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The manipulation of individual charged particles has been deeply explored in physics’s theoretical and
experimental domains during the past decades. It is the pillar of several existing devices used for metrology
and sensing and is a promising platform for realizing future technologies, such as quantum computers. It is
also known that in the relativistic regime, interactions between charged particles become affected by post-
Coulombian corrections, with the dominant couplings encoded in the Darwin Hamiltonian. The Darwin
term has been extensively studied in atomic physics, where the interaction range is confined to the sub-
angstrom scale. Still, there is a lack of understanding about whether (and when) Darwin’s contributions
are relevant at larger scales. In this paper, we explore the effects of these corrections in a system of
two harmonically trapped electrons, where we look into the behavior of quantum entanglement present in
the static and dynamical regimes. We explore the parameter space of the developed model and seek
frequencies, distances, and squeezing parameters for which relativistic effects become relevant for the
generation of entanglement.
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I. INTRODUCTION

Trapping and manipulation of quantum systems has
undoubtedly been one of the most successful areas of
quantum science [1–4]. Charged particles, such as ions or
electrons, can be stably trapped using time-dependent
electric fields in Paul traps [5,6], evading Earnshaw’s
theorem of classical electromagnetism [7]. Such systems
have already found numerous applications in precision
measurements [8] and in metrology [9].
The trapping of charged particles also paves the way for

many novel applications, ranging from tests of fundamental
physics [10–13] to the possibility of designing scalable
quantum computers [14–18]. In particular, single-electron
traps offer the possibility of using the individual spin of
these particles as a resource for manipulating quantum
information [19–24].
Many experimental groups have demonstrated trapping

of electrons in recent decades [22,23,25–28], which con-
sists of maintaining the electrons in a confined region
through modulated electromagnetic fields. The control
of the electron’s motional state as well as of its spin state
offers a versatile system to explore quantum phenomena.

In addition, the experimental control of single-electron
traps may enable probing of the regime where relativistic
effects become relevant [29,30].
In this article, we show that, under certain conditions,

relativistic effects can present significant corrections to the
usual Coulomb interaction between two electrons in
adjacent traps. The first post-Coulombian (PC) correction
is encoded in the famous Darwin Hamiltonian, which can
be derived directly from quantum electrodynamics [31,32].
Quantum systems that interact electromagnetically tend to
become entangled [33,34], and we will explore how the
presence of relativistic corrections changes the buildup of
quantum correlations.
Recently there has been much interest in probing the

fundamental nature of physics in tabletop experiments via
entanglement, such as conceiving a protocol to test quan-
tum properties of gravity using two massive quantum
particles in quantum superpositions [35,36].1 This protocol,
known as the quantum gravity-induced entanglement of
masses (QGEM), probes the quantum nature of gravita-
tional perturbations around the weak Minkowski back-
ground [35,38–48]. In this regard, QGEM is similar to
Bell’s original idea of testing quantum correlations (i.e.,
Bell correlations) between two spatially separated systems;
see Refs. [49,50]. Moreover, entanglement-based tests have
been proposed to study quantum correlations betweenPublished by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

1The results of Ref. [35] were already known earlier;
see Ref. [37].
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matter and photon [45,51]. As highlighted in [45], this is
the quantum version of the classical light bending experi-
ment, which can distinguish the spin-2 nature of the
gravitational interaction, e.g. massless spin-2 graviton as
a quantum mediator. Furthermore, one can also probe the
dark matter-induced entanglement [52], test the quantum
version of the weak equivalence principle [53,54], test a
massive graviton [47], and modified theories of gravity
motivated from string theory [46]. Moreover, we recently
considered post-Newtonian corrections to the gravitational
entanglement, showing that relativistic corrections can
strongly suppress quantum correlations for certain param-
eter spaces, while classically the gravitational Hamiltonian
remains attractive [55].
This paper is organized as follows. Section II introduces

the quantum modelling of the two adjacent traps.
Section III details how static entanglement is formed when
relativistic corrections are taken into account. In Sec. IV,
we extend our analysis to the formation of dynamical
entanglement by using squeezed states. Section V exhibits
our concluding remarks, while Appendix A presents the
higher-order corrections of the Darwin Hamiltonian and
Appendix B provides details about the formalism used for
treating continuous bosonic systems employed throughout
this article.

II. CHARGED PARTICLES IN HARMONIC TRAPS
WITH POST-COULOMBIAN CORRECTIONS

Our model consists of two particles trapped in two
adjacent harmonic traps on the x-axis and centered at
�d=2. We assume that each trap contains a single particle
of mass m and unit charge −e (i.e., two harmonically
trapped electrons). We furthermore suppose that the
mechanical frequency of the two traps is the same and
will be denoted by ω. As we will see, this simplified one-
dimensional model is sufficient to explore the parameters
space of post-Coulombian corrections to the entangling
power of electromagnetic interactions. At the same time,
we leave detailed feasibility studies for future research.
The positions of the two particles can be written as

r̂1 ¼ −d=2þ x̂1; r̂2 ¼ d=2þ x̂2; ð1Þ

for the left and right particles, respectively. The fluctuations
around the equilibrium positions are denoted by x̂1 and x̂2
and the corresponding conjugate momenta are given by p̂1

