DEPARTAMENTO DE MATEMÁTICA APLICADA

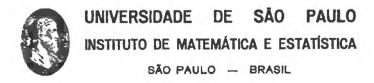
Relatório Técnico

RT-MAP- 9905

The Method of Stationary Phase with Minimal Smoothness

Daniel Bauman Henry

Agosto de 1999



The Method of Stationary Phase with Minimal Smoothness

Daniel B. Henry*

The method of stationary phase treats the behavior of oscillatory integrals when the frequency of oscillations tends to infinity. If $f,g:[a,b]\to\mathbb{R}$ are sufficiently smooth and the derivative $f'(x)\neq 0$ in $a\leq x\leq b$ with the exception of one point x_0 in $a< x_0< b$ where $f'(x_0)=0$, $f''(x_0)\neq 0$, then as $\omega\to +\infty$

$$\int_a^b e^{i\omega f} g \approx \int_{-\infty}^\infty g(x_0) exp\left(i\omega\left(f(x_0) + \frac{1}{2}f''(x_0)y^2\right)\right) dy$$

or, more explicitly: as $\omega \to +\infty$,

$$\sqrt{\omega}e^{-i\omega f(x_0)} \int_a^b \exp\left(i\omega f(x)\right) g(x) dx \rightarrow \int_{-\infty}^\infty g(x_0)e^{if''(x_0)\frac{t^2}{2}} dt$$

$$= g(x_0) \sqrt{\frac{2\pi}{|f''(x_0)|}} e^{\pm \frac{i\pi}{4}} \tag{1}$$

where $\pm = \operatorname{sgn} f''(x_0)$. In the first approximation, only the behavior near x_0 (where the phase f is "stationary") is important, provided f, g are smooth.

How much smoothness is sufficient? Or necessary?

Erdélyi [1] pag. 52, referring to the one-dimensional method of stationary phase, says "Perhaps the best available theorem is one given by Watson (1920)". The author has found no reason in later literature to modify that judgement.

^{*}Depto. Matemática Aplicada - IME - USP

G.N. Watson [3] treat a more general case - as we will also, in Theorems 2 and 3 - but for the case above:

If f is \mathbb{C}^2 and

$$x \mapsto G(x) = g(x) \frac{f''(x_0)(x - x_0)}{f'(x)} \left(\frac{f(x) - f(x_0)}{\frac{1}{2}f''(x_0)(x - x_0)^2} \right)^{\frac{1}{2}}$$

is of bounded variation (B.V.) in [a, b], the limit (1) above holds with $(g(x_0^+) + g(x_0^-)/2)$ in the place of $g(x_0)$. (In fact, it is enough that f is \mathbb{C}^1 and f' need be differentiable only at x_0 .) Note, if f is a nontrivial quadratic polynomial, then G = g.

We will prove (special case of Theorem 2) the limit (1) also holds if G is Hölder continuous with exponent $\alpha > \frac{1}{2}$ (of class \mathbf{C}^{α}) - for example, if g is \mathbf{C}^{α} and f is $\mathbf{C}^{2,\alpha}$ or $x \mapsto \frac{f'(x)}{(x-x_0)}$ is \mathbf{C}^{α} - or if G is of class $\mathbf{C}^{\alpha} + \mathbf{B.V.}$, the sum of one of each type. We also show the limit (1) may fail for G of class \mathbf{C}^{α} with $\alpha \leq \frac{1}{2}$. Specifically (Example 1, following Theorem 2) for every α in $0 < \alpha < 1$, there exists a real-valued G_{α} , locally of class \mathbf{C}^{α} , with $G_{\alpha}(0) = 0$ and such that, for any a < b,

$$\omega^{\alpha} \int_{a}^{b} e^{i\omega x^{2}} G_{\alpha}(x) dx$$

is bounded but has no limit when $\omega \to +\infty$. (Neither the real nor the imaginary part has a limit). The method of stationary phase would say, if a < 0 < b, that $\sqrt{\omega} \int_a^b e^{i\omega x^2} G_{\alpha}(x) dx$ tends to zero as $\omega \to +\infty$. In fact it does if $\alpha > \frac{1}{2}$, but it has no limit if $\alpha \le \frac{1}{2}$ and is unbounded if $\alpha < \frac{1}{2}$. (This is true for both the real and imaginary parts.)

We will also treat "Watson's lemma" in a half-space $\{Rez \geq 0\}$, Theorem 3, rather than the usual restriction $\{|argz| \leq constant < \frac{\pi}{2}\}$ (for example, [2]). This reduces to the method of stationary phase on the imaginary axis and the argument near the imaginary axis is similar to that case. The corollary to Theorem 3 gives sharp results for higher-order smoothness in the method of stationary phase. (Example 2, 3 and (2+3) prove necessity.)

We begin with a simpler case: no stationary point.

