 1).

Clinopyroxenes display variable REE
enrichments (Fig. 2), more evident in those crystals
characterized by spongy texture and abundance of
glassy drops.

A possible explanation for the progressive
enrichment of samples characterized by similar
HREE and different LREE abundances is different
ion-exchange processes (cf. ‘"simple mixing
metasomatism model" of Song and Frey, 1989; Sen
et al., 1993) due to the passage of LREE-rich
chemical front on depleted compositions, both in LK
and HK suites.

It is believed that ‘'residual" pyroxenes
incorporated REE during later metasomatic events
(cf. Chen et al., 1989). The above observation is
consistent with the Nd isotope ratios measured on
clinopyroxenes, indicating a LREE-depleted source
for some samples and supporting the hypothesis that
clinopyroxenes from some lherzolites did not
crystallize from an original LREE enriched
component; other samples approach enriched or
undifferentiated compositions.

Alkaline basaltic magmas from deeper, gamet-
bearing mantle may be suitable enrichment agents
(cf. Comin-Chiaramonti et al, 1997). Moreover, the
Nemby xenoliths were probably involved in
carbonatite metasomatism (Comin-Chiaramonti et
al., 1991), as possibly indicated by the IE patterns of
some clinopyroxenes. The latter are characterized
by high LREE and Sr abundances coupled with
depletion in Nb, Ti, Zr. Notably, similar behaviour
has already been described for clinopyroxenes from
peridotite xenoliths hosted in ocean island basalts
from Samoa and Tubai, which, according to Hauri et



al.  (1993), show clear evidence of carbonatitic
metasomatism.

Systematic isotope differences between LK and
HK xenoliths were not observed, excepting for those

related to ? 80(Cpx-Ol) (Fig. | E-G).
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Figure 1. A: Molar ratios for bulk-rock compositions, LK
and HK suites, respectively. Stars B and BE: pyrolite
composition (Bristow, 1984) and Bulk Earth (McKenzie
and O'Nions, 1991), respectively. Outlined fields from
Demarchi @i el (1988). B: F (FCpx =
(Al+Fet+Na+Ti)/(Mg+Cr) atoms) vs Cpx (vol%) of
xenoliths. C: modal Cpx vs Cpx/Opx ratio. Line indicates
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model variation trends induced by 0-18% non-modal
fractionation melting in a primitive mantle composition at
4% melting intervals. D: Primitive Mantle, PM (Sun and
McDonough, 1989) - normalized diagrams for IE of
xenoliths (LK and HK), lavas, and glassy drops (av.
compositions) and blebs (field of the representative
compositions). E: ’?'80(;px vs 21800 with regression

lines, LK and HK, and ? %= 0, respectively. F: ? 'SOCpx.0|
vs isotopic equilibration temperatures, T°C (Kyser et al.,
1981); field: CpxOl pairs from South America mantle
xenoliths (Kyser, 1990). G: Cpx-Ol fractionation as a
function of clinopyroxene intracrystalline temperatures
(Mercier, 1980); Ch: fractionation line (Ch) from Chiba et
al. (1989).

This suggests a buffering dominated by olivine in
the upper mantle, where the equilibration is
supported by coherence between observed O-
isotope fractionation and clinopyroxene
temperatures.

The observed radiogenic isotope trend (Bulk
Earth vs Depleted Mantle) is not consistent with
major element refractory parameters. A mixing
between depleted and enriched components is
suggested by isotope records both in clinopyroxenes
and on a whole-rock scale (Fig. 3A). The enriched
components were mostly trapped in some
clinopyroxenes, which had previously crystallized
from depleted to quasi-chondritic mantle sources.

On the whole, the isotopic data seem to indicate
that the lithospheric mantle prior to the enrichment
event(s) was dominated by a depleted component,
isotopically resembling MORB sources (cf. Song
and Frey, 1989; Comin-Chiaramonti et al., 1997) or
even more depleted, probably related to the
occurrence of residua which differentiated from
ancient events of partial melting.

The Nd-Tpym (model ages referred to depleted
mantle) of clinopyroxenes and host rocks record, to
some extent, earlier fluid-infiltration events. These
appear defined between 135 and 1065 Ma (Table 3),
with more than 50% model ages spanning the
Brasiliano cycle (i.e. 1000-450 Ma, cf. Almeida and
Hasui, 1984).

Considering that in the Asuncion-Sapucair
Villarrica area the magmatism (Early Cretaceous:
tholeiitic and K-alkaline-carbonatitic rocks; Late
Cretaceous to Tertiary: Na-alkaline rocks) demands
that their parental magmas derived from an
heterogeneous  subcontinental mantle (garnet
peridotite; Comin-Chiaramonti et al., 1997),
significant fluids are expected to modify the isotope
ratios of the overlaying spinel peridodites.

On this respect, the younger Nd-Tpy and the
Rb-Sr systematics may reflect the main melting



episodes occurring in the mantle regions during the
different phases of lithospheric thinning (cf. Comin-

Chiaramonti and Gomes, 1996) and repeated
interactions  between fluids and overlaying
peridotites.
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Figure 2. IE and REE of Cpx from Nemby xenoliths (PM,
Hofmann, 1988; chondrites, Boynton, 1984, normalized),
following LK and HK typology (panels A and B: LK;
panels C and D: HK). Opx, orthopyroxene, GD, glassy
drop; PMCE: Cpx trace element composition in primitive
mantle (Rivalenti et al., 1996); NEB: Cpx field from NE
Brazil protogranular xenoliths (Rivalenti et al., 2000). In
panel C the Cpx pattern in the residue from non-modal
fractional melting (6%) of PM (Hofmann, 1988) is reported
(cf. Johnson et al., 1990; Rivalenti et al., 1996).
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Figure 3. A: 875r/865r vs 143Nd/144Nd plot for Nemby
Cpx and host xenoliths; for comparison the compositions
of the Cpx from NE Brazil and Fermando de Noronha
(Rivalenti et al., 2000), Patagonia (Stern et al., 1989) are
also plotted. B : 147sny!144Nd vs 143Nd/144Nd plot for
Nemby Cpx and xenoliths, 0.5 — 2.0 Ga reference lines,
along with NE Brazl and Fernando de Noronha Cpx plots;
insets: 87Rb/36Sr vs 87s/863r plot and 128 Ma reference
line, and Tpp model ages.
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