and p̂2. The matter Hamiltonian is, in this case, given by

Ĥ ¼
X
i¼1;2

�
p̂2
i

2m
þ 1

2
mω2x̂2i

�
þ Ĥint; ð2Þ

where Ĥint contains the electromagnetic interactions up to
the first post-Coulombian (PC) terms, i.e., up to order
Oðc−2Þ, where c denotes the speed of light. Specifically, the

considered interaction consists of two terms,

Ĥint ¼ ĤC þ ĤD; ð3Þ

with ĤC being the usual electrostatic Coulomb potential
(i.e., the 0PC term), and ĤD corresponding to the Darwin
Hamiltonian (i.e., the 1PC term). In particular, ĤD is
composed of momentum contributions that arise at the
leading order relativistic correction. From now on, the
subscripts “C” and “D” will refer to quantities associated
with Coulomb and Darwin terms, respectively. The form of
these terms in the interaction Hamiltonian is given by2

ĤC ¼ e2

4πε0jr̂j
; ð4Þ

ĤD ¼ −
e2

8πε0m2c2

�ðp̂1 · p̂2Þ
jr̂j þ ðp̂1 · r̂Þðp̂2 · r̂Þ

jr̂j3
�
; ð5Þ

where the distance between the two particles is given by

r̂≡ r̂2 − r̂1 ¼ dþ x̂2 − x̂1: ð6Þ

For the derivation of Eqs. (4) and (5) starting from quantum
electrodynamics, see, for example, Chap. 9 in Landau—
Lifschitz [31] (see also alternative derivations in [29,30]).
While here we limit the analysis to 0PC and 1PC terms for
simplicity, higher-order corrections could, in principle, be
obtained from the Breit Hamiltonian and analyzed in an
analogous way [32].
We now decompose the position and momenta fluctua-

tions in terms of the ladder operators,

x̂j ¼ δxðâ†j þ âjÞ; p̂j ¼ iδpðâ†j − âjÞ; ð7Þ

with j ¼ 1; 2. The zero-point-motions are given by

δx≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2mωÞ

p
δp≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mωℏ=2
p

; ð8Þ

where we recall that for simplicity, we assume that the mass
and mechanical frequency are the same for the two quan-
tum harmonic oscillators. We can now insert Eq. (6) into
Eqs. (4) and (5) to obtain the leading order interaction terms
between the two particles by series expanding in x̂1 and x̂2
(i.e., we assume that each particle is close to the center of
the trap such that the distance d between the two traps is
much larger compared to the spatial delocalization of the
particles).
By further using the decomposition in Eq. (7), we can

classify the interaction terms between the two particles in
terms of powers of ℏ (we note that δx and δp are both

2Note that here we are not discussing the vacuum entanglement
in quantum electrodynamics; for such a description; see Ref. [56].
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proportional to
ffiffiffi
ℏ

p
). The position-position coupling ∝ x̂1x̂2

from the Coulomb interaction, and the momentum-
momentum coupling ∝ p̂1p̂2 from the Darwin interaction,
provide the leading order interaction between the two
particles at order OðℏÞ (for a discussion of higher order
corrections see Appendix A). The corresponding inter-
action Hamiltonian is given by

Ĥint ¼ ℏðgC − gDÞ
�
â†1â2 þ â1â

†
2

�
þ ℏðgC þ gDÞ

�
â1â2 þ â†1â

†
2

�
; ð9Þ

where the couplings arising from the Coulomb and Darwin
Hamiltonian have the following expressions:

gC ≡ −
e2

4πε0mωd3
; gD ≡ 3ωe2

16πε0mdc2
; ð10Þ

respectively. The corresponding quantum phases, which
can be used to make an order of magnitude estimates,
are given by ΔϕC ¼ gCτ and ΔϕD ¼ gDτ, respectively,
where τ denotes the time.3

In the following sections, we will explore the conse-
quences of the Hamiltonian in Eq. (9). We note that gC
is a 0PC coupling (i.e., nonrelativistic), while gD is a 1PC
coupling [i.e., first relativistic correction at order Oðc−2Þ],
with the two couplings having opposite sign. We will
explore the consequences of these couplings first for energy
eigenstates, offering a glimpse into the phenomenology
(Sec. III), and then using squeezed states, where we can
control the delocalizations by tuning the degree of initial
squeezing (Sec. IV).

III. STATIC DARWIN EFFECTS

Quantum systems that evolve under nontrivial dynamics
will generally become entangled; see for a review [34]. In
particular, the system composed of the two harmonically
trapped particles becomes entangled with our interaction
Hamiltonian acting as a perturbation [35,38,39,55]. Wewill
assume that the system is initialized in the global vacuum
state of the two harmonic oscillators, j00i≡ j0ij0i, which
will allow us to obtain simple formulas using first-order
nondegenerate perturbation theory. The final state of our
bipartite system can be written on a number basis as

jψi ¼ 1ffiffiffiffiffi
N

p
X
m;n

λmnjmni; ð11Þ

whereN ¼ P
m;n jλmnj2 is the normalization factor and λmn

are the coefficients corresponding to the state jmni≡
jmijni (with jmi, jni denoting number states). The unper-
turbed state is associated to the coefficient λ00 ¼ 1, and the
other coefficients can be computed using

