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Abstract
In this note, we define one more way of quantization of classical systems. The quan-
tization we consider is an analogue of classical Jordan–Schwinger map which has
been known and used for a long time by physicists. The difference, compared to
Jordan–Schwinger map, is that we use generators of Cuntz algebra O∞ (i.e. count-
able family of mutually orthogonal partial isometries of separable Hilbert space) as
a “building blocks” instead of creation–annihilation operators. The resulting scheme
satisfies properties similar to Van Hove prequantization, i.e. exact conservation of Lie
brackets and linearity.

1 Introduction

In this note, we define one more way of quantization (see review [1] and references
therein) of classical systems. The quantization we consider is an analogue of classical
Jordan–Schwinger map which has been known and used for a long time by physicists
([2]). The difference, compared to Jordan–Schwinger map, is that we use generators of
Cuntz algebra O∞ (i.e. countable family of mutually orthogonal partial isometries of
separable Hilbert space) as a "building blocks" instead of creation–annihilation oper-
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ators. The resulting scheme satisfies properties similar to Van Hove prequantization,
i.e. exact conservation of Lie brackets and linearity. The second result of the paper
is a construction of representation of Heisenberg algebra through Cuntz generators
(Remark 24). Other way of construction of canonical commutation relations through
isometries has been presented in paper [3]. The difference is that our construction is
through an explicit formula while they construct the operators through recursive pro-
cess. Furthermore, their iterative process results in polynomials of Cuntz generators
of arbitrarily high degree while in our case we have quadratic dependence upon Cuntz
generators.

The theory of representations of the algebra O∞ (see [4] and references therein)
seems to be much richer than the theory of representations of canonical commuta-
tion relations. In particular, there is no analogue of Stone–von Neumann theorem and
classification of classes of irreducible representations is connected with completely
different areas such as the theory of modular classes [5] and wavelet theory [6]. Fur-
thermore, as shown in [7] a classification of all irreducible representations is in a
certain sense impossible.

The article hence reaches out to several areas such as representations of the
Cuntz algebras, Van Hove prequantization, canonical commutation relations, infinite-
dimensional Lie algebras and stochastic analysis. A variant of the Jordan–Schwinger
map is used to connect operators on the Cuntz algebra to Poissonian manifolds. In that
case, the Poisson brackets are “mapped” to the commutator. For a suitable choice of
operators, theHeisenberg algebra in finite and infinite dimensions is obtained, based on
Cuntz algebras. Since representations ofO∞ showmore variety in representations [4],
newquantum systems could be identified.An algebraic analogue of Jordan–Schwinger
map first described in the paper [8] has been used there to construct explicitly rep-
resentations of finite- and infinite-dimensional algebras and derive spectral theorem
for the class of self-adjoint (in certain sense) operators in locally convex spaces. An
important feature of the transformation is a transfer of the operator defined on suf-
ficiently arbitrary locally convex topological vector space to the operator on Hilbert
space. This allows reduce study of , for instance, spectral properties of operators on
topological vector spaces to the corresponding theory of operators in Hilbert spaces.
Further applications of algebraic analogue of Jordan–Schwinger map to the operator
algebras, i.e. Leavitt path algebras, spectral theory and theory of representations, will
be considered in the forthcoming works of authors. The hope of the authors is that
these ideas could be connected to the quantization theory and result in new insights.
The main results of this article are the quantization of both finite-dimensional and
infinite-dimensional system via Cuntz algebras. For this purpose, we use the alge-
braic analogue of the Jordan–Schwinger map. The resulting objects are operators on
the Cuntz algebra O∞. For the infinite-dimensional case, a Poisson structure is con-
structed in white noise analysis. Infinite-dimensional Heisenberg algebras are already
studied in white noise analysis, see, for example, [9, 10] and the references therein.
The infinite-dimensional case gives rise to an infinite-dimensional Heisenberg Lie
group, which has various applications in non-commutative analysis, e.g. [11], and
quantum physics, e.g. [12].
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2 Quantization of finite-dimensional systems via Cuntz algebras

Let (C∞(M), {·, ·}) be a Poisson manifold with Poisson brackets {·, ·} : C∞(M) ×
C∞(M) → C∞(M), H an auxiliary separable Hilbert space and {Ti }∞i=1 : H → H
generators of Cuntz algebraO∞, i.e. mutually orthogonal isometries of H [6, 13, 14].
We can assume without loss of generality that

∞∑

k=1

TkT
∗
k = I d.