Theorem 1 Let $f:[a,b] \to \mathbb{R}$ be \mathbb{C}^1 with $f'(x) \neq 0$ in $a \leq x \leq b$ and suppose $x \mapsto \frac{g(x)}{f'(x)}:[a,b] \to \mathbb{C}$ is of class \mathbb{C}^{α} (0 < $\alpha \leq 1$) [or B.V.]. Then as $\omega \to +\infty$,

$$\int_a^b e^{i\omega f} g = O(\omega^{-\alpha}) \ \left[\text{or } O(\omega^{-1}), \text{ respectively} \right].$$

For $0 < \alpha < 1$, the function g_{α} defined by

$$g_{\alpha}(x) = \sum_{k=1}^{\infty} 2^{-k\alpha} \cos(2^k x)$$

is of class C^{α} and for any a < b,

$$\omega^{lpha}\int_a^b e^{i\omega x}g_{lpha}(x)dx$$

is bounded but has no limit as $\omega \to +\infty$. If $a+b \neq 0$, neither the real or the imaginary part has a limit. Thus the estimate of the first part cannot generally be improved.

Remark 1 As an immediate consequence, $g_{\alpha}|_{[a,b]}$ is not of bounded variation; in fact, it is not of class $C^{\beta} + B.V.$ for any $\beta > \alpha$. (Otherwise $\omega^{\alpha} \int_a^b e^{i\omega x} g_{\alpha}(x) dx = O(\omega^{\alpha-\beta} + \omega^{\alpha-1}) \to 0$ as $\omega \to +\infty$, which is false.) This holds for any a < b; the singularity of g_{α} is not localized.

If g is Lipschitzian, Hölder continuous with exponent 1, it is locally B.V. If g is a nontrivial step function (such as $g \equiv 1$), it is easy to see $\omega \int_a^b e^{i\omega x} g(x) dx$ is bounded but has no limit as $\omega \to +\infty$.

Proof: $\int_a^b e^{i\omega f} g = \int_{f(a)}^{f(b)} e^{i\omega x} \tilde{g}(x) dx$, where $\tilde{g}(f(x)) = \frac{g(x)}{f'(x)}$, so \tilde{g} is equally of class \mathbf{C}^{α} or B.V.; it suffices to treat the case f(x) = x.

If g is of bounded variation,

$$i\omega \int_a^b e^{i\omega x} g(x) dx = \left[e^{i\omega x} g(x) \right]_{a_+}^{b_-} - \int_{a_-}^{b_-} e^{i\omega x} dg(x)$$

is bounded as $\omega \to +\infty$.

If g is C^{α} and $h = \frac{\pi}{\omega}$ so $e^{i\omega h} = -1$,

$$2\int_a^b e^{i\omega x}g(x)dx = \left(\int_a^{a+h} + \int_{b-h}^b\right)e^{i\omega x}g(x) + \int_a^{b-h} e^{i\omega x}\left(g(x) - g(x+h)\right)dx$$

which is $O(h + h^{\alpha}) = O(\omega^{-\alpha})$ as $\omega \to +\infty$.

If $0 < |y| \le \pi$, define the integer $p \ge 0$ by $2^p |y| \le \pi < 2^{p+1} |y|$; Then

$$|g_{\alpha}(x+y) - g_{\alpha}(x-y)| = \left| -2 \sum_{n=2^{k} \ge 2} n^{-\alpha} \sin nx \sin ny \right| \le$$

$$\le 2 \left(\sum_{1}^{p} 2^{k(1-\alpha)} |y| + \sum_{p+1}^{\infty} 2^{-k\alpha} \right) \le L_{\alpha} |y|^{\alpha}$$

for a constant L_{α} depending only on α , $0 < \alpha < 1$. Since g_{α} is 2π -periodic, the inequality holds for all x, y.

On the sequence $\omega = 2^k$ or $2^k + m$ (fixed $m \neq 0$) or $\omega = 3 \cdot 2^k$, we have for large k $(2^k > 4|m|)$

$$|2^j-\omega|\geq \frac{1}{4}\max\{2^j,\omega\}$$

for every integer $j \neq k$ (and also j = k, if $\omega = 3 \cdot 2^k$). This implies, as $\omega \to +\infty$ on these sequences,

$$\omega^{lpha}\int_a^b e^{i\omega x}g_{lpha}(x)dx-\left\{egin{array}{ll} rac{(b-a)}{2} & ext{, if }\omega=2^k \ exp\left(rac{im}{2}(a+b)
ight)rac{1}{m}\sinrac{m}{2}(b-a) & ext{, if }\omega=2^k+m \ 0 & ext{, if }\omega=3\cdot 2^k \end{array}
ight\}$$

$$=O(\omega^{\alpha-1})$$

and completes the proof.

Watson [3] treated general stationary points where

$$f(x) = f(x_0) + L(x - x_0)^p + o(x - x_0)^p$$
, as $x \to x_0^+ (L \neq 0, p > 1)$

with analogous behavior as $x \to x_{0-}$ (but perhaps different L, p), also allowing an algebraic singularity in g at the point x_0 . Clearly it is enough to consider only one side $(x > x_0)$ and to suppose $x_0 = 0$, $f(x_0) = 0$.

Theorem 2 Suppose $f:[0,a] \to \mathbb{R}$ is continuous, f(0)=0, f is continuously differentiable with $f'(x) \neq 0$ in $0 < x \leq a$ and for some $L \neq 0$, p > 0, as $x \to 0^+$

 $\frac{f(x)}{x^p} \to L$ and $\frac{f'(x)}{x^{p-1}} \to pL$.

