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Abstract
We propose a theory of quantum (statistical) measurement which is close, in spirit, to Hepp’s
theory, which is centered on the concepts of decoherence andmacroscopic (classical) observ-
ables, and apply it to a model of the Stern-Gerlach experiment. The number N of degrees of
freedom of the measuring apparatus is such that N → ∞, justifying the adjective “statisti-
cal”, but, in addition, and in contrast to Hepp’s approach, we make a three-fold assumption:
the measurement is not instantaneous, it lasts a finite amount of time and is, up to arbitrary
accuracy, performed in a finite region of space, in agreement with the additional axioms pro-
posed by Basdevant and Dalibard. It is then shown how von Neumann’s “collapse postulate”
may be avoided by a mathematically precise formulation of an argument of Gottfried, and,
at the same time, Heisenberg’s “destruction of knowledge” paradox is eliminated. The fact
that no irreversibility is attached to the process of measurement is shown to follow from the
author’s theory of irreversibility, formulated in terms of the mean entropy, due to the latter’s
property of affinity.

Keywords Quantum measurement · Collapse · Decoherence · Disjoint states · Macroscopic
observables · Irreversibility · Heisenberg paradox

1 Introduction and Summary

In a recent very stimulating paper, Doplicher [1] describes qualitatively a “possible picture
of the measurement process in quantum mechanics, which takes into account the finite and
nonzero time duration T of the interaction between the observed system and the microscopic
part of the measurement apparatus”. In this paper we do not distinguish, as he does, two parts
of the measurement apparatus, which, for us, will be a “macroscopic pointer”, modelled by
a quantum system with number of degrees of freedom N = ∞, as suggested by Hepp [2],
but the time-duration T of the measurement will be assumed to satisfy the conditions:

a.) 0 < T ;
b.) the measurement takes place in a region of finite spatial extension
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In their quantummechanics textbook for the École Polytechnique, Basdevant andDalibard
[3] remark, in connection with their analysis of the Stern-Gerlach (SG) experiment [4], that
a.) and b.) are “two fundamental aspects which are absent from the classical formulation of
the principles of quantum mechanics”.

In his concluding remarks in Sect. 3, Doplicher observes that “the conventional picture
of the measurement process in quantum mechanics” requires that, as N → ∞, the time
duration of the measurement tends to zero and that the measurement apparatus occupies a
volume V such that V → ∞, referring in this context to the important work of Araki and
Yanase [5]. The latter authors also show, however, for a simple case, that an approximate
measurement of an operator such as spin is possible to any desired accuracy. A similar result
follows, in our approach, which relies in the framework introduced by Haag and Kastler [6],
by restriction to a class of observables which are “arbitrarily close to their restriction to finite
N”(corresponding to finite volume, assuming finite density, as required in the thermodynamic
limit) - seeAssumptionA inSect. 2. In this sense, b.) abovewill follow, as in the case examined
by Araki and Yanase, to arbitrary accuracy.

Concerning, however, the requirement that the time duration tend to zero, the situation
is completely different, at least in a nonrelativistic context (in the relativistic field context,
the same should follow for entirely different reasons, see the conclusion). Our forthcoming
Theorem3.4 strongly requires assumption a.), i.e., that themeasurement not be instantaneous,
and, in the concrete SG model of Sect. 4, it may be explicitly seen that if T (N ) → 0 at a
certain rate (see (82) of Remark 4.1), the off-diagonal elements of the density matrix do
not vanish as N → ∞. We explain why we are not forced to require that the time of
measurement be instantaneous in Remark 4.2: it has to do with the forthcoming notion of
macroscopic or classical observables. In Sect. 5 we shall also see that preparation of the
system and measurement are dual, inseparable processes, and in the hypothesis of their both
being instantaneous, a “time-arrow” may not exist a priori, which is an essential condition
for a precise formulation of the author’s condition of irreversibility [7].

Doplicher’s choice of conventional picture of the measurement process, the article [9],
in his view “quite satisfactory”, has, in our opinion (as well as Hepp’s, see ( [2], p. 243)),
one major disadvantage: it employs, in a crucial sense, the “ergodic average”, which is not
supported by any physical principle.

We now briefly describe our framework, following, in part, [1]. In von Neumann’s general
picture [10],we have a system S, whose general observable A = ∑

j λ j E j has finite spectrum
λ j , j = 1, · · · , n, and self-adjoint spectral projections E j . The Hilbert space of the state
vectors of the composite system, consisting of S and the measurement apparatus AN , which
we assume to consist of a quantum system with N degrees of freedom, is given by the tensor
product HS ⊗ HAN of the corresponding Hilbert spaces. The total Hamiltonian is

HN = HS ⊗ 1 + 1 ⊗ HAN + VN (1)

For simplicity, we restrict further the number of eigenvalues of the observable A to two, λ+
and λ−, with λ+ > λ− (as will be the case in the SG experiment of Sect. 4). There exists a
quantity tD , called decoherence time (or relaxation time), which may be explicitly computed
in the SG model, defined as the minimum time interval tD such as a measurement of AN ,
i.e., such that λ+ and λ− may be experimentally distinguished, is possible. We assume that

0 < tD and tD is independent of N (2)

Our requirement on T , compatible with assumption a.), may be stated as

0 < tD ≤ T < ∞ with tD and T independent of N (3)
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In an important paper, Narnhofer and Thirring [11] examined the intriguing question why
the only states found in Nature are such that they assume definite values on classical observ-
ables, but never mixtures of them. This problem has been lively discussed since Schrödinger
introduced his cat [12]. As simple examples of classical (or macroscopic) observables, they
propose the mean magnetization of a magnet

�m = lim
N→∞

1

2N + 1

N∑

i=−N

�σi (4)

or the center of mass velocity of a system of particles

�v = lim
N→∞

∑N
i=−N mi �vi

∑N
i=−N mi

(5)

of a large object. We shall use both in this paper, but replace (5) by the center of mass
coordinate of a particle system

�xC .M . = lim
N→∞

1

2N + 1

N∑

i=−N

�xi (6)

(of a group of equal atoms).
We remark that (4) - (6) are precise definitions of macroscopic or classical observables

when one specifies the appropriate representation, as we do in Sect. 2. It is in this connection
that the limit N → ∞ plays a crucial role in the present framework and, in this respect, quite
analogously to Hepp’s [2].

In order to explain the problems, we adopt Bell’s suggestion ( [13], p.36) of taking the
apparatus AN out of the “rest of the world” R, and treat it together with S as part of the
enlarged quantum system S

′
N : R = AN + R

′
;S + AN = S

′
N ; W = S

′
N + R

′
: “the original

axioms about ’measurement’ are then applied not at the S/AN interface, but at the AN/R
′

interface”. Neglecting the interaction of AN with R
′
, the joint system S

′
N is found to end, by

the Schrödinger equation associated to HN in (1), after the “measurement on S by AN ” (i.e.,
after a fixed time T satisfying (3))in a state

�N (T ) =
∑

n

cn�n,N (T ) (7)

where the states �±,N (T ) correspond to two definite (apparatus) pointer positions. The
corresponding density matrix is

ρN (T ) =
∑

n,m

cn ¯cm�n,N (T )�m,N (T ) (8)

where the bar denotes complex conjugation. Bell reports that in his textbook analysis of the
measurement problem, Kurt Gottfried ( [14], pp. 186-188) insists that, being AN a macro-
scopic system (and thus also S