λmn ¼
hmnjĤintj00i
2E0 − Em − En

; ð12Þ

where Ej is the energy associated to the number state jji
(with j∈N).
From Eqs. (9) and (12) we see that the only terms of the

interaction Hamiltonian Ĥint that contribute are given by

Ĥint ∝ ℏðgC þ gDÞâ†1â†2 ¼
ℏe2

4πε0md

�
3ω

4c2
−

1

ωd2

�
â†1â

†
2:

ð13Þ

Specifically, when we apply â†1â
†
2 to the initial state j00iwe

generate the state j11i. According to Eqs. (11)–(13) the
amplitude of the state j11i is controlled by competition of
two parameters: by the mechanical frequency, ω, and by
the distance between the two traps, d. For arbitrarily small
frequencies, the Coulomb term dominates, but after the
frequency exceeds a threshold ω ¼ 2c=ð ffiffiffi

3
p

dÞ, the relativ-
istic effects overpasses the electrostatic interaction.
To summarize, using Eqs. (11)–(13), we find that the

perturbed state is given by

jψi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p ðj00i þ λj11iÞ; ð14Þ

with the coupling λ≡ λ11 expressed as

λ ¼ e2

8πε0mω2d3

�
1 −

3d2ω2

4c2

�
: ð15Þ

In the nonrelativistic limit, we recover the result that one
would expect by considering only the Coulomb inter-
action, i.e.,

λNR ¼ lim
c→∞

λ ¼ e2

8πε0mω2d3
: ð16Þ

Let us make some initial observations. Since Eq. (14)
represents a two-qubit state, its separability can be under-
stood by looking at the behavior of the coefficient λðd;ωÞ.
jψi remains separable if and only if λ ¼ 0, which occurs
when ω ¼ 2c=

ffiffiffi
3

p
d. From Eq. (15) we note that the

relativistic correction decays slower with the distance in

3The induced phase by the Darwin interaction is explicitly given
by ΔϕD ¼ 3ωe2τ

16πε0mdc2, so the required coherence timescales as
τ ∝ d=ω, which suggests that experiments with smaller distances
and higher frequencies would be advantageous. If we seek to find
an induced phase of ΔϕD ∼Oð1Þ, for a pair of electrons in two
adjacent traps of frequency ω ∼ 1 GHz [22,25,57] and located
at distances d of 250 nm, 500 nm and 750 nm, we find that
the required coherence time τ is about 0.35 s, 0.7 s and 1 s,
respectively. While here we do not enter into detailed experimental
feasibility considerations, we point the interested reader to single-
electron traps [1,10,16,19,20,23,25,27,58].
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comparison with the Coulomb interaction, i.e., for every
frequency ω there is a distance d beyond which relativistic
corrections become more pronounced than the Coulomb
interaction. If we work in the non-relativistic limit by taking
the limit c → ∞ in Eq. (16) the cancellation point dis-
appears. In other words, the separability of the state jψi
results from a nontrivial cancellation between 0PC
Coulomb and 1PC Darwin contributions.
Going beyond the coefficient analysis, we can explore

the quantum correlations in more detail with an entangle-
ment measure. Here, we will quantify the generated
entanglement using the von Neumann entanglement
entropy [34]. Given sets of basis vectors juii and jvii for
the first and second subsystem, respectively, the Schmidt
decomposition of a general bipartite state jϕi is given by

jϕi ¼
X
i

λijuivii; ð17Þ

where λi are called Schmidt coefficients. The associated
von Neumann entanglement entropy is given by

SðjϕiÞ ¼ −
X
i

λ2i log2ðλ2i Þ: ð18Þ

In our case, the state [Eq. (14)] is already in the form of
Eq. (17), and we can readily extract the Schmidt coef-
ficients, i.e., 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
and λ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
. Taking into

account that λ ≪ 1 we then find that the von Neumann
entanglement entropy of the perturbed state in Eq. (14) is
given by a simple expression,

SðjψiÞ ¼ −λ2 logðλ2Þ; ð19Þ

where λ has been defined in Eq. (15). Equation (19) allows
us to readily compute the entanglement entropy SCþD
arising from the Coulomb and Darwin terms (i.e., both the
0PC and 1PC terms) and the entanglement entropy SC
corresponding to the nonrelativistic limit (i.e., the 0PC
term): we insert the coefficients from Eqs. (15) and (16)
into Eq. (19), respectively.
In Fig. 1 we show that the Darwin contribution becomes

significant when we consider trapping frequencies around
the petahertz regime for traps separated by nanoscale
distances. The Darwin interaction induces a residual
amount of entanglement at high frequencies, which appears
as the non-zero plateau at high frequencies (while the
contribution from the Coulomb interaction becomes van-
ishingly small in comparison). In addition, the 0PC
Coulomb and 1PC Darwin contributions to the entangle-
ment entropies cancel out when the mechanical frequency
is tuned to the value ω ¼ 2c=ð ffiffiffi

3
p

dÞ, resulting in the
entanglement dips. These nontrivial features, however,
lie beyond the regime of existing experiments because
of the high-frequency range and because it presents

entanglement entropies of values below 10−14. At this
point, we may consider which resources could be used
to amplify the presence of these effects. In the next section,
we show how the framework of continuous variable
systems allows us to exploit squeezing to distinguish
0PC and 1PC effects in a more accessible regime.