(The second limit implies the first.)

Further assume $q \in \mathbb{C}$ with $p > Re \ q+1 > 0$, $g:(0,a] \to \mathbb{C}$ has a right-hand limit $g(0^+)$ at 0, and let $r = \frac{(q+1)}{2}$, so $0 < Re \ r < 1$. Let

$$G(x) = g(x) \frac{pLx^{p-1}}{f'(x)} \left(\frac{f(x)}{Lx^p}\right)^{1-r}, \ 0 < x \le a,$$

(note $G(0^+)=g(0^+)$) and assume G is of class $B.V.+C^{\alpha}$ with $\alpha>Re\ r.$ (A sufficient condition: both g and $x\mapsto \frac{f'(x)}{x^{p-1}}$ are C^{α} or both are B.V.). Then as $\omega\to+\infty$,

$$\omega^r \int_0^a x^q g(x) e^{i\omega f(x)} dx \rightarrow g(0^+) \int_0^\infty t^q e^{iLt^p} dt$$

$$= e^{\pm ir \frac{\pi}{2}} \frac{g(0^+)\Gamma(r)}{p|L|^r}$$

where $\pm = sgn\ L$. (For $\int_0^a x^q g(x) \sin(\omega f(x)) dx$, we may allow $-1 < Re\ r < 1$ by the same argument.)

Remark 2 Away from 0, $G(x) = \left(\frac{g(x)}{f'(x)}\right) \times (\text{nonzero } \mathbb{C}^1 \text{ function})$, so this part of the integral is $O(\omega^{-\alpha})$ comparatively small, by Theorem 1.

If $f(x) = Lx^p$, g(x) = 1, $\omega^r \int_0^a e^{i\omega Lx^p} x^q dx = \frac{1}{p} \int_0^{\omega a^p} t^{r-1} e^{iLt} dt$ has a finite limit as $\omega \to +\infty$ only when $0 < Re \ r < 1$.

Example 1 bellow shows the conclusion may fail for real r and Hölder exponent $\alpha = r$ when $p \ge r$ (for example, $p \ge 1$).

Watson's theorem [3] assumes G is B.V. and assumes more smoothness for f.

The usual case of stationary phase has p = 2, q = 0, $r = \frac{1}{2}$. Suppose f(0) = 0, f'(0) = 0, $f''(0) = 2L \neq 0$ and $f'(x) \neq 0$ in $0 < x \leq a$. Then if

$$x \mapsto g(x) \frac{f''(0)x}{f'(x)} \left(\frac{2f(x)}{f''(0)x^2} \right)^{\frac{1}{2}}$$

is of class $\mathbb{C}^{\alpha} + B.V.$ with $\alpha > \frac{1}{2}$, as $\omega \to +\infty$

$$\omega^{\frac{1}{2}} \int_0^a g e^{i\omega f} \to g(0^+) \int_0^\infty e^{if''(0)\frac{t^2}{2}} dt.$$

(If the stationary point 0 is an interior point, there is a similar contribution from the other side, x < 0. This is the case mentioned in the introduction.)

Proof: Suppose $\left|\frac{f'(x)}{x^{p-1}} - pL\right| \le \varepsilon$ when $0 < x \le \delta$; then in $0 < x \le \delta$, $|f(x) - Lx^p| \le \int_0^x \varepsilon t^{p-1} dt = \varepsilon \frac{x^p}{p}$. Thus $\frac{f'(x)}{x^{p-1}} \to pL$ as $x \to 0^+$ (with f(0) = 0) implies $\frac{f(x)}{x^p} \to L$ as $x \to 0^+$. If $\frac{f'(x)}{x^{p-1}} = \varphi(x)$, we have $\frac{f(x)}{x^p} = \int_0^1 \varphi(\theta x) \theta^{p-1} d\theta$, which is \mathbb{C}^{α} or B.V. when φ is \mathbb{C}^{α} or B.V., respectively.

Define $h(x) \ge 0$ for $0 \le x \le a$ by $f(x) = Lh(x)^p$; h(0) = 0 and $\frac{h(x)}{x} \to 1$ as $x \to 0^+$. For x > 0, h(x) > 0 and h is differentiable with

$$h'(x) = \left(\frac{f'(x)}{pLx^{p-1}}\right) \left(\frac{f(x)}{Lx^p}\right)^{\frac{1}{p}-1}$$

so $h'(x) \to 1 = h'(0)$ as $x \to 0^+$, $h'(x) \ge constant > 0$ in $0 \le x \le a$.