′
N ),

tr(Aρ̂) = tr(Aρ)“for all observablesAknown to occur in Nature” (9)

where

ρ̂N (T ) =
∑

n

|cn |2�n,N (T )�n,N (T ) (10)
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(in our notation) - “dropping interference terms involving pairs of macroscopically different
states”.We shall refer to the replacement ofρN (T )by ρ̂N (T ) as the “vonNeumann collapse of
the density matrix”. The associated “loss of relative phases” leads to what we shall refer to as
Heisenberg paradox [15]: “Every experiment destroys some of the knowledge of the system
whichwas obtained by previous experiments”.We shall see that, while a reduction of type (9),
(10) does not occur for finite N , it may indeed occur in the limit N → ∞: this is the content
of Corollary 3.5, which makes the last sentence in (9) precise, i.e., specifies the (physically
sensible) class of observables A. This enables elimination of one of Bell’s objections in [16]
to Hepp’s conceptual framework: the observable which “undoes the measurement” proposed
by him does not exist in the specified framework, see [17]. On the contrary, his second
objection in [16], that the infinite-time limit in the only example of automorphic evolution
considered by Hepp, the Coleman model, is not physically sensible, is sound. Indeed, this
model does not satisfy (3), because

tD = tD(N ) = N + constant

where N denotes the number of sites in the model’s (spin) chain ( [18], [19], [17]): thus
tD(N ) → ∞ as N → ∞. It thus turns out that Bell’s criticism applies to the model, rather
than to the whole conceptual framework introduced by Hepp and, indeed, Narnhofer and
Thirring provide a physically reasonable model example in which the infinite time limit can
be controlled and agrees with some of Hepp’s conclusions ( [11], see their Remark 1). This
example is, however, not very illuminating from the point of view of measurement theory,
having being designed to describe certain interactions with the environment which render a
mixed state pure in the infinite time limit, while we are interested in the opposite effect, that
a pure state becomes mixed under evolution. For this reason, we analyse in Sect. 4 a model of
the SG experiment, which well illustrates Theorem 3.4 and is a generalization to an infinite
number of degrees of freedom of the model proposed in [20], together with the prescription
of initial state and experimental setting in [21], see also [3].

The states in the assumption of theorem 3.4 depend on the parameter T , which is only
supposed to satisfy (3). Concerning this point, the idea should be mentioned ([13], p.37,
bottom) that “systems such as S

′
N have intrinsic properties - independently of and before

observation”. For instance, the “jump” associated to the collapse is supposed to occur at some
not well specified time ( [16], p. 98). However, both the Landau–Lifshitz–Bohr–Haag picture
of measurement as an interaction between system S

′
N and environment R

′
which occurs apart

from and independently of any observer ( [22], [23]), aswell as the fact, emphasized by Peierls
[24] that the observer does not have to be contemporaneous with the event, allowing, for
example, from present evidence, to draw conclusions about the early Universe (the classical
example being the cosmic microwave background), strongly suggest that the quantities to be
measured do not depend on T . Ideally, we expect that the states in Theorem 3.4 satisfy the
assumptions of the theorem for all T satisfying (3), and, moreover, that the actually measured
quantities independ of T . It is rewarding that the example treated in Sect. 4 fulfills both of
these expectations (see Remark 4.2).

In Sect. 5 we briefly review the definition of irreversibility in ( [7], [8]) in terms of
the mean entropy [25], and prove that it is conserved on the average under “collapse”, as a
consequence of the property of affinity [25]. This result contrastswithLemma3of [17],where
the quantum Boltzmann entropy of a finite system is shown to decrease under collapse, thus
contradicting the second law (on the average), and requiring that the incidence of interactions
with the environment be rare in order to assure the global validity of the second law (see
the last remarks in [17]). As a consequence of theorem 5.1, van Kampen’s conjecture ( [26],
mentioned in [13]) that the entropy of the Universe remains zero throughout the process
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of measurement is confirmed in the sense of the mean entropy, and thus the “irreversibility
paradox” suggested by Landau and Lifschitz [22] and Gottfried [14] does not take place for
infinite quantum spin systems, adopting the mean entropy as indicator. An illustration of
Theorem 5.1 in the theory of measurement is provided by the effective quantum spin model
of the SG experiment in Sect. 4.2.

Section 6 is reserved to a conclusion, with a brief discussion of open problems.
The present paper owes very much to the theory of quantum statistical mechanics of

infinite systems, as described in [27], with a pedagogical textbook exposition in the classic
book by Sewell [28]. The basic Theorem 3.4 amalgamates results in the papers of Roberts
and Roepstorff [29] and Hepp [2]. The groundbreaking framework of the paper of Haag and
Kastler [6], nicely reviewed byWightman [30] plays a central role in the proposed framework.

Concerning references, a good bibliography on several aspects of the quantum theory
of measurement up to 2003 is to be found in [20], pp. 575 and 576. Several other recent
references, including book references, may be found in [1]. From the point of view of math-
ematical physics, a very recent reference is [31]: there, it is argued that the Schrödinger
equation does not yield a correct description of the quantum mechanical time evolution of
states of isolated physical systems featuring events; it also cites several recent references, to
which we refer. In a different framework, that of thermal open systems, a recent reference is
[32], see also references given there.

In the introduction and elsewhere, we sometimes state “we assume...”: in order to clarify
what is really assumed, we have collected all the assumptions in Assumption A in Sect. 2.

2 General Setting

2.1 Generalities: States of Infinite Systems

We very briefly summarize here some concepts of crucial importance in this paper, but, for
any detail, we refer to the references ([28], [27], [33]). we shall use quantum spin systems
as a prototype, such as the generalized Heisenberg Hamiltonian

H� = −2
∑

x,y∈�

[J1(x − y)(S1x S
1
y + S2x S

2
y) + J2(x − y)S3x S

3
y ] (11)

where
∑

x∈Zν

|Ji (x)| < ∞ and Ji (0) = 0 for i = 1, 2 (12)

Above, �Sx ≡ (S1x , S
2
x , S

3
x ), where Six = 1/2σ i

x , i = 1, 2, 3 and σ i
x , i = 1, 2, 3 are the Pauli

matrices at the site x . Above, H� acts on the Hilbert space H� = ⊗x∈�C2
x , and �Sx is short

for 1 ⊗ · · · ⊗ �Sx ⊗ · · · ⊗ 1. The algebra associated to a finite region � ⊂ Zν is

A(�) = B(H�) (13)

and two of its properties are crucial:

a) (causality)[A(B),A(C)] = 0 if B ∩ C = φ;
b) (isotony) B ⊂ C ⇒ A(B) ⊂ A(C).

AL = ∪BA(B) (14)
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where B ranges over the finite parts of Zν , is called the local algebra; its closure with respect
to the norm

A ≡ AL (15)

is the quasilocal algebra: it consists of observables which are, to arbitrary accuracy, approx-
imated by observables attached to a finite region. The bar in (15) denotes the C*-inductive
limit ( [34], Prop.11.4.1). The norm is defined by A ∈ B(H�) → ||A|| = sup||�||≤1||A�||,
� ∈ H�. An automorphism one-to one mapping of A into A which preserves the algebraic
structure: A → τx (A) denotes the space-translation automorphism.

A state ω� on A(�) is a positive, normalized linear functional on A(�): ω�(A) =
TrH�(ρ�A) for A ∈ A(�) (positive means ω�(A†A) ≥ 0, normalized ω�(1) = 1.)

For quantum spin systems, the index N will be identified as

N = |�| = V (16)

with the understanding that N ↗ ∞ means, for simplicity, the limit along a sequence of
parallelepipeds of sides ai , i = 1, · · · , ν, with ai → ∞ for each i ∈ [1, ν]; more general
limits, such as the van Hove limit ( [27], p. 287) could be adopted.

The notion of state generalizes to systems with infinite number of degrees of freedom
ω(A) = lim�↗∞ ω�(A), at first for A ∈ AL and then to A.

Each stateω defines a representation�ω ofA as bounded operators on a Hilbert spaceHω

with cyclic vector �ω (i.e., �ω(A)�ω is dense in Hω), such that ω(A) = (�ω,�ω(A)�ω)

(the GNS construction). The strong closure of �ω(A) is a von Neumann algebra, with
commutant �ω(A)

′
, which is the set of bounded operators on Hω which commute with all

�ω(A), and the center is defined by Zω = �ω(A) ∩ �ω(A)
′
.