IV. DYNAMICAL DARWIN EFFECTS

In this section, we explore the interplay of Coulomb and
Darwin effects in entanglement generation using squeezed
states, which offer the possibility of controlling the initial
delocalization in position and momentum in the context of
Gaussian states [59,60]. Our initial state will here consist of
a product state of two single-mode squeezed vacuum states,

jψ0i ¼ jξi1jξi2; ð20Þ

where ξ is the squeezing coefficient. The single-mode
squeezed vacuum state can be expressed in a number basis as

FIG. 1. Comparison between entanglement entropies with and
without relativistic effects considered. The horizontal axis below
the figure indicates the harmonic frequency, ω. In contrast,
the bottom (top) axis of the frame denotes the corresponding
momentum (spatial) delocalization size given by δp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏmω=2
p

(δx ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2mωÞp

). Dashed lines correspond to entanglement
entropy arising only from the Coulomb interaction without
relativistic corrections (SC). In contrast, the solid lines correspond
to the entanglement entropy, including the Darwin term (SCþD).
The inclusion of relativistic effects induces a frequency-
independent entanglement background at high frequencies,
which is graphically represented by the plateaus to the right
side of the plot. Including relativistic corrections, the entangle-
ment entropy vanishes at the points ω ¼ 2c=ð ffiffiffi

3
p

dÞ, which can be
interpreted as a classicalization of the system (i.e., quantum
correlations become vanishingly small). Similar “dips” also
appear in the context of gravity [55], suggesting that such effects
could be ubiquitous in nature, albeit in experimentally challeng-
ing regimes.
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jξi≡ ðcosh ξÞ−1=2
X∞
n¼0

ðtanh ξÞn
ffiffiffiffiffiffiffiffiffiffiffið2nÞ!p
22n

j2ni; ð21Þ

where j2ni denote even number states, and the delocaliza-
tion of such states is given by

Δx ¼ δx · e−ξ; Δp ¼ δp · eξ: ð22Þ

The distance between the two traps, d, places a bound
on the maximum position delocalization of each particle
such that they remain separated in physical space. By
imposing δxe−ξ ≤ d, and using Eq. (8), we obtain the
bound,

ξ ≥ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2mωd2

r
≡ ξx: ð23Þ

We also obtain a constrain by noting that an initially
delocalized state in momentum, i.e., with momentum
delocalization δpeξ, will become delocalized in position,
with position delocalization δxeξ, after a quarter rotation
in phase space. Requiring δxeξ ≤ d, and using Eq. (8), we
now find the upper bound,

ξ ≤ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mωd2

ℏ

r
≡ ξp: ð24Þ

In other words, Eqs. (23) and (24) constrain the position
delocalization at ωt ¼ 0 and at ωt ¼ π=2, respectively,
where ω is the mechanical frequency and t denotes the
time. As we have ξx ¼ −ξp, we find that the two bounds
can be combined into the inequality jξj ≤ ξp, which con-
strains the absolute value of the squeezing parameter.4

The generated entanglement, and hence also any entan-
glement measure, will be a function of time. To quantify the
evolution of the von Neumann entanglement entropy, we
first need to solve the dynamics. The time evolution of the
ladder operators is given by [61]

â1ðtÞ ¼ k0ðtÞâ1 þ k−ðtÞâ2 þ kþðtÞâ†2; ð25Þ

â2ðtÞ ¼ k0ðtÞâ2 − k−ðtÞâ1 − kþðtÞâ†1; ð26Þ

where âi ≡ âiðt ¼ 0Þ, and the coefficients k0, kþ, k− are
written as

k0ðtÞ ¼ cosðωefftÞ −
iω
ωeff

sinðωefftÞ; ð27Þ

k�ðtÞ ¼ ðgC � gDÞ
ω

ωeff
sinðωefftÞ; ð28Þ

with gC and gD being the coupling constants defined in
Eq. (10). The effective frequency ωeff is given by

ωeff ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ ðgC − gDÞ2 − ðgC þ gDÞ2

q
; ð29Þ

which we note is a 1PC correction. Specifically, inserting
the couplings from Eq. (10) in Eq. (29), we find

ωeff ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3e4

16π2ε20m
2ω2c2d4

s
: ð30Þ

The dynamics of the system suffer a squeezing-independent
frequency shift that appears only when relativistic effects
are considered, since limc→∞ ωeff ¼ ω. Another interesting
situation occurs when the frequency ω of the individual
traps becomes small. In particular, in the limit of a

vanishing trapping frequency ω we find ωeff ≈
ffiffi
3

p
e2

4πε0mcd2,

which shows that the relativistic effects can become the
dominant contribution to the effective trapping frequency
for certain parameter regimes.
Using Eqs. (25)–(30), we are now in a position to

compute the time evolution of any expectation value. In
particular, we will use them to compute the time-evolution
of the von Neumann entanglement entropy SðtÞ. Since our
Hamiltonian in Eq. (9) contains only quadratic operators,
the evolution preserves the Gaussianity [62]. In particular,
for Gaussian states, it is convenient to employ the covari-
ance matrix formalism [63], which allows an efficient
way to compute the von Neumann entanglement entropy.
As shown below, the computation reduces to the evalua-
tion of time-dependent expectation values. The correspon-
dence between density operators and covariance matrices
can be found in [64,65] and a summary on how to compute
the von Neumann entanglement entropy is shown in
Appendix B [66–69].
In this context, the von Neumann entanglement entropy