We have

$$\int_0^a x^q g(x) e^{i\omega f(x)} dx = \int_0^{h(a)} y^q \tilde{g}(y) e^{i\omega L y^p} dy$$

where $\tilde{g}(h(x)) = G(x) = \frac{g(x)x^q}{h'(x)h(x)^q}$, and \tilde{g} is equally $C^{\alpha} + B.V.$. Thus it is sufficient to treat the case where $f(x) = Lx^p$, h(x) = x, $g = G = \tilde{g}$, and in fact we may suppose $g(0^+) = 0$:

$$\begin{split} &\omega^r \int_0^a x^q g(x) e^{i\omega L x^p} dx - g(0^+) \int_0^\infty y^q e^{iLy^p} dy = \\ &= \omega^r \int_0^a x^q (g(x) - g(0^+)) e^{i\omega L x^p} dx + O(\omega^{r-1}). \end{split}$$

We show: if g is C^{α} + B.V., $\alpha > \rho = Re \ r \ (0 < \rho < 1)$, with $g(0^{+}) = 0$, then as $\omega \to +\infty$,

$$\int_0^a x^q g(x) e^{i\omega L x^p} dx = \frac{1}{p} \int_0^{a^p} g(x^{\frac{1}{p}}) x^{r-1} e^{i\omega L x} dx = o(\omega^{-\rho}).$$

Let $F_{\omega}(x) = \int_{x}^{\infty} t^{r-1} e^{i\omega L t} dt = \omega^{-r} F_1(\omega x)$; it is easy to see $|F_1(y)| \le C \min\{y^{\rho-1}, 1\}$, $\rho = Re\ r$, for y > 0 and a constant C. Thus if g is B.V. with $g(0^{\frac{1}{2}}) = 0$, $\omega a^p > 1$,

$$\left|\omega^r \int_0^{a^p} g(x^{\frac{1}{p}}) x^{r-1} e^{i\omega Lx} dx\right| = \left| -F_1(\omega a^p) g(a) + \int_{0^+}^{a^p} F_1(\omega x) d_x g(x^{\frac{1}{p}}) \right|$$

$$\leq C|g(a)|(\omega a^p)^{\rho-1}+C\mathrm{Var}\ g(0,\delta]+\mathrm{Var}\ g(\delta,a](\omega \delta^p)^{\rho-1},$$

for any δ in $0 < \delta < a$. Since Var $g(0, \delta] \to 0$ as $\delta \to 0^+$, choose δ small and then ω large to show the limit is zero.

Now suppose g is \mathbf{C}^{α} , $\alpha > \rho = \operatorname{Re} r$, g(0) = 0; say $|g(x) - g(y)| \le B|x - y|^{\alpha}$ for $0 \le x, y \le a$. Let $h = \frac{\pi}{\omega |L|}$ so $e^{i\omega L h} = -1$; then if $0 < h < a^{\frac{\mu}{2}}$,

$$2\int_{0}^{a^{p}}g(x^{\frac{1}{p}})x^{r-1}e^{i\omega Lx}dx = \left(\int_{0}^{2h} + \int_{0}^{h} + \int_{a^{p}-h}^{a^{p}}\right)g(x^{\frac{1}{p}})x^{r-1}e^{i\omega Lx}$$
$$+ \int_{h}^{a^{p}-h}e^{i\omega Lx}\left(g(x^{\frac{1}{p}})x^{r-1} - g((x+h)^{\frac{1}{p}})(x+h)^{r-1}\right)$$

80

$$2\left|\int_{0}^{a^{p}}g(x^{\frac{1}{p}})x^{r-1}e^{i\omega Lx}dx\right| \leq \left(\int_{0}^{2h} + \int_{0}^{h} + \int_{a^{p}-h}^{a^{p}}\right)Bx^{\rho+\frac{\alpha}{p}-1}dx$$

$$+ \int_{h}^{a^{p}-h}B\left(x^{\rho-1}\left(\frac{1}{p}h\left(x^{\frac{1}{p}-1} + (x+h)^{\frac{1}{p}-1}\right)\right)^{\alpha} + x^{\frac{\alpha}{p}}h(1-p)x^{\rho-2}\right)$$

$$= O(h+h^{\alpha}+h^{\rho+\frac{\alpha}{p}})$$

plus $O(h^{\alpha}|\log h|)$ if $\alpha = \rho + \frac{\alpha}{p}$, plus $O(h|\log h|)$ if $\rho + \frac{\alpha}{p} = 1$. In any case, if $\alpha > \rho = Re \ r$, $\omega^r \int_0^{a^p} g(x^{\frac{1}{p}}) x^{r-1} e^{i\omega Lx} dx \to 0$ as $\omega \to +\infty$, and the proof of Theorem 2 is complete.

Example 1 Suppose $0 < \alpha < 1$, 0 < r < 1, p > 0, g_{α} is the function defined in Theorem 1, and let

$$G_{\alpha}(x) = px^{p(1-r)}(g_{\alpha}(x^p) - g_{\alpha}(0)), \text{ for } x \ge 0.$$

Then G_{α} is locally \mathbb{C}^{α} if $p \geq 1$ or generally $\mathbb{C}^{\alpha \wedge p(\alpha+1-r)}$ (p>0) with $G_{\alpha}(0)=0$ and, if q=pr-1, a>0,

$$\omega^{\alpha} \int_{0}^{a} x^{q} G_{\alpha}(x) e^{i\omega x^{p}} dx = \omega^{\alpha} \int_{0}^{a^{p}} (g_{\alpha}(x) - g_{\alpha}(0)) e^{i\omega x} dx$$

$$=\omega^{\alpha}\int_{0}^{a^{p}}g_{\alpha}(x)e^{i\omega x}dx+O(\omega^{\alpha-1})$$

so neither the real nor the imaginary part has a limit as $\omega \to +\infty$. In particular, if $p \geq r$, G_r is locally C^r but $\omega^r \int_0^a x^q G_r(x) e^{i\omega x^p} dx$ has no limit as $\omega \to +\infty$, so the Hölder condition of Theorem 2 is sharp, at least for $p \geq r$. In the usual method of stationary phase, p = 2, q = 0, $r = \frac{1}{2}$. If $G_{\alpha}(x) = \frac{1}{2}$ is the stationary phase, p = 2, q = 0, p = 1.