The set of atates over the algebra A will be denoted by EA.
Considering quantum spin systems on Zν , we shall consider only space-translation-

invariant states, i.e., such that

ω ◦ τx = ω for all x ∈ Zν (17)

An extremal invariant or ergodic state is a state which cannot be written as a proper convex
combination of two distinct states ω1 and ω2, i.e., the following does not hold:

ω = αω1 + (1 − α)ω2 with 0 < α < 1 (18)

If the above formula is true, it is natural to regard ω as a mixture of two pure “phases” ω1

and ω2, with proportions α and 1 − α, respectively ( [35], Theorem 2.3.15).
A factor or primary state is defined by the condition that the center

Zω = {λ1} (19)

with λ ∈ C.
For quantum spin systems the center Zωβ coincides ( [35], Example 4.2.11) with the so

called algebra at infinity ζ⊥
ω , which corresponds to operations which can be made outside any

bounded set. As a typical example of an observable in ζ⊥
ω , let ω be any translation invariant

state. Then the space average of A

ηω(A) ≡ s − lim�↗∞
1

|�|
∑

x∈�

�ω(τx (A)) (20)

exists, and, if ω is ergodic, then

ηω(A) = ω(A)1 (21)
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([36]), which corresponds to “freezing” the observables at infinity to their expectation values.
The following definition is abstracted from [2], before his Lemma 1.

Definition 2.1 Two statesω1 andω2 are disjoint if no subrepresentation of of�ω1 is unitarily
equivalent to any subrepresentation of�ω2 . Two states which induce disjoint representations
are said to be disjoint; if they are not disjoint, they are called coherent.

For finite-dimensionalmatrix algebras (with trivial center) all representations are coherent,
and factor representations as well.

We have ([2], Lemma 6): Letω1 andω2 be extremal invariant (ergodic) states with respect
to space translations. If, for some A ∈ A,

ηω1(A) = a1 and ηω2(A) = a2 with a1 �= a2 (22)

then ω1 and ω2 are disjoint.
The space averages η defined above correspond to macroscopic “pointer positions”, e.g.,

themeanmagnetization in the Heisenbergmodel (11) in the 3- direction
∑

x∈�
S3x|�| , with A =

S3. If ηω+(S3) = a+ = 1, and ηω−(S3) = −1, the states ω± are macroscopically different,
i.e., differ from one another by flipping an infinite number of spins. For a comprehensive
discussion, see [28], Sect. 2.3.

Given a state ω1, the set of states ω2 “not disjoint from” ω1 forms a folium: a norm-closed
subset F of EA such that (i) if ω1, ω2 ∈ F , and λ1, λ2 ∈ R+ with λ1 + λ2 = 1, then
λ1ω1 + λ2ω2 ∈ F ; ii.) if ω ∈ F and A ∈ A, the state ωA, defined by

ωA(B) = ω(A∗BA)

ω(A∗A)
with ω(A∗A) �= 0 (23)

also belongs to F and is interpreted as a “local perturbation of ω”.
We shall denote the folium associated to a state ω by [ω]. If two states ω1 and ω2 are

disjoint, their folia [ω1] and [ω2] are also disjoint. This follows from Hepp’s Lemma 1 [2]:

Lemma 2.2 ω1 ∈ EA and ω2 ∈ EA are disjoint if and only if for every representation π of
A with ωi = ω(�i ) ◦ π for some �i ∈ Hπ , i = 1, 2, one has

(�1, π(A)�2) = 0∀A ∈ A

Above, ωi = ω(�i ) ◦ π means

ωi (A) = (�i , π(A)�i ) with �i ∈ Hπ

where Hπ is the Hilbert space associated to the representation π . The lemma is easy to
understand from the definition 2.1 of disjointness: �2 and �1 lie in non-unitarily equivalent
(“orthogonal”) Hilbert spaces, which generally differ by different values of a macroscopic
observable of type, e.g., (4), (5) or (6), which means an operation affecting an infinite number
of points or sites, and therefore cannot be connected by a quasilocal observable, which is,
by definition, arbitrarily close (in norm) to one localized in a finite region. The lemma also
shows explicitly that when two states ω1 and ω2 are disjoint, so are their folia, by definition
(23).

One important example, which will be our main concern in Sects. 4 and 5, is that of an
infinite direct product space. For each vector �mi , with �m2

i = 1, there exists a vector | �mi )

in the Hilbert space C2
i such that (�σi · �mi )| �m)i = | �m)i . Let A act on a reference vector

[11] |� �m) = ⊗∞
i=−∞| �m)i with �σi | �mi ) = �m| �m)i For �m �= �n, this yields two representations
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π �m, π�n of A on separable Hilbert spaces H �m,H�n . The following weak limits exist in these
representations:

�m1 = wlimN→∞
1

2N + 1

N∑

i=−N

π �m(�σi ) (24)

�n1 = wlimN→∞
1

2N + 1

N∑

i=−N

π�n(�σi ) (25)

These two representations cannot be unitarily equivalent because

U−1π �m(�σi )U = π�n(�σi ) (26)

would implyU−1 �m1U = �n1, which is impossible becauseU cannot change the unity 1. The
same argument shows disjointness. The � �m define states ω �m(·) = (� �m, ·� �m). The mixed
state is defined as (18) (with �m �= �n)

ωα ≡ αω �m + (1 − α)ω�n with 0 ≤ α ≤ 1 (27)

which is a convex combination of distinct pure states ω �m and ω�n .
Consider, now, the framework described in Sect. 1, consisting of the system S, for sim-

plicity a spin one-half system, whose general observable is

A = λ+P+ + λ−P− (28)

Consideration of a general, finite spectrum of A poses, however, no problem. The Hilbert
space of state vectors of the composite systemwill consist of S and themeasurement apparatus
AN , and is given by the tensor product

HS ⊗ HAN (29)

of the corresponding Hilbert spaces. The total Hamiltonian is

HN = HS ⊗ 1 + 1 ⊗ HAN + VN (30)

We assume that later the limit N → ∞ is taken in an appropriate sense. Take as initial state
vector

�N (t = 0) = (α|+) + β|−)) ⊗ �N
0 (31)

We assume that

exp(−iT HN )�N (t = 0) = α|+) ⊗ �N ,+,T + β|−) ⊗ �N ,−,T (32)

with

|α|2 + |β|2 = 1 (33)

2.2 The Framework: Some Specific Assumptions

We shall assume that the case of particle systems (6) is also included, replacing Zν by Z
and finite regions λ by �N = [−N , N ], N ∈ N+, with |�| = |�N | = 2N + 1 (see (16)).
The isotony property b.) enables the algebra A associated to the apparatus to be defined as
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inductive limit (14) (for the infinite product case, see [37]). The algebra of the (system +
apparatus) is thus assumed to be the C*-inductive limit of the As ⊗ A�, denoted by

As ⊗ A (34)

whereAs is the spin algebra, generated by the Pauli operators {�σ, 1}. Under assumption (32),
we may, for each T satisfying (3), consider the states on A

ω
+,T
� = (�N ,+,T , A�N ,+,T ) (35)

and

ω
−,T
� = (�N ,−,T , A�N ,−,T ) (36)

where

A ∈ A�

It is now convenient to distinguish explicitly the two cases we shall consider:
1) Quantum spin systems
The natural topology (from the point of view of physical applications) in the space of

states is the weak* topology. A sequence of states ωn, n = 1, 2, · · · on a C* algebra A is
said to tend to a state ω in the weak* topology if

lim
n→∞ ωn(A) = ω(A) for all A ∈ A (37)

The above definition requires that we extend ω
±,T
� to A in one of the various possible

ways, for instance, assigning to the extension ω̃
±,T
� the value 1 in the complement A − A�.

Considering A as a Banach space, since the set of states on A is sequentially compact in the
weak*-topology (see [38], Prop. 13, p.141 and Cor. 14, p. 142), becauseA is separable, there
exists a subsequence {�nk }∞k=1 of �n ↗ ∞ and states ω̃±,T on A such that

ω̃k
±,T (A) ≡ ω̃

±,T
�nk

(A) → ω̃±,T (A) as k → ∞ (38)

2) Particle systems.
In this case, we confine our attention to infinite product states on the infinite tensor product

ofC* algebras⊗i∈ZAi . Good references are [39], [40]. In the sequel, take the index set I = Z,
and eachAi , with i ∈ I to be the von Neumann algebra generated by the Weyl operators (for
simplicity in one dimension, which will be the case in the application in Sect. 4)

W (β, γ ) = exp[i(βzi + γ pzi )]
where pz = −i d

dz , on Hi a copy of L2(R), with β and γ real numbers.