is given by

SðtÞ ¼ −σð1ÞðtÞ log σð1ÞðtÞ þ ½1þ σð1ÞðtÞ� log½1þ σð1ÞðtÞ�;
ð31Þ

where the symplectic eigenvalue σð1Þ is

σð1ÞðtÞ¼ 1

ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4hx̂2i ðtÞihp̂2

i ðtÞi− hfx̂iðtÞ; p̂iðtÞgi2
q

−
1

2
: ð32Þ

The expectation values in Eq. (32) are evaluated using the
state defined in Eq. (21); the relation of the position
and momentum operators to ladder operators is given in
Eq. (7), and the evolution of the ladder operators is

4We may consider some values as examples: using the
frequency ω ¼ 1 GHz and distances d of order 250 nm,
500 nm and 750 nm, we find that the squeezing parameter is
constrained to the values jξj ≤ 0.06, jξj ≤ 0.75 and jξj ≤ 1.16,
respectively.
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provided in Eqs. (25)–(30). Using these latter relations, we
eventually find

σð1ÞðtÞ ¼−
1

2
þ

ffiffiffi
2

p

4ω2
eff

·
n
3e−4ξðe8ξg2Dþ g2CÞω2þ2ω4

−4gDgCðg2D−6gDgCþ g2CÞþðg2D−8gDgCþ g2CÞω2

þ e−4ξ
h
−4ðgC−e4ξgDÞ2ω2 cosð2ωefftÞ

þ 	
e8ξg2Dω

2þ g2Cω
2þe4ξ

�
4gDgCðgDþ gCÞ2

− ðg2Dþ g2CÞω2
�

cosð4ωefftÞ

io
1=2

: ð33Þ

Equations (31) and (33) determine how the 0PC Coulomb
and 1PC Darwin couplings affect the generation of the von
Neumann entanglement entropy. In the following, we focus
on investigating the parameter regimes of frequencies,
distances and squeezings for which relativistic and non-
relativistic cases could be distinguished, i.e. cases in which
the entanglement entropies SCðtÞ and SCþDðtÞ could be
discerned from one another. For this analysis, we constrain
our squeezing parameter ξ according to Eqs. (23) and (24).
As Eq. (33) suggests, the time-dependent entropies have

an oscillatory nature with a nontrivial dependence on the
couplings and the squeezing parameter. One feature which
distinguishes the relativistic and nonrelativistic cases is the

phase difference between the oscillations, which appears
due to the difference between the frequencies ω and ωeff ,
the first associated with the nonrelativistic dynamics and
the latter appearing when both Coulomb and Darwin
terms are considered. Another signature of relativistic
effects appears when we compare the amplitude of SCðtÞ
with SCþDðtÞ. In Fig. 2 (left), we give an example in which
the amplitudes of the two cases are distinct in that the
Darwin term enhances the amount of entanglement
between the traps. To explore more generally the parameter
space of the theory, in Fig. 2 (right) we show the behavior
of the amplitude of the entanglement measure SCþD as a
function of different values of squeezings and distances,
using a fixed value for the frequency.
We observe that the amplitude of the von Neumann

entropy SCþDðtÞ almost vanishes in the darker regions of
the plot in Fig. 2 (right). Such a dip in entanglement
entropy, i.e., classicalization, occurs only when relativistic
effects are considered, and it does not appear if we consider
only SCðtÞ. The found suppression of entanglement gen-
eration can be seen as the time-dependent analogue of the
effect shown for the static case in Fig. 1.
The points in which the classicalization happens can be

precisely determined by observing that the symplectic
eigenvalue given in Eq. (33) is maximal when we set the
time to tmax ≡ π

2ωeff
. Since SCþD is a strictly monotonically

FIG. 2. Left: Comparison between time-dependent entanglement entropies with relativistic corrections (SCþD) and without the
relativistic corrections (SC) during approximately 1 ns. The parameters used here are ω ¼ 10 GHz, a distance of d ¼ 50 μm and the
squeezing ξ ¼ 6.16, which is 95% of the value allowed by the bound ξp [see Eq. (24)]. This figure indicates that there are regimes in
which the relativistic contribution may dominate over non-relativistic interaction (i.e. including the Darwin term can increase the
entanglement entropy) for certain frequencies and distances, even at short times. Right: This figure shows the function
Smax
CþD ≡maxt∈ ½0;Δt�½SCþDðtÞ�—that is, the maximum value achieved by the entanglement entropy in the relativistic case (considering