For h ∈ C∞(M), we define Q, R ∈ L(C∞(M),O∞) as follows:

Q(h) :=
∞∑

i, j=1

< {h, e j }, fi >C∞(M),(C∞(M))∗ Ti T
∗
j ,

R(h) :=
∞∑

i, j=1

< he j , fi >C∞(M),(C∞(M))∗ Ti T
∗
j ,

where {ei }∞i=1, { fi }∞i=1 is a biorthogonal system in C∞(M) (with some fixed dual
(C∞(M))∗). Then we have

Lemma 21 Let f , g ∈ C∞(M), then

[Q( f ), Q(g)] = Q({ f , g}), (1)

[Q( f ), R(g)] = R({ f , g}), (2)

Q(g)R( f ) + Q( f )R(g) = Q( f g), (3)

R( f )R(g) = R( f g). (4)

Proof It immediately follows from commutation properties of operators {Ti , T ∗
j }∞i, j=1

and Poisson brackets properties. ��
Definition 22 Define the quantization Q̂ := R − 2i Q, with Q̂ ∈ L(C∞(M),O∞).

Theorem 23 Q̂ ∈ L(C∞(M),O∞) satisfies

Q̂(1) = I d, (5)

[Q̂( f ), Q̂(g)] = −2i Q̂({ f , g}), (6)

[Q̂(qk), Q̂(q j )] = [Q̂(pk), Q̂(p j )] = 0, (7)

[Q̂(qk), Q̂(p j )] = −2iδk j I d, k, j = 1, . . . , dimM . (8)

Furthermore, if φ : R → R is an analytic function then

�Q̂(φ( f )) = φ(�Q̂( f )). (9)
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Proof Property (5) follows from definition of Q and R, commutation relation (6) is
a consequence of Lemma 21, property (8) immediately follows from (6) and Poisson
brackets properties. At last, analogue of von Neumann rule is enough to show when
φ(x) = xn is a monomial. Now the result follows by induction w.r.t. n (applying
properties (3) and (4)). ��
Remark 24 Mapping Q itself satisfies property (6), but we have that Q(1) = 0. Never-
theless, working separately with Q and P allows us to get representation of canonical
commutation relationsas following example shows. Let M = R

2n with the standard
Poisson brackets, {ei }∞i=1 be an orthonormal basis in L2(R2n, dμ), fi = ei , i ∈ N,
μ–standard Gaussian measure

dμ = e
−

n∑
i=1

p2i +q2i ∏

i

dpi dqi ,

and as the duality, we take scalar product in L2(R2n, dμ). Then, as in the previous
example,

Q2i := Q(qi ), Q2i+1 := Q(pi ),

P2i := R(pi ), P2i+1 := R(qi ),

[Qi , Q j ] = [Pi , Pj ] = 0, [Qi , Pj ] = (−1)iδi j1, i, j = 1, . . . , 2n.

Furthermore, by integration by parts, we can deduce that

Pi = (−1)i (Qi + Q∗
i ), i = 1, . . . , 2n.

Therefore, we can conclude that

[Qi , Q j ] = [Q∗
i , Q

∗
j ] = 0, [Qi , Q

∗
j ] = δi j1, i, j = 1, . . . , 2n,

and formulas (3) and (4) allow us to calculate Q( f ), R( f ) for arbitrary polynomial
f = f (q, p) as a polynomial of operators Qi , Q∗

i , i = 1, . . . , 2n.

Remark 25 Notice that operators Pk = TkT ∗
k , k ∈ N are mutually orthogonal projec-

tions. Consequently, we have representation of H as a direct sum

H = ⊕∞
k=1Hk, Hk := Pk(H).

Let us show that operators Q(h), R(h) are bounded on each Hk, k ∈ N under some
natural assumptions about h. We will consider only the operator Q(h). The case of
R(h) is similar. First, let us notice that

Q(h)TkT
∗
k ψ =

∞∑

i=1

〈{h, ek}, fi 〉Ti T ∗
k ψ.
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Consequently, by mutual orthogonality of isometries {Tl}∞l=1 we can deduce that

||Q(h)TkT
∗
k ψ ||2H = ||T ∗

k ψ ||2H
∞∑

l=1

〈{h, ek}, fl〉2

= ||TkT ∗
k ψ ||2H

∞∑

l=1

〈{h, ek}, fl〉2,

and, therefore,

||Q(h)||2Hk
≤

∞∑

l=1

〈{h, ek}, fl〉2.

Thus, if we assume that for any k ∈ N

∞∑

l=1

〈{h, ek}, fl〉2 < ∞

we have that Q(h) has dense in H domain of definition which corresponds to the finite
linear combinations of elements of the subspaces Hk , for k ∈ N.