Definition 2.3 Let (Hi )i∈I be a family ofHilbert spaces.A family of vectors (xi )i∈I ,with xi ∈
Hi is called aC family if

∏
i∈I ||xi || converges. (xi )i∈I is called aC0 family if

∑
i∈I |||xi ||−1|

converges.

It may be proved (see, e.g., [39], lemma 2.2) that every C0 family is a C family, and that
every C family fulfilling

∏
i∈I ||xi || �= 0 is a C0 family.

Definition 2.4 Two C0 families (xi )i∈I , (yi )i∈I are equivalent,(xi )i∈I ≡ (yi )i∈I , if
∑

i∈I
|(xi |yi ) − 1| < ∞ (39)
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It may be proved (see, e.g., [39], p. 60) that ≡ is indeed an equivalence relation. The
complete tensor product (CTP) of theHi , denoted by⊗i∈IHi , defined in [39], p. 65, is a direct
sumof incomplete tensor product spaces (IDPS)⊗ζ

i∈IHi : they are the closed linear subspaces
of the CTP spanned by the nonzero C0 vectors in the C0 family ζ . If 0 �= ⊗i∈I xi ∈ ζ , we
write ⊗(⊗xi )i∈I

i∈I Hi for the IDPS. The important result for us in this connection will be

Proposition 2.5 Let ⊗i∈I xi be a C0 vector not equal to zero. The set of all ⊗i∈I yi such that
xi = yi for all but at most finitely many indices is total in ⊗⊗i∈I xi

i∈I Hi .

(For a proof, see [39], p. 67, Prop. II.4).
In the application in Sect. 4we shall have states on an infinite tensor product of C* algebras

Ai , i ∈ I (see [40], p. 17, 2.2), which may also be defined as an inductive limit ( [40], p. 18;
[37]) and will be denoted by A. For each i ∈ I , let ωi be a state on Ai , πi the associated
GNS representation ( [35], 2.3.3), with cyclic vector ξi .

Definition 2.6 The (infinite) product state ⊗i∈Iωi is the unique state on A verifying

(⊗ωi )(⊗xi ) =
∏

ωi (xi ) for xi ∈ Ai (40)

and xi = ei for almost all i , where ei is the identity on Ai .

The representation ofA canonically associated to ⊗i∈Iωi is equivalent to the representa-
tion π = ⊗⊗i ξi

i∈I πi of A on ⊗⊗ξi
i∈IHi such that π(⊗xi ) = ⊗πi (xi ) for xi ∈ Ai , and xi = ei

for almost all i , where ei is the identity on Ai .
(See Proposition 2.5, p. 20 and Proposition 2.9, p. 23, of [40]).
We are now in the position of formulating our assumption - Assumption A - which will

be the hypothesis of our main theorem (Theorem 3.4):
Assumption A
Assume the framework consisting of the system S, for simplicity a spin one-half system

with general observable (28), and Hamiltonian and initial state vector given by (32), under
condition (33).

In this connection, we also assume condition (3).
The states ω̃±,T of quantum spin systems are defined by (38) with the algebra A (of

the apparatus alone, appearing in (34). For particle systems the initial state vector (31) and
those �M,±,T at time T in (32) are vectors ⊗M

i=−Mξ
±,T
i with M finite, and corresponding

states ω
±,T
M , while the states of the infinite system are the infinite product factor states

ω̃±,T ≡ ⊗i∈Zω
±,T
i of 2.6, with corresponding factorial representation⊗ξ

±,T
i
i∈Z πi . The algebra

isA, withA the infinite tensor product of C* algebras. In each case, for all A ∈ A and given
ε > 0, there exists a finite positive integer k and a strictly local A(�k) = πk(A), or an
element Ak = πk(A) of ⊗k

i=−kAi such that

||A − A(�k)|| < ε (41)

or

||A − Ak || < ε (42)

Remark 2.1 In Assumption A, πk(A), for A ∈ A denotes a representation of A on a Hilbert
space H�k (or Hk associated to the restriction of A either to a local region or to a system
with a finite number of particles, viz. satisfying (41). This follows by construction, using the
inductive limit structure of A.
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As a last remark, Assumption A is not so special as it might look: the way states of infinite
systems are naturally obtained is precisely as limits of finite systems, which actually describe
the physical situation(s), in the natural weak* topology (37).

3 General Framework andMain Theorem

Roberts andRoepstorff [29] have described a natural general framework for quantummechan-
ics,which includes systemswith an infinite number of degrees of freedom.Since their building
blocks are, just as in the previous subsection, the algebra of observables A and the states ω,
we are able to adapt it to the present context in a very simple way, which we now describe.

We assume that k = 1, 2, · · · is a finite natural number and come back to Assumption
A. The states ω̃

±,T
k are (pure) states on the algebra A(�k) or Ak , identified as algebras

of bounded operators B(Hk) (on H(�k) or Hk) corresponding to the vectors �k,±,T . For
simplicity of notation, let xTk ≡ �k,+,T , yTk ≡ �k,−,T , Ak stands for A(�k) or Ak , Hk for

both H(�k) or Hk , ω̃
+,T
k = ωxTk

, ω̃−,T
k = ωyTk

. As usual,

||ωxTk
− ωyTk

|| = sup
A∈Ak ,||A||≤1

|ωxTk
(A) − ωyTk

(A)| (43)

but

ωxTk
(A) − ωyTk

(A) = (xTk , AxTk ) − (yTk , AyTk ) = trHk (Tk A) (44)

where

Tk ≡ xTk ⊗ xTk − yTk ⊗ yTk (45)

with the definition

(xk ⊗ xk) f ≡ (xk, f )xk for f ∈ Hk (46)

Clearly, Tk is an operator of rank 2, and therefore in the trace class, denoted τc as in [41],
and we have ( [41], Theorem 2, p.47).

Lemma 3.1 The expression (44) represents a bounded linear functional on τc of norm ||A||.
Moreover, (τc)∗ and B(H) are equivalent, in the sense of Banach identical.

By the second assertion of Lemma 3.1,

||ωxTk
− ωyTk

|| = trHk (|Tk |) (47)

where |Tk | ≡ (T †
k Tk)

1/2. the eigenvalues of |Tk | equal the absolute values of those of Tk ;
by (45), (46) the latter may be obtained directly from the trace and determinant of the anti-
Hermitian matrix

(
1 (xk, yk)

−(yk, xk) −1

)

and equal

λ1,k = √
(1 − |(xTk , yTk )|2) (48)

λ2,k = −√
(1 − |(xTk , yTk )|2) (49)

Putting together (47) and (48), (49), we obtain the
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Corollary 3.2

|(xTk , yTk )|2 = 1 − 1

4
||ωxTk

− ωyTk
||2 (50)

Equation (50) suggests the natural definition, adapted from ( [29], Def. 4.7) to the present
context:

Definition 3.3 Let, in the weak* topology,

ωxTk
→ ωT

1 (51)

and

ωyTk
→ ωT

2 (52)

The transition probability between the states ωT
1 and ωT

2 on the C*-algebra A, denoted
ωT
1 .ωT

2 , is defined as

ωT
1 .ωT

2 ≡ lim
k→∞(1 − 1

4
||ωxTk

− ωyTk
||2) (53)

whenever the limit on the r.h.s. of (53) exists.

We have the

Theorem 3.4 If the states ωT
1 and ωT

2 in Definition 3.3 are disjoint (Definition 2.1), the
transition probability between them is zero.