In the usual method of stationary phase, p=2, q=0, $r=\frac{1}{2}$. If $G_{\alpha}(x)=2|x|(g_{\alpha}(x^2)-g_{\alpha}(0))$, G_{α} is locally C^{α} with $G_{\alpha}(0)=0$ and in fact $|G_{\alpha}(x)|=O(|x|^{1+2\alpha})$ as $x\to 0$, and for a<0< b

$$\omega^{\alpha} \int_{a}^{b} G_{\alpha}(x) e^{i\omega x^{2}} dx = \omega^{\alpha} \left(\int_{0}^{a^{2}} + \int_{0}^{b^{2}} \right) g_{\alpha}(x) e^{i\omega x} dx + O(\omega^{\alpha - 1})$$

has limit points $\frac{a^2+b^2}{2}$ (if $\omega=2^k\to\infty$) and 0 (if $\omega=3\cdot 2^k\to\infty$) and the imaginary part has limit $\frac{1}{m}\left(\left(\sin\frac{ma^2}{2}\right)^2+\left(\sin\frac{mb^2}{2}\right)^2\right)$ on the sequence $\omega=2^k+m$ (fixed $m\neq 0$). If a< b but $ab\geq 0$, we still conclude neither the real nor the imaginary part has a limit as $\omega\to+\infty$.

Now we will study $\int_0^\infty e^{-xt^p} t^q g(t) dt = \frac{1}{p} \int_0^\infty e^{-xx} x^{p-1} g(x^{\frac{1}{p}}) dx$ as $|z| \to \infty$ in $Re \ z \ge 0$, where p > 0, $r = \frac{q+1}{p}$, $0 < Re \ r < 1$. There are possible difficulties near 0, for positive finite x, and near infinity; we concentrate on the first two, assuming g has compact support except in the final remark.

Lemma 1 Let $\varphi : \mathbb{R} \to \mathbb{R}$ be a \mathbb{C}^{∞} "cutoff", having compact support and $\varphi(t) = 1$ for all t near 0. Then for any N > 0 and $r \in \mathbb{C}$ with $Re \ r > 0$,

$$\int_{0}^{\infty} e^{-tz} t^{r-1} \varphi(t) dt = \Gamma(r) z^{-r} + O(|z|^{-N})$$

as $|z| \to \infty$ with $Re \ z \ge 0$. (We use the principal branch of z^{-r} since $|arg \ z| \le \frac{\pi}{2}$.) If r is restricted to a compact set in $\{Re \ r > 0\}$, the estimate is uniform in r.

Proof: Choose a positive integer n sufficiently large; integration by parts (for z > 0, r > 0) shows

$$\int_0^\infty e^{-tz}t^{r-1}\varphi(t)dt - \Gamma(r)z^{-r} = z^{-n}\int_0^\infty e^{-tz}\left(\frac{d}{dt}\right)^nt^{n-1}(\varphi(t)-1).$$

By analytic continuation, this holds for $Re \ z > 0$, $0 < Re \ r < n$, and by continuity, also for $Re \ z \ge 0$, $z \ne 0$, which gives the result, provided $n \ge N$, $n > Re \ z$.

Lemma 2 Let $g:[0,\infty)\to\mathbb{C}$ have compact support and for certain constants $\alpha>0$, β and γ with $0\leq\gamma<\beta\leq1$, suppose

$$|g(t)| = O(t^{\alpha}), \quad |g(t+h) - g(t)| = O(h^{\beta}t^{-\gamma}),$$

for $0 < h \le t$. (The second condition with $g(0^+) = 0$ implies the first with $\alpha = \beta - \gamma$, so we might suppose $\alpha \ge \beta - \gamma$.) Further assume s > 0, $r \in \mathbb{C}$ with $Re \ r + s\alpha > 0$ and $Re \ r + s(\beta - \gamma) > 0$.

Then as $|z| \to \infty$, with $Re \ z \ge 0$,

$$\int_0^\infty e^{-tz}t^{r-1}g(t^s)dt = O(|z|^{-\mu})$$

where $\mu = \min\{Re\ r + \alpha s, 1, \beta, Re\ r + (\beta - \gamma)s\}$, unless $Re\ r + \alpha s = 1 = \mu$ or $Re\ r + (\beta - \gamma)s = \beta = \mu$, when the estimate is $O(|z|^{-\mu}\log|z|)$.

For example, if g is \mathbb{C}^{α} $(0 < \alpha \le 1)$ we may take $\beta = \alpha$, $\gamma = 0$, $\mu = \min\{Re\ r + \alpha s, \alpha\}$. If g is \mathbb{C}^1 on \mathbb{R}^+ with $|\dot{g}(t)| = O(t^{\alpha-1})$ and $g(0^+) = 0$, take $\beta = 1$, $\gamma = 1 - \alpha$ and $\mu = \min\{Re\ r + \alpha s, 1\}$. (In either case the "log" appears in case of equality.)