3 An infinite-dimensional extension via white noise calculus

Starting point of the white noise distribution theory is the Gel’fand triple

S ⊂ L2(R, dt) ⊂ S∗,

where S is the space of Schwartz test functions overR densely embedded in theHilbert
space of square integrable functions with respect to the Lebesgue measure L2(R, dt)
and S∗ the space of tempered distributions, see., for example, [15] for a construction.
Via theBochner–Minlos–Sazonov theorem, see, for example, [16], we obtain thewhite
noise measure μ on S∗ by its Fourier transform

∫

S∗
exp(i〈x, ξ 〉) dμ(x) = exp(−1

2
|ξ |20), ξ ∈ S,

where |.|0 denotes theHilbertian normon L2(R, dt). The topology on S is induced by a
positive self-adjoint operator A on the space of real-valued functions H := L2(R, dt)
with inf σ(A) > 1 and Hilbert–Schmidt inverse A−1. Note that the complexifi-
cation SC are equipped with the norms |ξ |p := |Apξ |0 for p ∈ R. We denote
HC := L2(R,C, dt); furthermore,

SC,p := {
ξ ∈ SC| |ξ |p < ∞}
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and

S∗
p := {

ξ ∈ S∗| |ξ |p < ∞}
,

for p ∈ R resp.
Now we consider the following Gel’fand triple of Hida test functions and Hida

distributions.

(S) ⊂ (L2) := L2(S∗, μ) ⊂ (S)∗.

By theWiener–Ito chaos decomposition theorem, see, for example, [10], [17] or [18],
we have the following unitary isomorphism between (L2) and the Boson Fock space
�(HC):

(L2) � �(x) =
∞∑

n=0

〈: x⊗n :, fn
〉 ↔ ( fn) ∼ � ∈ �(HC),

fn ∈ L2(R, dt)⊗̂n
C

,

where : x⊗n : denotes the Wick ordering of x⊗n and ⊗̂n denotes the symmetric tensor
product of order n. Moreover, the (L2) norm of � ∈ (L2) is given by

‖�‖20 =
∞∑

n=0

n! | fn|20 .

We denote by 〈〈., .〉〉 the canonical C bilinear form on (S)∗ × (S). For each � ∈ (S)∗,
there exists a unique sequence (Fn)∞n=0 , Fn ∈ (S⊗̂n

C
)∗ such that

〈〈�,ϕ〉〉 =
∞∑

n=0

n! 〈Fn, fn〉 , ( fn) ∼ ϕ ∈ (S). (10)

Thus, we have, see, for example, [10], [17] or [18]: (S) � � ∼ ( fn), if and only if for
all p ∈ R we have

‖�‖p :=
( ∞∑

n=0

(n!) | fn|2p
) 1

2

< ∞.

Moreover, for its dual space we obtain (S)∗ � � ∼ (Fn), if and only if there exists a
p ∈ R such that

‖�‖p :=
( ∞∑

n=0

(n!) |Fn|2p
) 1

2

< ∞.
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For p ∈ R, we define

(S)p :=
{
ϕ ∈ (L2) : ‖ϕ‖p,β < ∞

}

and

(S)−p :=
{
ϕ ∈ (S)∗β : ‖ϕ‖−p, < ∞

}
.

We then obtain

(S) := proj lim
p→∞ (S)p

and

(S)∗ = ind lim
p→−∞ (S)p.

Moreover, (S) is a nuclear (F)-space.
The exponential vector or Wick ordered exponential is defined by

�ξ(x) :=
∞∑

n=0

1

n!
〈: x⊗n :, ξ⊗n 〉 , (11)

where ξ ∈ SC and x ∈ S∗.
For y ∈ S∗

C
, we use the same notation and define �y ∈ (S)∗ by:

(S) � ψ ∼ ( fn)n∈N : 〈〈ψ,�y〉〉 :=
∞∑

n=0

〈
y⊗n, fn

〉
.

Since �ξ ∈ (S), for ξ ∈ SC, we can define the so called S transform of � ∈ (S)∗ by

S(�)(ξ) = 〈〈�,�ξ 〉〉.

The S transform can be used to characterize the Hida distributions via a space of ray
analytic functions, which is due to the well-known characterization theorem, see, for
example, [10, 17–19].

We call S(�)(0) = 〈〈�, 11〉〉 the generalized expectation of � ∈ (S)∗.
The Wick product of �1 ∈ (S)∗ and �2 ∈ (S)∗ is defined by

�1 � �2 := S−1(S(�1) · S(�2)) ∈ (S)∗,

see, for example, [10, 17, 18].
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Naturally we can define a directional derivative on (S) by

∂u�(x) =
∞∑

n=1

n〈: x⊗n−1 :, 〈 fn, u〉 〉,

where 〈 fn, u〉 denotes the contraction of fn ∈ S(R)⊗̂n
C

with respect to u ∈ S∗.
It is known that ∂u ∈ L((S), (S)), see, for example, [10].
It is shown, see, for example, [10], that ∂u is indeed a derivation on the space of

Hida test functions (S).
In Physics applications, it plays the role of the annihilation operator in the Fock

space, while its dual operator is the creation operator, also known as Skorokhod inte-
gral, see, for example,[10, 17, 18].