Proof Considering the C* algebra A as a Banach space relatively to the weak topology on
the dual space of states (the weak* topolgy), the norm is lower semi-continuous (see, e.g.,
[42], Ex. 60, p.287), and thus (51) and (52) imply that

lim inf
k→∞ ||ωxTk

− ωyTk
|| ≥ ||ωT

1 − ωT
2 || (54)

Since ωT
1 and ωT

2 are disjoint, by the theorem of Glimm and Kadison [43]

||ωT
1 − ωT

2 || = 2 (55)

We thus have

0 ≤ lim inf
k→∞ (1 − 1

4
||ωxTk

− ωyTk
||2) ≤

lim sup
k→∞

(1 − 1

4
||ωxTk

− ωyTk
||2) ≤ 0

The first inequality above follows from the uniform bound ||ωxTk
− ωyTk

|| ≤ 2 and the
third inequality above is a consequence of (54). The assertion follows. ��
Remark 3.1 In ( [2], Lemma3, p.24) it was wrongly asserted that the norm is weakly contin-
uous; the rest of his Lemma 3 contains, however, an important idea, which we now use. Let
A ∈ A. If ωyTk

(A†A) = 0,

|(�k,−,T , πk(A)�k,+,T )|2 ≤ ωyTk
(A†A) → 0 as k → ∞
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Otherwise, ωyTk
(A†A) �= 0 for k sufficiently large, and we may define the state

ωA
yTk

≡
(�k,−,T , πk(A)† · πk(A)�k,−,T )

(�k,−,T , πk(A)†πk(A)�k,−,T )

By (52),

ωA
yTk

→ ω
T ,A
2

in the weak* topology, where, by (23), ωT ,A
2 ∈ [ωT

2 ], the folium of ωT
2 (defined by (23).

From the above, and the remarks followingLemma 2.2,ωT
1 andω

T ,A
2 are likewise disjoint,

by the assumption of Theorem 3.4, implying the following

Corollary 3.5 Under the sameassumptions of Theorem 3.4, the transition probability between
ωT
1 and ω

T ,A
2 is zero for any A ∈ A. In particular, by (50),

lim
k→∞(�k,+,T , πk(A)�k,−,T ) = 0 (56)

Remark 3.2 Corollary 3.5 makes precise the replacement of (8) and (9) by (10) “in the limit
N → ∞”, which corresponds to the fact that the transition probability between the states
ωT
1 and ω

T ,A
2 of the infinite system is zero, for any A ∈ A, according to Definition 3.3.

In general, the disjointness of the two states in the assumption of Theorem 3.4 is not
easy to prove. In the next section, we describe a model of Stern-Gerlach type in which two
different proofs of this property may be given, as long as the time-of-measurement parameter
T satisfies (3). The second proof will relate disjointness to the values taken by the limiting
states on classical or macroscopic observables of type (6), i.e., the “pointer positions” in
measurement theory.

4 Application to aModel of the Stern–Gerlach Experiment

4.1 TheModel

We describe in this section a model of the Stern-Gerlach experiment [4]. A jet of silver atoms
cross a strongly inhomogeneous magnetic field directed along the z-axis. We use the setting
of Gondran and Gondran [21], in which silver atoms of spin one-half contained in an oven
are heated to high temperature and escape through a narrow opening. A collimating fence F
selects those atoms whose velocities are parallel to the y axis: it is assumed to be much larger
along Ox, in such a way that both variables x and y may be treated classically. The atomic
jet arrives then at an electromagnet at the initial time t = 0, each atom being then described
by the wave function

�T (z) = �C (z)(α|+) + β|−)) (57)

with |α|2 + |β|2 = 1, σz |±) = ±|±), and the configurational part �C is given by

�C (z) ≡ (2πσ 2
0 )−1/2 exp(

−z2

4σ 2
0

) (58)
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After leaving the magnetic field, there is free motion until the particle reaches a screen placed
beyond the magnet, at a certain time T , when the measurement is performed.

We shall assume that each spin eigenstate is attached not only to one atom, but to all those
atoms in a tiny neighborhood of a point in space (e.g., of diameter of a micron), but still
containing a macroscopic number N of atoms. The Hamiltonian (30) is thus assumed to be

HN = HS ⊗ 1 + 1 ⊗ HAk + Vk (59)

with

HS = μσz B (60)

HAk = (P(k)
z )2

2Mk
(61)

Vk = λP(k)
z σz (62)

with Mk = (2k + 1)m, m being the mass of a single atom, and

P(k)
z = p−k

z + · · · + pkz (63)

Note that we have replaced N by 2k + 1, the integer variable runs from −k to k, in order to
have a model on Z. The corresponding effective quantum spin model of the next subsection
will be thereby a translation invariant model on the lattice Z. The operator pkz corresponding
to each atom is the usual self-adjoint z-component of the momentum operator acting on the
Hilbert space L2(R), and the algebra, the one-dimensional Weyl algebra corresponding to
the sole variable z. Since, by (62), each spin couples only to the z-component of the center
of mass momentum, the corresponding macroscopic operator will be the z-component of the
center of mass coordinate z−k+···+zk

2k+1 or, as we shall see, the limit, for ρ real

lim
k→∞ exp(iρ

z−k + · · · + zk
2k + 1

) (64)

which will be seen to exist in the appropriate representation. The model (59)-(63) is an
adaptation (to a version of infinite number of degrees of freedom) of the model in the book
by Gottfried and Yan ( [20], pp. 559 et seq.). Equation (60) represents the interaction with
the constant part of the magnetic field, (61) the kinetic energy and (62) the interaction with
the field gradient, assumed to be along the z-direction

Since HS and HAk commute with Vk , there is no problem in taking them into account,
but that will only be an unnecessary burden, which only changes some constants in the
forthcoming account; consequently, we ignore them both (alternatively, take m → ∞ and
B = 0). Thus our Hamiltonian will be

Hk = Vk = λP(k)
z ⊗ σz (65)

Before going on, we should like to explain the relation of the present model to the standard
SG model-experiment in greater detail.

The Hamiltonian of the flying atoms should be

HS = p2

2m
+ μσz Bz(z) = p2

2m
+ μσz(Bz(0) + z

∂Bz

∂z
)

However, from ∇ · �B = 0, it follows that other components of the magnetic moment interact
with the field, “a fact that is often ignored in text-book descriptions”, as remarked byGottfried
and Yan ( [20], p. 558, bottom). They also remark that, as this issue is irrelevant to their
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purpose, they avoid it completely by constructing a soluble model that produces the same
results as a good SG experiment. This is the model we use in this chapter, but with the
following additions and modifications.

First, we do not need to ignore the condition ∇ · �B = 0, and assume that the particle first
enters an electromagnetic field �B directed along the z axis given by

Bx = B
′
0x with By = 0 and Bz = B0 − B

′
0z

We employ the approximation

B
′
0 = |∂Bz

∂z
| = constant

Such a vector �B does satisfy the Maxwell equation ∇ · �B = 0.
Reference ([21] is one of the very few in which the spatial extension of the spinor is taken

into account. This is, however, precisely the crucial element allowing to take into account
the initial position (x0, z0) of the particle and render the evolution of the quantum system
deterministic: if it is eliminated, one loses the possibility of individualizing the particle and,
finally, to perform the measurement of the coordinate z of the spots on the screen. Assuming
that the initial state of the silver atom is a bound state, a corresponding natural simplified
Ansatz for it is a Gaussian

�0(x, z) = (2πσ 2
0 )−1/2 exp(− z2 + x2

4σ 2
0

)S

where

S =
(

cos( θ0
2 ) exp(iφ0/2)

i sin( θ0
2 ) exp(−iφ0/2)

)

The solution of the time-dependent Schrödinger equation for the spinor �

i�
∂�

∂t
= − �

2

2m
∇2� + μB �B · �σ�

with the above initial condition, the magnetic field �B as given above, is the same as the
solution obtained with the Hamiltonian (65), see (3) of [21] and Appendix A of [21]. This is
not unexpected because the multiplication operator z acting on a Gaussian is equivalent to a
derivation. This shows that our model is indeed the SG model “in disguise”.