Coulomb and Darwin couplings). The frequency in this plot is fixed at ω ¼ 10 GHz. The x-axis shows the distance between the traps
(d), which ranges from approximately 0.1 μm to 1000 μm, while the y-axis shows the range of the squeezing parameter (ξ). The cyan
lines correspond to the bounds defined by Eq. (23) (dashed) and Eq. (24) (solid), which were obtained by requiring that the two systems
remain well separated in space; the allowed parameter space is located between the two lines. The maximum value achieved by the
entanglement measure SCþD is higher in the yellowish parameter region and approaches zero in the darker regions, showing that there’s a
“dip” (i.e., vanishing of quantum correlations) highlighted by the green curve [Eq. (35)], dividing the parameter space into two regions.
Above (below) the green line, the Darwin contribution is bigger (smaller) than the Coulomb contribution to the generation of
entanglement. The cyan dot represents the point whose parameters were used in the left figure.
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increasing function of σ, then SCþD is also maximal at tmax.
By imposing SCþDðtmaxÞ ¼ 0, i.e., the generation of entan-
glement is fully suppressed, we find the following con-
dition for the relativistic dip [55]:

gCe−2ξ ¼ gDe2ξ: ð34Þ

Equation (34) tells us that the classicalization region is the
region of the parameter space for which the entanglement
entropy vanishes due to the competition of the Darwin
and Coulomb couplings enhanced and diminished by the
squeezing parameter, respectively. Using the definitions for
gC and gD [see Eq. (10)], we find that the condition in
Eq. (34) can be rewritten as

ξdip ¼
1

4
ln

�
4c2

3ω2d2

�
; ð35Þ

which was used for plotting the green curve in Fig. 2
(right). Equation (35) delimits where each term (Darwin or
Coulomb) is the dominant contribution in the generation of
entanglement. The Coulomb interaction is dominant below
the green curve, while above this threshold, the relativistic
effects enhance the amount of entanglement between the
two systems. We note that in the nonrelativistic limit
c → ∞, the classicalization region does not exist, as there
are no solutions of the nonrelativistic limit of Eq. (34); i.e.,
Eq. (35) diverges in the nonrelativistic limit. In other words,
the discovered entanglement dip is a genuinely relativistic
effect.
The frequency used in Fig. 2 (right), ω ¼ 10 GHz, is in

the range of current experiments [16,22,25,57], and this
plot indicates possible parameters for probing the existence
of the Darwin contribution in the entanglement generation.
The available parameter space is constrained to the region
between the solid and dashed cyan lines determined by
the requirement that the two systems remain well separated
in space [see Eqs. (23) and (24)]. The region in which
the Darwin term dominates over the Coulomb term exists in
a challenging region of the squeezing parameter, which
is not achievable in current experiments [e.g., the cyan
point indicated in the plot corresponding to Fig. 2 (left)].
However, we note that one could also probe the Darwin
term below the threshold indicated by the green line,
where the Coulomb term dominates, using precision
measurements.
It is important to also consider possible sources of

decoherence that may degrade the generated entanglement.
One unavoidable source of decoherence for such setups is
given by the emission of dipole radiation. The emission of
radiation by electrons has been studied extensively in the
literature (see the damping to the particle due to the
Abraham-Lorentz-Dirac force [7]). The corresponding

decoherence rate can be estimated as γ ¼ μ0e2ω2

6πmc [70–72].

Using the frequency ω ¼ 10 GHz and considering
m as the mass of an electron, the decoherence rate is
γ ≈ 6.26 × 10−4 Hz. There are however also other sources
of decoherence for which we would need to compute the
decoherence rate, e.g., [16,73,74]. To observe the gener-
ation of entanglement we would require that the total
decoherence rate from all sources, γtot, is smaller than the
inverse of the experimental time, t−1tot . In this paper, we will
not delve into the details of various decoherence rates, and
we will analyze separately the feasibility of the experiment
and how to the witness the generated entanglement.

V. CONCLUDING REMARKS

In this article, we explored how relativistic effects
can influence the generation of entanglement in a system
composed of two single-electron harmonic traps. Relati-
vistic effects were included in the system’s dynamics with
the Darwin Hamiltonian, a post-Coulombian (PC) correc-
tion to the usual electrostatic potential. We found that, at a
quantum level, the Darwin contribution leads to a mod-
ifications in the build up of quantum correlations. Using
the framework of continuous variables, we investigated
cases where the entanglement is time-independent via
perturbation theory and time-dependent by solving the
dynamics.
The static (time-independent) case shows a frequency-

independent entanglement background and “dips” repre-
senting the loss of quantum correlations, a sort of
classicalization which also appears in the context of gra-
vity [55]. Both features appear only for parameters beyond
the scope of existing experiments. On the other hand, the
dynamical (time-dependent) case can be more sensitive to
relativistic corrections, and we provide values of frequen-
cies and distances which future experiments with single-
electron traps could explore. Also in this case we find
regions where the Coulomb and Darwin contributions
dominate in the generation of entanglement, as well as a
region in-between, where the quantum correlations can
become vanishingly small. The next task will be to study
the experimental feasibility of our proposal and the devel-
opment of a protocol for witnessing the generation of
entanglement at the Coulomb-Darwin interface.
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APPENDIX A: HIGHER ORDER DARWIN
QUANTUM CORRECTIONS

In this appendix, we provide higher-order corrections for
the Darwin Hamiltonian. As we will see, higher orders of ℏ

will not maintain our interaction quadratic, so the analysis
performed with the covariance matrix should suffer mod-
ifications considering higher order effects.
Let us denote the difference of the spatial fluctuation of

the electrons as Δ̂≡ x̂2 − x̂1. We will also retain only terms
that generate entanglement, i.e. those that do not have
identities acting on any party. The global Hamiltonian
assumes the form,