Proof: Say g(t) = 0 for $t \ge C$, $|g(t) \le Bt^{\alpha}$, $|g(t+h) - g(t)| \le Bh^{\beta}t^{-\gamma}$ for $0 < h \le t$, and let $\mu_1 = Re \ r + \alpha s$.

For Re z > 0

$$\left| \int_0^\infty e^{-tz} t^{r-1} g(t^s) dt \right| \le B \int_0^\infty e^{-tRe^{-z}} t^{\mu_1 - 1} dt = O((Re^{-z})^{-\mu_1}).$$

We use this estimate when $Re\ z \geq |Im\ z|$, so $1 \leq \frac{|z|}{Re\ z} \leq 2$. If $0 \leq Re\ z < |Im\ z|$, let $\delta = \frac{\pi}{|Im\ z|}$ so $e^{-\delta z} = -e^{-\delta Re\ z}$ and $0 \leq \delta Re\ z \leq \pi$, $\pi \leq \delta |z| \leq 2\pi$. Then

$$(1 + e^{\delta Re z}) \int_0^\infty e^{-tz} t^{r-1} g(t^s) dt = \left(e^{\delta Re z} \int_0^{2\delta} + \int_0^{\delta} \right) e^{-tz} t^{r-1} g(t^s) dt$$
$$+ \int_{\delta}^{c^{\frac{1}{\delta}}} e^{-tz} (t^{r-1} g(t^s) - (t+\delta)^{r-1} g(t+\delta)^s)$$

80

$$\left| \int_0^\infty e^{-tx} t^{r-1} g(t^*) dt \right| = O(\delta^{\mu_1}) + O(\int_\delta^{c^{\frac{1}{\delta}}} (\delta t^{\mu_1 - 2} + \delta^{\beta} t^{\mu_2 - \beta - 1})$$

where $\mu_2 = Re \ r + (\beta - \gamma)s$. It is easy to see for any real λ and $\beta > 0$, as $\delta \to 0^+$,

$$\delta^{\beta} \int_{\delta}^{*} t^{\lambda - \beta - 1} dt = O(\delta^{\min\{\lambda, \beta\}}),$$

unless $\lambda = \beta$ when it is $O(\delta^{\beta} \log \delta^{-1})$. This gives the result.

Theorem 3 (Watson's lemma in a half-space) Suppose $0 < \alpha \le 1$, integer $m \ge 0$, s > 0, $Re \ r > 0$ and $g : [0, \infty) \to \mathbb{C}$ is $\mathbb{C}^{m,\alpha}$ (i.e. m^{th} -derivative of class \mathbb{C}^{α}) with compact support. Then as $|z| \to \infty$ with $Re \ z \ge 0$,

$$\int_0^\infty e^{-tz} t^{r-1} g(t^s) dt = \sum_{j=0}^m \frac{g^{(j)}(0)}{j!} \frac{\Gamma(r+js)}{z^{r+js}} + O(|z|^{-\mu})$$

where $\mu = \min\{m + \alpha, Re \ r + (m + \alpha)s\}$, except that the final term is $O(|z|^{-\mu} \log |z|)$ in the case $m + \alpha = Re \ r + (m + \alpha)s$ or $Re \ r + (m + \alpha)s$ is an integer $\leq m$.

Remark 3 Examples 2,9 bellow show μ is sharp for $0 < \alpha < 1$; it is not known if " $\log |z|$ " is necessary.

Proof: Let φ be any \mathbb{C}^{∞} cutoff, i.e. $\varphi \equiv 1$ near 0 but φ has compact support, and let $G(t) = g(t) - \varphi(t) \sum_{0}^{m} g^{(j)}(0) \frac{t^{j}}{j!}$. G is $\mathbb{C}^{m,\alpha}$ with compact support and $G^{(j)}(t) = O(t^{m+\alpha-j})$ as $t \to 0^+$ for $0 \le j \le m$. By lemma 1

$$\int_0^\infty e^{-tz} t^{r-1} \varphi(t^s) \sum_0^m g^{(j)}(0) \frac{t^{js}}{j!} = \sum_0^m g^{(j)}(0) \frac{\Gamma(r+js)}{j! z^{j+rs}} + O(|z|^{-N})$$

for any N, so it suffices to prove the result when all $g^{(j)}(0) = 0$, g = G, as we now assume.