The silver atoms form a jet with a certain, nonzero finite density ρ. Their number N , in a
macroscopic volume V , may be supposed to be well described by the thermodynamic limit
N → ∞, V → ∞, N

V = ρ. Since the z coordinates of the two spots on the screen, in the
SG experiment, are macroscopic numbers, it is reasonable to assume, correspondingly, that
they are obtained as mean values of (microscopic) averages of z coordinates z1, · · · , zN , i.e.,
limN→∞ z1+···+zN

N . The external magnetic field gradient (supposed to be a constant equal to
λ) is also macroscopic and, accordingly, it seems reasonable to assume that

λ(σ 1
z ⊗ (z1 + · · · + σ N

z ⊗ zN ) ≈ λσz ⊗ (z1 + · · · + zN )

in a tiny (e.g. of the diameter of a micron) but still macroscopic vicinity of a point in con-
figuration space. As explained, we may replace z1 + · · · + zN by p1 + · · · + pN , where pi
denote momentum operators of the i-th particle.

Thus, the measurement, here “performed” by the coordinate wave-function, is “arbitrarily
close” to one in a finite volume V0, and the elements of the quasi-local algebraA, which are
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arbitrarily close (in norm) to an element localized in a finite volume V0, will not be able to
distinguish between two disjoint states, because they are “macroscopically different”, i.e.,
differ from one another by an infinite number of operations - e.g., by flipping an infinite
number of spins in states of different mean magnetizations, or changing the coordinates of
the particles in jets of different values of the mean (C.M.) coordinate.

The fact that the coupling is assumed to occur only with the center of mass momentum
explains why only the free motion is relevant in the final formulas (see Remark 4.1), and
justifies restriction to product states, because the eventual (e.g. van der Waals) interactions
between the silver atoms is entirely negligible.

We now proceed with the treatment of the model (65).
In correspondence to (58), the initial (t = 0) configurational state is

�C,k,0(z−k, · · · , zk) = (2πσ 2
0 )−1/2 exp(

−z2−k + · · · − z2k
4σ 2

0

) (66)

and the full t = 0 wave-vector associated to (57) becomes

�T ,k,0 = (α|+) + β|−)) ⊗ �C,k,0 (67)

in the Hilbert spaceH = C2 ⊗ ⊗k
i=−k L

2
i (R), where L2

i (R denotes the i − th copy of L2(R)

associated to the k − th particle. Equation (65) then yields

exp(−i t Hk)�T ,k,0 = α|+) ⊗ �k,−,t + β|−) ⊗ �k,+,t (68)

with

�k,+,t (z−k, · · · , zk) = �C,k,0(z−k − λt, · · · , zk − λt) (69)

together with

�k,−,t (z−k, · · · , zk) = �C,k,0(z−k + λt, · · · , zk + λt) (70)

In correspondence with (68), the states ωxTk
, ωyTk

defined before (43) become

ωxTk
(A) = (�k,+,t , πk(A)�k,+,t ) (71)

and

ωyTk
(A) = (�k,−,t , πk(A)�k,−,t ) (72)

where A ∈ A, the infinite product of Weyl algebras defined in Assumption A. For this model
the tD in (3) may be explicitly computed: after t=0, the density splits into a sum of two
Gaussians, which become separated as long as the distance between their centers is larger
than the widths of the two Gaussians, viz. 3σ0: tD = 3σ0

λ
where λ stands for the average

velocity in the z direction: see (6) and (9) of [21] and the forthcoming (84).

Proposition 4.1 Let T satisfy (3). Then, the weak* limits of the states (71), (72), denoted by
ωT
1 and ωT

2 as in Definition 3.3, are disjoint.
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Proof We are in the setting of Proposition 2.5, with xi = � i,+,T , on the one hand, and
yi = � i,−,T on the other. We have, by (69), (70),

(xi , yi ) = (yi , xi )

= (2πσ 2
0 )−1

∫ ∞

−∞
dzi exp(− (zi − λT )2

4σ 2
0

)

× exp(− (zi + λT )2

4σ 2
0

)

= (2πσ 2
0 )−1

∫ ∞

−∞
dzi exp(− z2i

2σ 2
0

) exp(−λ2T 2

2σ 2
0

)

= exp(−λ2T 2

2σ 2
0

)

By (3)

exp(−λ2T 2

2σ 2
0

) ≥ exp(−λ2t2D
2σ 2

0

)

and hence

|(xi , yi ) − 1| = 1 − exp(−λ2t2D
2σ 2

0

) ≥ 1

4

λ2t2D
2σ 2

0

(73)

By Definition 2.6, the representations of A canonically associated to the infinite product
states ω1 and ω2 are ⊗⊗ξi

i∈Zπi , with ξi = xi or yi , and the corresponding C0 - families are not
equivalent by (73) and Definition 2.4, hence they are disjoint. ��

The fact used above that “not not-equivalent” means disjointness as defined by def-
inition 2.1 may not be immediately clear but it, too, follows from Lemma 2.2. First,
we dispose of A because of quasi-locality, and, due to the product structure, we arrive
as a necessary and sufficient condition for disjointness of states, that the scalar product∏

i∈I ;|i |su f f icientlylarge(xi , yi ) = 0, or, taking the logarithm

| log(
∏

i∈I ;|i |su f f icientlylarge
(xi , yi ))| = ∞

In rigorous terms, this is replaced by the condition
∑

i∈I ;|i |su f f icientlylarge
|(xi , yi ) − 1| = ∞

This replacement is due to the necessity of avoiding the problems related to zero factors in
the infinite product, or to “infinite phases”, see [39]. The above condition may be intuitively
motivated by the fact that convergence of the infinite product implies that each term must
tend to one: considering the logarithm of the product, each log(xi , yi ) is close to 1− (xi , yi )
and, thus, convergence means

∑

i∈I ;|i |su f f icientlylarge
|(xi , yi ) − 1| < ∞

of which the previous formula is the negation.
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Wecome now to a second proof of disjointness, which both illuminates its physical content
and defines precisely the results and parameter values associated to the measurement. The
(z-component of) the center of mass of the atoms (6) is

zC .M . = lim
k→∞

1

2k + 1

k∑

i=−k

zk (74)

The above limit may be seen to exist in each IDPS ⊗⊗ξi
i∈Z, with ξi = xi or yi , assuming

different values in each representation:

Proposition 4.2 zC .M . exists in the sense that, for any ρ ∈ R,

lim
k→∞ exp(iρ

∑k
i=−k zk
2k + 1

) = exp(iρλT ) (75)

in the IDPS ⊗⊗xi
i∈Z, and

lim
k→∞ exp(iρ

∑k
i=−k zk
2k + 1

) = exp(−iρλT ) (76)

in the IDPS ⊗⊗yi
i∈Z. As a consequence, the two IDPS are disjoint.

Proof We have

(�k,+,T , exp(iρ

∑k
i=−k zk
2k + 1

)�k,+,T )

= (2πσ 2
0 )−

2k+1
2

∫ ∞

−∞
dz−k · · ·

∫ ∞

−∞
dzk

exp(−2
(z−k − λT )2

4σ 2
0

) · · · exp(−2
(zk − λT )2

4σ 2
0

)

exp(iρ
z−k

2k + 1
) · · · exp(iρ zk

2k + 1
)

= exp(− ρ2σ 2
0

2(2k + 1)
) exp(iρλT )

from which

lim
k→∞(�k,+,T , exp(iρ

∑k
i=−k zk
2k + 1

)�k,+,T ) = exp(iρλT ) (77)

and, analogously,

lim
k→∞(�k,−,T , exp(iρ

∑k
i=−k zk
2k + 1

)�k,−,T ) = exp(−iρλT ) (78)

By Proposition 2.5 and the fact that the limits on the left hand sides of (77), (78) are
not altered by changing the variables zi with i in a finite set we may replace �k,±,T in
equations (77)(resp. (78)) by vectors in a total set in ⊗⊗xi

i∈Z (resp.⊗⊗yi
i∈Z). This shows (75) and

(76). Disjointness of the IDPS is a consequence of an argument identical to the one used in
connection with (26). ��
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4.2 An Effective Quantum SpinModel

An effective quantum spin model for the previously studied Stern-Gerlach model is obtained
by replacing ⊗k

−k L
2
i (R) by

Hk = ⊗k
i=−kC

2
k

Given a fixed T satisfying (3), perform in the statesωxTk
,ωyTk

in (71) and (72) the substitution

�k,±,T → ⊗k
i=−k |±)k (79)

where |±)k are, as before, the spin eigenstates of σ z
k : σ z

k |±)k = ±|±)k , together with the
substitution

lim
k→∞ exp(iρ

∑k
i=−k zk
2k + 1

) → lim
k→∞ exp(2iρT

∑k
i=−k σ z

i

2k + 1
) (80)

Then: the weak* limit of the sequence of states

ωk ≡ |α|2ω+
k + |β|2ω−

k (81)

with |α|2+|β|2 = 1, on the quasi-local algebraA associated to the spin algebra onZ andω±
k

denoting the product states which define the familiar disjoint representations π �m , π�n (with
�m = ±(0, 0, 1)) described in Sect. 2, after (23), is an effective quantum spin model for the
SGmodel described in the previous subsection, in the sense that it reproduces the “quantities
to be measured” (75), (76), as long as the substitution (80) is performed.