Ĥint ≈
e2

4πε0d
·

�
1þ

�
1þ Δ̂

d

�
þ
�
1þ Δ̂

d

�2�
·

�
1 −

ðp̂1 · p̂2Þ
2m2c2

�
ðA1Þ

¼ e2

4πε0d
·

�
Δ̂2

d2
−
3ðp̂1 · p̂2Þ
2m2c2

−
3

2dm2c2
·
fΔ̂; ðp̂1 · p̂2Þg

2
−

1

2d2m2c2
·
fΔ̂2; ðp̂1 · p̂2Þg

2

�
: ðA2Þ

The first term (∝ Δ̂2) has order Oðℏ1Þ and contains the
standard Coulomb entangling bilinear δx̂1δx̂2. The second
term [∝ ðp̂1 · p̂2Þ] is the first order Darwin correction [also
of order Oðℏ1Þ]. The third and fourth have, respectively,
orders Oðℏ3=2Þ and Oðℏ2Þ. An ordering ambiguity arises

from the notation of the classical derivation of the Darwin
term at higher orders, so we symmetrize these terms via
anticommutators to ensure Hermiticity.
Assuming, for simplicity, that our state is initialized as

j00i, in this particular case, the Hamiltonian reads

Ĥint ¼
ℏe2

4πε0d
·
�
−

1

mωd2
ðâ†1â†2Þ þ

3ω

4mc2
ðâ†1â†2Þ −

3

2dc2

ffiffiffiffiffiffiffiffiffi
ωℏ
2m3

r 	
2
�
â†1â

†2
2 − â†21 â†2

�þ �
â1â

†
1â

†
2 − â†1â2â

†
2

�

−

ℏ
8d2m2c2

	�
â†31 â†2 þ â†1â

†3
2

�
− 2

�
â†21 â†22 − â†21 â2â

†
2 − â1â

†
1â

†2
2 þ â1â

†
1â2â

†
2

�
�
: ðA3Þ

Neglecting, for simplicity, the set of operators which induce degeneracies to the ground state, according to the procedure
detailed in Sec. III, the corresponding perturbed state is given by

jψi ¼ 1ffiffiffiffiffi
N

p
�
j00i þ λ1j11i þ λ2

�
2

�j12i − j21i
3

�
þ ðj01i − j10iÞ

�
þ λ3

�ðj13i þ j31iÞ
4

þ ðj20i þ j02iÞ þ j22i
2

��
; ðA4Þ

with the constants λ1;2;3 having the following expressions:

λ1 ¼
e2

8πε0md

�
1

ðdωÞ2 −
3

4c2

�
; ðA5Þ

λ2 ¼
3e2

8πεd2c2

ffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2ωm3

r
; ðA6Þ

λ3 ¼
ℏe2

32πε0ωm2c2d3
: ðA7Þ

The order of magnitude of λ2;3 suggests that their effects are
too small to be detected in the usual frequency range used
in experiments. Their inversely proportional dependence on
the frequency shows that they tend to zero in the high-
frequency regime, so the frequency-independent entangle-
ment background seen in Fig. 1 is an exclusively first-order
effect and does not appear to be enhanced due to higher
order corrections. The “dips” representing the loss of
correlations—which appear in the relativistic cases pre-
sented in Fig. 1—will be slightly attenuated, in the sense of
never being exactly zero, because λ2;3 does not vanish in the
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points that λ1 do. We express the density matrix associated with the state given in Eq. (A4) for completeness.

ρ ¼ 1

N

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 λ2 λ3 0 −λ2 λ1 2λ2=3 λ3=4 λ3 −2λ2=3 λ3=4 0 0 λ3=4 0 0

λ2 λ22 λ2λ3 0 −λ22 λ1λ2 2λ22=3 λ2λ3=4 λ2λ3 −λ22=3 λ2λ3=4 0 0 λ2λ3=4 0 0

λ3 λ2λ3 λ23 0 −λ2λ3 λ1λ3 2λ2λ3=3 2λ23=4 λ23 −2λ2λ3=3 λ23=4 0 0 λ23=4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−λ2 −λ22 −λ2λ3 0 λ22 −λ1λ2 −2λ22=3 −λ2λ3=4 −λ2λ3 2λ32=3 −λ2λ3=4 0 0 −λ2λ3=4 0 0

λ1 λ1λ2 λ1λ3 0 −λ1λ2 λ21 2λ1λ2=3 λ1λ3=4 λ1λ3 −2λ1λ2=3 λ1λ3=4 0 0 λ1λ3=4 0 0

2λ2=3 2λ22=3 2λ2λ3=3 0 −λ22=3 2λ1λ2=3 4λ22=9 λ2λ3=6 2λ2λ3=3 −4λ22=9 λ2λ3=6 0 0 λ2λ3=6 0 0

λ3=4 λ2λ3=4 λ23=4 0 −λ2λ3=4 λ1λ3=4 λ2λ3=6 λ23=16 λ23=4 −λ2λ3=6 λ23=16 0 0 λ23=16 0 0