Let $Re \ r + s(m + \alpha) = k^* + \alpha^*$ (integer $k^* \ge 0$, $0 < \alpha^* \le 1$). First suppose $k^* \ge m$; for appropriate constants C_i^m

$$\left(\frac{d}{dt}\right)^m \left(t^{r-1}g(t^s)\right)\right) = \sum_{j=0}^m C_j^m t^{r-1-m+js} g^{(j)}(t^s).$$

If $\tilde{g}(x) = \sum_{j=0}^{m} C_{j}^{m} \frac{g^{(j)}(x)}{x^{m-j}} = C_{m}^{m} g^{(m)}(x) + \int_{0}^{1} d\theta \sum_{j=0}^{m-1} \frac{(1-\theta)^{m-1-j}}{(m-1-j)!} C_{j}^{m} g^{(m)}(x\theta)$ for x > 0, $\tilde{g}(0) = 0$, then \tilde{g} is \mathbb{C}^{α} with compact support and

$$\int_0^\infty e^{-tz} t^{r-1} g(t^s) dt = z^{-m} \int_0^\infty e^{-tz} t^{r''-1} \tilde{g}(t^s) dt$$

where r'' = r + ms - m, $Re \ r'' + s\alpha > 0$. Then we may apply lemma 2 to see this is $O(|z|^{-\mu})$ or $O(|z|^{-\mu}\log|z|)$.

Now suppose $k^* < m$. We have $g(t) = t^{m-k}g_k(t)$ where $g_m = g$ and $g_k(t) = \int_0^1 \frac{(1-\theta)^{m-k-1}}{(m-k-1)!} g^{(m-k)}(\theta t) d\theta$, for any k in $0 \le k < m$; g_k is $C^{k,\alpha}$ with compact support and $g_k^{(j)}(t) = O(t^{k-j+\alpha})$ as $t \to 0^+$, $0 \le j \le k$. Note $tg_k(t) = g_{k+1}(t)$ is at least $C^{k+1,\alpha}$, for k < m and $tg_k^{(k+1)}(t) + (k+1)g_k^{(k)}(t) = g_{k+1}^{(k+1)}(t) = O(t^{\alpha})$, $g_k^{(k+1)}(t) = O(t^{\alpha})$ as $t \to 0^+$. If t' = r + s(m-k)

$$\int_0^\infty e^{-tz}t^{r-1}g(t^s)dt = z^{-k}\int_0^\infty e^{-tz}\left(\frac{d}{dt}\right)^k\left(t^{r'-1}g_k(t^s)\right)dt$$

and

$$\left(\frac{d}{dt}\right)^k \left(t^{r'-1}g_k(t^s)\right) = \sum_{i=0}^k C_j^k t^{r'-1-k+js} g_k^{(j)}(t^s) = t^{r''-1} \tilde{g}(t^s)$$

with r'' = r + ms - k and $\tilde{g}(x) = \sum_{j=0}^{k} C_j^k \frac{g_k^{(j)}(x)}{x^{k-j}}$; \tilde{g} is \mathbb{C}^{α} and (when k < m)

$$\begin{split} |\tilde{g}'(t)| &= O(t^{\alpha-1}). \quad \text{Then } \int_0^\infty e^{-tz} t^{r-1} g(t^s) dt = z^{-k} \int_0^\infty e^{-tz} t^{r''-1} \tilde{g}(t^s) dt = \\ O(|z|^{-k-\nu}) \quad \text{where } \nu &= \min\{Re \ r'' + \alpha s, 1\}, \ \text{for any } k < m, \ k < k^* + \alpha^*, \\ \text{by lemma 2. We choose } k &= k^*; \ \text{then } k + \nu &= \min\{Re \ r + (m + \alpha)s, k^* + 1\} \\ &= \min\{k^* + \alpha^*, k^* + 1\} = Re \ r + (m + \alpha)s \ (\leq m < m + \alpha). \quad \text{Thus in every case the estimate is } O(|z|^{-\mu}) - \text{or perhaps } O(|z|^{-\mu} \log |z|) - \text{with } \\ \mu &= \min\{m + \alpha, Re \ r + s(m + \alpha)\}. \end{split}$$

Corollary 1 Suppose g is $C^{m,\alpha}$ with compact support, $L \neq 0$ and p > 0 real, $q \in \mathbb{C}$ with $0 < Re \ q + 1 < p$. Then as $\omega \to +\infty$

$$\int_0^\infty e^{i\omega Lt^p} t^q g(t) dt = \frac{1}{p} \sum_{j=0}^\infty \frac{g^{(j)}(0)}{j!} \Gamma(\frac{q+j+1}{p}) (\omega |L|)^{-\frac{q+j+1}{p}}.$$

$$\cdot \exp(\pm i \frac{\pi}{2} \frac{q+j+1}{p}) + O(\omega^{-\mu})$$

where $\pm = sgnL$, $\mu = \min\{m + \alpha, \frac{Re\ q+1+m+\alpha}{p}\}$, plus $O(\omega^{-\mu}\log\omega)$ when these are equal (or if $\frac{Re\ q+1+m+\alpha}{p} = interger \le m$).

Proof: If $z = -i\omega L$, $t^p = x$, $r = \frac{q+1}{p}$,

$$\int_0^\infty e^{i\omega Lt^p}t^pg(t)dt = \frac{1}{p}\int_0^\infty e^{-zx}x^{r-1}g(x^{\frac{1}{p}})dx$$

and Theorem 3 applies with $arg z = -\frac{\pi}{2} sgn L$.

Remark 4 The usual method of stationary phase has p=2, q=0 or $r=s=\frac{1}{2}$.