The present model serves as illustration of the remarks on irreversibility in the next Sect. 5.

Remark 4.1 It is of course critical that tD �= 0 in (3); the case of “instantaneousmeasurement”
is excluded by theBasdevant-Dalibard assumption a). The same requirement is independently
imposed by the theory of irreversibility, see the next section.

As a further concrete illustration of this requirement in the present model, note that by the
equations preceding (73),

(�k,+,T , �k,−,T ) = exp

(

−λ2T 2k

2σ 2
0

)

(82)

so that, if

T = T (k) = O(
1√
(k)

) (83)

the cross terms in (32) do not tend to zero. The fact that the possibility T (k) → 0 as k → ∞
is to be excluded, contrarily to the remarks in [1], has a simple explanation, to be given next.

Finally, it should be remarked that equation (82) shows explicitly that the condition k → ∞
is not always necessary to achieve a very high degree of decoherence. Indeed, let T = 1sec
and σ0

λ
= 10−4sec (the latter reasonable experimental values, see (9) in [21]), and k = 1 (i.e.,

just one particle), we obtain for the r.h.s. of equation (82) the value exp(−108), a forbiddingly
small value!

Remark 4.2 If we differentiate equations (75) and (76) with respect to ρ, setting ρ = 0
afterwards, we obtain, denoting < zC .M >T the expectation of the C.M. variable (74) in the
product state at time T :

< zC .M . >T= ±λT = 2szλT (84)
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where

sz = ±1

2
(85)

are the two values of the z component of the spin operator, which comprise, in this experiment,
the “measured values”. Equation (84) is essentially equation (65) of p. 559 of [20] (with
Pz = 0, which we assumed) - not surprisingly the solution of the classical equation of
motion, because the Gaussians are coherent states.

By (84), T is proportional to the value of a “macroscopic observable” < zC .M . >T ,
independent of k. This explains why a behavior such as (83) is excluded, or, more generally,
that the possibility T (k) → zero as k → ∞ mentioned in [1] is excluded.

The two values (85) are obtained from (84) through the measured values of < zC .M . >T

and T (with a known constant λ) and remain constant when the “observer” (< zC .M . >T , T )

changes; the “intrinsic property postulate” of Bell and Gottfried is therefore verified in the
present model.

Finally, the mathematical limit T → ∞ is unphysical in this model, since it corresponds
to place the screen at infinite distance from the electromagnet.

5 Irreversibility, The Time-Arrow and the Conservation of Entropy
Under Measurements

In his conclusion, Hepp [2] remarks: “The solution of the problem of measurement is closely
connectedwith the yet unknown correct description of irreversibility in quantummechanics”.

One such description of closed systems, without changing the Schrödinger equation and
the Copenhagen interpretation was proposed in [7], see also [8] for a comprehensive review,
which includes the stability of the second law in the form proposed in [7] under interactions
with the environment.

For a finite quantum spin system the Gibbs-von Neumann entropy is (kB = 1)

S� = −Tr(ρ� log ρ�) (86)

As remarked in Sect. 2, we may view ρ� as a state ω� onA(�)which generalizes to systems
with infinite number of degrees of freedom ω(A) = lim�↗∞ ω�(A), at first for A ∈ AL

and then to A. For a large system the mean entropy is the natural quantity from the physical
standpoint:

s(ω) ≡ lim
�↗∞(

S�

|�| )(ω) (87)

The mean entropy has the property [25]:

0 ≤ s(ω) ≤ log D where D = 2S + 1 (88)

where S denotes the value of the spin, in the present paper and in the effective model of Sect.
4.2, S = 1

2 .
In his paper “Against measurement”, John Bell, in a statement which is qualitatively

similar to Hepp’s, insisted on the necessity of physical precision regarding such words as
reversible, irreversible, information (whose information? information about what?).

The theory developed in [7], [8] starts defining an adiabatic transformation, in which
there is a first step, a finite preparation time tp , during which external forces act, at the end of
which the Hamiltonian associated to the initial equilibrium state is restored, and remains so
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“forever” during the second step. Inmeasurement theory, Lamb [47] also emphasizes the dual
role of preparation and measurement. If the time of measurement T is such that T > tp , and
the wave-vector describing the system is not identically zero in the whole interval [0, T ], the
dynamics of the system in the time interval [−tr , T ], of preparation followed bymeasurement,
is *not* time-reversal invariant, leading to a time arrow. If tp = T = 0, i.e., both preparation
and measurement are instantaneous, no guarantee of the existence of a time-arrow can be
given.

According to our theory, given a time arrow, the process ω1(0) → ω2(∞) is defined to
be reversible (irreversible) iff the inverse process ω2(0) → ω1(∞) is possible (impossible).
The first alternative takes place iff s(ω1) = s(ω2), the second one iff s(ω1) < s(ω2). Infinite
time t = ∞ means, physically, that T is much larger than a quantity tD , the decoherence
time, as explained in Sect. 1.

Of course, irreversibility is incompatible with time-reversal invariance, because the mean
entropy cannot both strictly increase and strictly decrease with time. This is a precise wording
in our framework of the Schrödinger paradox [12], cited in Lebowitz’s inspiring review of
the issue of time-assymetry [45].

We know that the space of states is convex and the entropy of a finite system satisfies the
inequality (0 ≤ α ≤ 1)

S�(αρ1
� + (1 − α)ρ2

�) > αS�(ρ1
�) + (1 − α)S�(ρ2

�) (89)

i.e, S� is strictly concave: entropy is gained by mixing, but the gain is *not* extensive and
disappears upon division by |�| and taking the infinite volume limit (inequalities of Lanford
and Robinson [25]), so that the mean entropy becomes affine:

s(αω1 + (1 − α)ω2) = αs(ω1) + (1 − α)s(ω2) (90)

The state (32) , (33) tends, in the weak* topology, to a state ωT (now on the algebra of
system and apparatus (34), whose Gibbs-von Neumann entropy is identical to that of the
initial state ω0, and equals zero since the state is pure. The associated mean entropy therefore
also satisfies

s(ωT ) = s(ω0) = 0 (91)

By Theorem 3.4, the state ωT is equivalent, “for all observables found in Nature” to the
“collapsed state” ωC given by

ωC ≡ |α|2ωT
1 + |β|2ωT

2 (92)

where, by (32), (33), (35), (36)

ωT
1 = ωT (P+·)(|α|2)−1 (93)

and

ωT
2 = ωT (P−·)(1 − |α|2)−1 (94)

with the notation P+ = |+)(+|, P− = |−)(−|, the familiar projectors on the two eigenstates
of σz .

Theorem 5.1 On the average the mean entropy is conserved by measurements, and remains
equal to zero.
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Proof On the average, the mean entropy equals

|α|2s(ωT
1 ) + (1 − |α|2)s(ωT

2 )

= s(|α|2ωT
1 + (1 − |α|2)ωT

2 )

= s(ωT (P+·) + ωT (P−·)) = s(ωT )

= s(ω0) = 0

The first equation above is due to the property of affinity (90), the second one follows
from (93), (94), the third one by the linearity of the states, and the fact that P+ + P− = 1,
the fourth from (91). ��

The above theorem relies on the property of affinity of the mean entropy, which has only
been proved for quantum lattice systems [25]. The sole example we are able to give is the
effective quantum spin model of the Stern Gerlach experiment of Sect. 4.1 which was given
in Sect. 4.2.