λ3 λ2λ3 λ23 0 −λ2λ3 λ1λ3 2λ2λ3=3 λ23=4 λ23 −2λ2λ3=3 λ23=4 0 0 λ23=4 0 0

−2λ2=3 −λ22=3 −λ2λ3=3 0 λ22=3 −2λ1λ2=3 −4λ22=9 −λ2λ3=6 −2λ2λ3=3 4λ22=9 −λ2λ3=6 0 0 −λ2λ3=6 0 0

λ3=2 λ2λ3=2 λ23=2 0 −λ2λ3=2 λ1λ3=2 λ2λ3=3 λ23=8 λ23=2 −λ2λ3=3 λ23=8 0 0 −λ2λ3=6 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

λ3=4 λ2λ3=4 λ23=4 0 −λ2λ3=4 λ1λ3=4 λ2λ3=6 λ23=16 λ23=4 −λ2λ3=6 λ23=16 0 0 λ23=16 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

ðA8Þ

APPENDIX B: COMPUTING THE VON
NEUMANN ENTANGLEMENT ENTROPY

FOR GAUSSIAN STATES

In this appendix, we provide a short review of the
computation of the von Neumann entanglement using
covariance matrices [66–68]), which is a useful method
for continuous variable systems.
As our system is Gaussian, instead of the usual density

operator, we may employ the formalism of covariance
matrices in order to characterize the correlations between
the two subsystems. Using the positions and momenta
written in terms of the ladder operators [Eq. (7)], we define
the quadrature vector,

Y ≡ ðx̂1; p̂1; x̂2; p̂2Þ; ðB1Þ

such that the usual commutation relations can be written as

½Yj;Yk� ¼ 2iΩjk; ðB2Þ

where Ω is known as the symplectic metric, which in our
bipartite case is given by [63,66,67]

Ω ¼ ⨁
2

j¼1

ðiσyÞ ¼

0
BBB@

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

1
CCCA: ðB3Þ

The global covariance matrix is defined with the cova-
riances of the components of Y, i.e.,

σij ≡ hfYi; Yjgi − 2hYiihYji; ðB4Þ

and for our system, the covariance matrix is explicitly
given by

σ ¼

0
BBBB@

2hx̂21i hfx̂1; p̂1gi 2hx̂1x̂2i 2hx̂1p̂2i
hfx̂1; p̂1gi 2hp̂2

1i 2hp̂1x̂2i 2hp̂1p̂2i
2hx̂2x̂1i 2hx̂2p̂1i 2hx̂22i hfx̂2; p̂2gi
2hp̂2x̂1i 2hp̂2p̂1i hfx̂2; p̂2gi 2hp̂2

2i

1
CCCCA:

ðB5Þ

Together with the symplectic metric, the covariance matrix
satisfies the positive definite relation,

σ þ iΩ ≥ 0; ðB6Þ

which is a generalized way to write the Robertson-
Schrödinger uncertainty relation, a more general uncer-
tainty inequality than Heisenberg’s principle [67]. The
reduced covariance matrices can be extracted from the
diagonal blocks,
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σi ¼
�

2hx̂2i i hfp̂i; x̂igi
hfp̂i; x̂igi 2hp̂2

i i

�
; i ¼ 1; 2: ðB7Þ

As the entanglement entropy of the system can be
evaluated with the von Neumann entropy of the reduced
state of the first subsystem, S ¼ −Trðρ1 log ρ1Þ, we can also
characterize this entanglement measure in terms of the
covariance matrix of the first party. Since we assume that
two electrons are equally coupled (i.e. their traps have equal
frequencies), the reduced covariance matrices are isospectral.
From Eq. (9), the entanglement entropy is determined

by the symplectic eigenvalues of the reduced covariance
matrix, σð1Þ and σð2Þ. The symplectic eigenvalues are diffe-
rent from the usual eigenvalues of an operator, and they
are obtained by calculating the spectrum of σΩ. The
symplectic spectrum fσðiÞg is invariant under symplectic
transformations and determines the properties of the
Gaussian states. The expressions for the symplectic eigen-
values are [69]

σð1Þ ¼ 1

ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðσ1Þ

p
−
1

2
; σð2Þ ¼ −1 − σð1Þ: ðB8Þ

In terms of the elements of the reduced covariance matrix,
the symplectic eigenvalue σð1Þ—which can be interpreted

as the effective occupation number of the mode [69]—is
given by Eq. (32). Using this quantity, the entanglement
entropy is given by Eq. (31).
An important feature of our model that allows us to use

this formalism easily is that our Hamiltonian is quadratic so
that the Gaussianity of the covariance matrix is preserved
during the evolution of the system—which also implies that
each reduced covariance matrix remains Gaussian [69,75].
Gaussianity is not necessarily preserved when higher-order
corrections are considered, as the Hamiltonian is not
quadratic.
An alternative and equivalent formula for parametrizing

the entanglement entropy in terms of the covariance matrix
is given by [76]

S ¼ f

�
1

ℏ

ffiffiffiffiffiffiffiffiffiffiffiffi
det σ1

p �
; ðB9Þ

with the function f being expressed as

fðxÞ ¼
�
xþ 1

2

�
log

�
xþ 1

2

�
−
�
x −

1

2

�
log

�
xþ 1

2

�
:

ðB10Þ
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