Example 2 Let $g(t) = t^{m+\alpha}\varphi(t)$, with φ a \mathbb{C}^{∞} cutoff, so g is $\mathbb{C}^{m,\alpha}$ with compact support. By lemma 1, if $\operatorname{Re} r > 0$, s > 0,

$$\int_{0}^{\infty} e^{-tz} t^{r-1} g(t^{s}) dt = \frac{\Gamma(r + s(m + \alpha))}{z^{r+s(m+\alpha)}} + O(|z|^{-N})$$

for any N as $|z| \to \infty$, Re $z \ge 0$.

Example 3 Let $0 < \alpha < 1$, integer $m \ge 0$; suppose g_{α} is the function defined in Theorem 1, 0 < a < b. For an appropriate polynomial P (of degree 2m+1) define $G_{\alpha}(x) = P(x) + g_{\alpha}(x) - g_{\alpha}(a)$ in [a,b] if m=0, or for $m \ge 1$ $G_{\alpha}(x) = P(x) + \int_{a}^{x} \frac{(x-y)^{m-1}}{(m-1)!} (g_{\alpha}(y) - g_{\alpha}(a)) dy$ in $a \le x \le b$, with $G_{\alpha}(x) = 0$ outside [a,b]; then G_{α} is $C^{m,\alpha}$ with compact support. Let $Re \ r > 0$, s > 0 and $g(t) = t^{\frac{1-r}{s}}G_{\alpha}(t^{\frac{1}{s}})$, so g is $C^{m,\alpha}$ with compact support $[a^{s},b^{s}]$. Then as $|z| \to \infty$ with $Re \ z \ge 0$ - in particular, on the imaginary axis -

$$\int_{0}^{\infty} e^{-tz} t^{r-1} g(t^{s}) dt = \int_{a}^{b} e^{-tz} G_{\alpha}(t) dt = z^{-m} \int_{a}^{b} e^{-tz} g_{\alpha}(t) + O(|z|^{-m})$$

is of exact order $O(|z|^{-m-\alpha})$, i.e. $|z|^{m+\alpha} \int_0^\infty e^{-tz} t^{r-1} g(t^s) dt$ is bounded but does not tend to zero.

Example 4 (Combining the previous examples) The sum of the above "g" gives an example of class $C^{m,\alpha}$ (0 < α < 1) with compact support and with an integral of exact order $O(|z|^{-\mu})$, $\mu = \min\{m + \alpha, Re\ r + s(m + \alpha)\}$, as $|z| \to \infty$ with $Re\ z \ge 0$.

Remark 5 With appropriate hypotheses (see Theorem 1 and 2) we may treat $\int_0^\infty e^{-zf(x)}x^qg(x)dx \text{ as } |z| \to \infty \text{ in } Re \ z \ge 0. \text{ (Here } f(x) \ge 0 \text{ for all } x \ge 0.)$ If g does not have compact support, suppose g is C^{k+1} outside a neighborhood of zero, $\gamma(t) \equiv t^{r-1}g(t^s) \to 0$ as $t \to +\infty$ and $\int_{*}^\infty |\gamma^{(k+1)}(t)|dt < \infty.$ Then $\gamma^{(k)}(t) \to 0$ and the interpolation inequalities show $\gamma^{(j)}(t) \to 0$ as $t \to +\infty$ for $0 \le j \le k$. Choose a C^∞ cutoff function φ so that $g_2 = (1-\varphi)g$ is C^{k+1} and $g_2 \equiv 0$ near 0 while $g_1 = \varphi \cdot g$ has compact support (treated as in Theorem 3), $g = g_1 + g_2$. Then integration by parts shows $\left| \int_0^\infty e^{-tz}t^{r-1}g_2(t^s)dt \right| = O(|z|^{-k-1}) \text{ as } |z| \to \infty \text{ with } Re \ z \ge 0.$

References

- [1] Erdélyi, A., Asymptotic Expansions, Dover, 1956.
- [2] Olver, F.W.J., Asymptotics and Special Functions, Academic Press, 1979.
- [3] Watson, G.N., The Limits of Applicability of the Principle of Stationary Phase, Proc. Cambridge Phil. Soc. 19, 49-55, 1920.

RELATÓRIOS TÉCNICOS DO DEPARTAMENTO DE MATEMÁTICA APLICADA

1999

RT-MAP-9901 - Michael Forger & Sebastian Sachse

Lie Superalgebras and the Multiplet Structure of the Genetic Code II: Branching Schemes

Abril de 1999 - São Paulo - IME-USP - 34 pg.

RT-MAP-9902 - José Eduardo Homos, Yvone M. M. Homos & Michael Forger

"Symmetry and Symmetry Breaking: an Algebraic Approach to The Genetic Code".

Maio de 1999 - São Paulo - IME-USP - 112 pg.

RT-MAP-9903 - Daniel Bauman Henry

Complete Asymptotic Expansion of
$$\sum_{k=1}^{N-1} k^{\alpha} (N-k)^{\beta} as N \rightarrow \infty$$

Agosto de 1999 - São Paulo - IME-USP - 8 pg.

RT-MAP-9904 - Daniel Bauman Henry

"Uma Aplicação da Fórmula de Euler-Maclaurin" Agosto de 1999 - São Paulo - IME-USP - 6 pg.