There are several studies on Poisson algebraic structures on the Hida Test function
space see, for example, [20–23] and their q-deformation.Wewill follow this streamline
here, but exploit the derivation structure of the derivative.

For this, we work on the triple

(S) ⊂ L2(S∗(R,R2)) ⊂ (S)∗.

Theorem 31 Let�,� ∈ (S) and K ∈ L(L2(R,R)) a symmetric trace-class operator
with eigenvalues (λn)n∈N and corresponding eigenvectors en ∈ S(R). We define the
Poisson bracket of � and � by

{�,�}K =
∞∑

n=0

λn(∂qn�∂pn� − ∂pn�∂qn�),

where qn = (en, 0) and pn = (0, en). With this definition ((S), {, }) is an infinite-
dimensional Poisson algebra.

Proof For �,� ∈ (S), we have also the derivative is in (S). However, it is a priori
unclear whether the infinite series is still a Hida test function. For this, we show that
indeed the Poisson bracket is in all (H p) spaces. It is enough to show this for the first
part. We have for all p ≥ 0 and q > 0:

‖
∞∑

n=0

λn(∂qn�∂pn�‖p ≤
∞∑

n=0

‖λn(∂qn�∂pn�‖p

≤ C max
n

|en|−q

∞∑

n=0

|λn|‖�‖p+q‖�‖p+q

= C max
n

|en|−q‖�‖p+q‖�‖p+q

∞∑

n=0

|λn| < ∞.

Leibniz rule, bilinearity and Jacobi identity follow directly from the gradient structure
and the product rule of the derivative. ��
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Define operators Q, R ∈ L((S),O∞) for � ∈ (S) as follows

QK (�) :=
∞∑

i, j=1

〈〈{�, bi }K , b j 〉〉Ti T ∗
j ,

R(�) :=
∞∑

i, j=1

〈〈� · b j , bi 〉〉Ti T ∗
j , � ∈ (S),

where {bi }∞i=1 ⊂ (S) is an orthogonal system in (S) extending to (S)∗. Moreover, R
is well defined since (S) is a Banach algebra, see, for example,[17]. Then we have

Lemma 32 Let f , g ∈ (S).

[Q( f ), Q(g)] = Q({ f , g}K ), (12)

[Q( f ), R(g)] = R({ f , g}K ), (13)

Q(g)R( f ) + Q( f )R(g) = Q( f g), (14)

R( f )R(g) = R( f g). (15)

Proof Follows immediately as before. ��
Definition 33 Define the quantization Q̂ ∈ L((S),O∞) as Q̂ := R − 2i Q.

Theorem 34 Q̂ ∈ L((S),O∞) satisfies for j, k ∈ N

Q̂(1) = I d, (16)

[Q̂( f ), Q̂(g)] = −2i Q̂({ f , g}K ), (17)

[Q̂(qk), Q̂(q j )] = [Q̂(pk), Q̂(p j )] = 0, (18)

[Q̂(qk), Q̂(p j )] = −2iδk j I d, k, j ∈ N. (19)

Furthermore, if φ : R → R is an analytic function then

�Q̂(φ( f )) = φ(�Q̂( f )) (20)

Proof Similar to the proof of Theorem 23. ��
Remark 35 As in the finite-dimensional case, we can get a representation of canonical
commutation relations also in the infinite-dimensional setting.

Let M = (S) with the Poisson bracket defined as before of a symmetric trace-class
operator K . Let μ be the two-dimensional white noise measure on S∗(R,R2) given
via:

∫

S∗(R,R2)

exp(i〈(xq , xp), (ξq , ξq)〉) dμ((xq , xp))

= exp

(
−1

2
(|ξq |20 + |ξp|20

)
, ξq , ξp ∈ S
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Let qn = (en, 0) and pn = (0, en), where (en)n ⊂ S(R) are the eigenvectors of K .
Then,

Q2i := Q(〈·qi 〉), Q2i+1 := Q(〈·pi 〉),
P2i := R(〈·pi 〉), P2i+1 := R(〈·qi 〉),
[Qi , Q j ] = [Pi , Pj ] = 0, [Qi , Pj ] = (−1)iδi j I d.

Furthermore, by integration by parts, we can deduce that

Pi = (−1)i (Qi + Q∗
i ), i = 1, . . . .

Therefore, we can conclude that

[Qi , Q j ] = [Q∗
i , Q

∗
j ] = 0, [Qi , Q

∗
j ] = δi j I d,

and formulas (14) and (15) allow us to calculate Q( f ), R( f ) for arbitrary polynomial
f = f (q, p) as a polynomial of operators Qi , Q∗

i , for i ∈ N.
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