In contrast to the behavior found in Theorem 5.1, the Boltzmann andGibbs-vonNeumann
entropy of a finite system is reduced under collapse, by Lemma 3 of [17]. This may be
understood as follows. Entropy S� = |�| log D − I�, with I� denoting the (quantum)
information. For quantum spin systems 0 ≤ S�/|�| ≤ log D, and therefore 0 ≤ I�/|�| ≤
log D. It attains its maximum value for pure states, which are characterized by S� = 0. Under
“collapse”, each collapsed state is pure and therefore information is gained: this explains
that the (Boltzmann and von Neumann) entropies are reduced, on the average, violating
the second law (on the average). If one chooses to define irreversibility in terms of the
growth of the quantum Boltzmann entropy, we arrive at the necessity, commented in the last
paragraph of [17], that interactions with the environment (as well as measurements) must be
rare phenomena on the thermodynamic scale in order to account for the validity of the version
of the second law which was proved in [17]. Our approach through the mean entropy seems
therefore particularly natural in this context, and has the following physical interpretation.
Equivalently to the previously discussed informational content (for quantum spin systems),
entropy is, in Boltzmann’s sense, a measure of a macrostate’s wealth of “microstates”, and
therefore grows by mixing, but it turns out that this growth is *not* extensive and disappears
upon division by |�| , i.e., taking the infinite volume limit (inequalities of Lanford and
Robinson [25]), so that the affinity property (90) results and,with it, Theorem 5.1, confirming,
in the sense of mean entropy, Nicolas van Kampen’s conjecture [26] that the entropy of the
Universe is not affected bymeasurements. It is not affected either bymore general interactions
with the environment [11], resulting in the stability of the second law proved in [7], see [8].

6 Conclusion and Open Problems

One central and dominating feature of the analysis over finite vs infinite dimensional spaces
is that in the infinite dimensional case the solutionmay depend discontinuously on the param-
eters of the problem. Indeed, infinite systems may exhibit singularities, not present in finite
macroscopic systems, well-known in the theory of phase transitions: they are parametrized
by critical exponents, which, moreover, display universal properties, in excellent agreement
with experiment! The crucial example of “discontinuity”, as N → ∞, in the context of
measurement theory, is the basic structural change of the states: a sequence of pure states
may tend to a mixed state, by Theorem 3.4, as a consequence of the property of disjointness,
which has no analogue for finite system: in measurement theory, the mean entropy is con-
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served and equals zero by Theorem 5.1. It may also happen that a sequence of pure states of
infinite systems, parametrized by the time variable, tends to a mixed state of strictly higher
mean entropy ( [7], [8]).

In greater generality, the physical “N large but finite” differs qualitatively from “N infinite”
because the latter exhibits universal properties not found in finite systems. One example of
these universal properties, crucial in our approach, is the affinity of the mean entropy, whose
finite-volume counterpart strict concavity of S�|�| ) is not universal because, not being uniform
in |�|, it depends on the volume |�| of the system. The fact that (only) “N infinite” is in
good agreement with experiment is explained by the fact that, with N ≈ 1024, macroscopic
systems are extremely close to infinite systems (the success of the thermodynamic limit!).
This explains whywe are able to complement, and sometimes improve on, Sewell’s approach
to the measurement problem in ( [18], [19]).

The above-mentioned universality in the framework introduced here and in ( [7], [8])
suggests that other physical theories besides quantum spin systems might exhibit similar
properties, e.g., relativistic quantum field theory (rqft), and, from there, hopefully, nonrela-
tivistic quantum continuous systems by the non-relativistic limit of rqft. Since, however, rqft
deals with fields and thus continuous quantum systems, the structure of the space of states
is quite different from that of quantum spin systems, and, in particular, the states must be
required to be locally normal [48] or locally finite ( [28], p.26) - of which the only existing
proof in an interacting field theory is due to Glimm and Jaffe, for the vacuum state [49].
Moreover, Theorem 3.4 and its corollary show that in measurement theory the relevant state
is (equivalent to) a weak* limit of a sequence of convex linear combinations of product states,
that is, a non-entangled state, according to the Bertlmann-Narnhofer-Thirring geometrical
picture of entanglement ( [50], [51]). The latter [50], however, also suggests that in rqft
“almost every state is entangled” in a precise sense, and, indeed, Summers and Werner [52]
and Landau [53] show that the vacuum state in rqft maximally violates Bell’s inequality (see
also Wightman’s review [54] of their work). It is thus expected that entanglement will play
a role in a future theory of measurement in rqft.

The formulation of a theory of measurement in rqft is a difficult, very fundamental open
problem: it is formulated as Problem 4 in Wightman’s list [54]: “to examine the effects of
relativistic invariance onmeasurement theory”, see also [47]. In particular,Doplicher suggests
[1] that the apparent “nonlocalizability” of the type observed in the EPR thought experiment,
due to the superposition principle, would certainly disappear if truly local measurements
were performed - and spin or angular momentummeasurements are not such. In fact, instead
of (62), we must have a true interaction between fields. Incidentally, for interacting fields,
the singularity hypothesis of [55] implies that fields are not defined for sharp times, and
“instantaneous measurements” are excluded.

Since themeasurement problem in quantummechanics is a very complex and controversial
problem, the complexity being partly due to the variety of the existent physical situations, it
cannot be hoped that this paper contains a “final solution” to the measurement problem. In
particular, almost perfect decoherence may occur even if the limit N → ∞ is not performed
at all, when the time T of observation is sufficiently large: an explicit example of this situation
is given in Remark 4.1.

The above-mentioned example relates to the work of Machida and Namiki [56], com-
mented by Araki [57], who formulated the Machida-Namiki theory in terms of continuous
superselection rules. The reduction of the wave-packet proceeds, then, as a consequence
of the (mathematical) limit T → ∞ (in our notation: see equations (3.4), (3.5) in [57]).
Although, as we have argued, this limit need not, in general, be of physical relevance (and,
indeed, it is not in the SG model, see the last sentence in Remark 4.2), we have just seen that

123



64 Page 24 of 26 W. F. Wreszinski

almost perfect decoherence may occur, nevertheless, if T is sufficiently large with respect to
the decoherence time tD . These theories, therefore, do remain of considerable interest as a
complement to ours.

Another example is provided by the question of whether it is possible to devise any exper-
iment (of the Bell-EPR type) which simultaneously measures precise values of incompatible
observables (the SG experiment of Sect. 4 being not of this type). This may indicate a dif-
ferent route to the previous discussion based on microcausality. See, in this connection, the
specific analysis in [58], as well as the more general [59]; both are based on Griffiths’ (prob-
abilistic) theory of consistent histories ( [60], see also [61]). The latter theory was used by
Omnès [62], who proposed to consider measurements specified by special kinds of history
in which decoherence results in the classical behavior of the macroscopic variables of the
apparatus, to a sufficient approximation. This (not necessarily perfect) decoherence is yet
another alternative, complementary approach to ours. Concerning the classical, macroscopic
observables, it is also of special interest that they are shown in [63] to be special cases of a
subalgebra of the class of microscopic quantum observables of a generic many-body system
(see also [64]).

In spite of the above-mentioned limitations, we believe that the universal properties of
perfect decoherence, as described in the first two paragraphs, suggest that it is relevant, in
the sense of an idealized limit, to a significant number of physical measurements, in which
both the “Heisenberg paradox” and the “irreversibility paradox” have been eliminated, and,
therefore, quantum mechanics, in the original Copenhagen interpretation, is totally free of
internal inconsistencies. This occurs, however, as Hepp [2] predicted, only if one takes into
account the extension of quantum mechanics to systems with an infinite number of degrees
of freedom, as formulated in [29] and [2], and developed in Sect. 3.
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