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I.Introduction. As in Barlow and Proschan (1981) a compl,ex engineering 
system is completely characterized by its structure function <I> which relate its 
lifetime T and its components lifetimes Ti, 1 ::; i ::; n, defined in a complete 
probability space (!1, ~. P) 

T = <I>(T), T = (T1, ... , Tn)-

A system is said to be coherent if its structure function <I> is increasing and 
each component is relevant, that is, there exist a time t and a configuration 
of T in t such that the system works if, and only if, the component works. 

The performance of a coherent system can be measured from this struc­
tural relationship and the distribution function of its components lifetimes, 
however such representations make the distribution function of the system life­
time analytically very complicated (mainly in the dependent case). An alter­
native representation for the coherent system distribution funcition is through 
the system signatures, that, while narrower in scope than the structure func­
tion, is substantially more useful. 

To define system signature, Samaniego (1985), consider t.he component 
lifetimes Tf s independent and identically distributed with continuous distri­
butions. Under this assumption, the signature of a coherent system of order n 
is then-dimensional probability vector whose i-th coordinate iis P(T = T(;)), 
where T(i) is the i-th order statistics of the n i.i.d component lifetimes. Fol­
lows that the signature vector does not depend on the common. continuous 
lifetimes component distributions and therefore, any property in system life­
time characteristics must be attributed to its structure function. Certainly, 
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in some application the lifetimes of the components actually employed might 
not reasonably be assumed to be i.i.d., however the relative performance of 
systems under an i.i.d. assumption can still provide us information about 
system quality. 

In the above context the system lifetime distribution can be set as 

n 

P(T ~ t) = L P(T = T(i))P(T(i) ~ t). 
i=l 

A detailed treatment of the theory and applications of system signatures 
may be found in Samaniego (2007). 

Samaniego (1985.), Kochar, et al. (1999) and Shaked and Suarez-Llorens 
(2003) extended the signature concept to the case where the systems compo­
nents lifetimes T1, ... , Tn, are exchangeable (i.e. the joint distribution function, 
F(t1 , .•• ,t,.), of (T1 , ••• ,Tn) is the same for any permutation of t1 , ••. ,t,.), an 
interesting and practical situation in reliability theory. 

Navarro et al. {2008) and Samaniego et al. {2009) consider dynamic 
(conditioned) signatures and their use in comparing the reliability of new and 
used systems. Their procedures consider the system lifetime conditioned in 
an event on time. Navarro et al. (2008) consider either the event {T > t} 
and {T(i) ~ t} n {T > t} with system signature P(T = T(;JIT > t) and 
P(T = T(i)/{T(i) ~ t} n {T > t}) respectively. A systems signature has 
proven to be quite a useful proxy for a systems design, as it is a distribution­
free measure ( i.e., not <lepen<li11g on F ) that efficiently captures the precise 
features of a systems <lesig11 which influence it performance. Unhappiuess, in 
both Navarros above situations, the system signatures does depend on F(t). 
Samaniego et all. (2009) consider the event in time {T(i) $ t < T(i+l)}n{T > 
t} and in this case the system signature P(T = T(i)l{T(i) $ t < T(i+l)} n{T > 
t}) does not depend on t and on F(t) and have the usual signatures properties. 

Navarro, et al. (2008) consider the mixture representation. of residual 
lifetimes of used systems. In its conclusion asked about the general case of 
dependent components which remains an interesting open question. In this 
work we intend to analyses such a situation and for that, we are going to 
use a martingale point process approach. In Section 2 we solve the problem 
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observing the system at component level. In Section 3 we inspect the system 
at a fixed time t. 

2. Pattern's signature process in a complete information level 
We consider a collection of n components, C1, C2, ... , Cn. These are often 

assumed to form a large system ¢. Each component C; has a positive lifetime 
T; after 0, where O can be thought of as the time at which 4> is installed. We let 
Ti, 1 :5 i :5 n, be random variables in a complete probability space (n, ~, P). 
The system lifetime T can be represented by its series-parallel decomposition 

T;:: 4>(T) = min max T;, 
l!::i!'::k iEK; 

where T = (T1, ... , Tn), Ki, 1 :5 j :5 k are minimal cut sets, that is, a minimal 
set of components whose joint failure causes the system's failure. cf> is the 
system structure function. 

In the following, to simplify the notation, we assume that relations such 
as c, =, :5, <, 'F between measurable sets and random variables, respectively, 
always hold with probability one, which means that the term P - a.s. is sup­
pressed. For a mathematical basis of stochastic processes applied to reliabilit 
theory see the book of Aven and Jensen (1999). 

We describe the failures of C1, ... , Cn as they appear in advancing time, 
as a stochastic process. For any outcome T1 (w), ... , Tn(w) of tlhe lifetimes of 
C1, ••• ,C,. let q(w) be the number of distinct values in the set {T;(w);l :5 
i :5 n}. We denote the strictly increasing order statistics of this set by T(k), 
having then 

Also let 
J(k)(w) = {i: ~(w) = T(k)(w), 1 :5 i :5 n,} 

be the index set of the components failing at the kth smallest failure time 
T(k)· If there are no multiples failures, the value of J(k) is one of the singletons 
{i}, 1 :5 i :5 n. In general, however, J(k) is a A-valued random variable, where 
A is the power set of {1,2, ... ,n}. We call T{k) the kth failure time and J(k) 
the kth failure pattern. 

The mathematical formulation of our observations is given through a 
family of sub a-algebras of ~t, denoted (~e)t~O, where 

~t = a{l{T(kJ>s}, J(k)) E A, 1 :5 k :5 n, 0 :5 s :5 t}. 
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satisfies the Dellacherie's condition of right continuity and completeness. 

Intuitively at at each time t the observer knows if the events {T(k) $ 

t, J(k)}, 1 $ k $ n, either occurred or not and if it does, he knows exactly the 

value T(k) and the mark J(k) · 
The random sequence (T(k), J(k)h$k$q (of random length q)describes 

completely how the components C1, ... , Cn fail. We let 

J(q+l) = J(q+2) = •·· = 0 

and call the multivariate point process (T(k), J(k)k:!:l the failure process of 
C1, .. ,,Cn, 

We consider the lifetimes T(k),J(kl defined by the failure event {T(k) $ 

t, J(k)} with their sub-distribution function F(i),;(t) = P(T(k),J<k> $ t) = 
P(T(k) $ t, J(k)) suitable standardized. 

The simple marked point process N(k),J(kl (t) = l(r(k>$t.Jtk>} is an ~t­

submartingale and from the Ooob-Meyer decomposition we know that there 

exists a unique ~ 1-predictable process (A(kl,J<kl(t))1~o, the ~ 1-compensator 

process of N(k),J<kl (t), with A(k),J(kl (0) = 0, such that N(k),J(kl (t)-A(k) ,Jtkl (t) 
is an ~t-martingale. We assume the Ti, 1 $ i $ n are totally inaccessible stop­

ping time. A(k),Jtk> (t) is absolutely continuous from the totally inaccessibility 
of~, 1 $ i $ n. 

The compensator when understood as a measure in the real line, is well 
known to have the interpretation 

Intuitively, this corresponds to predicting if T(k),J<k> is going to occur "now" , 
based on all observations available up to the present, but not including it. 

Motivated by this we call (AJ(t))i>o the hazard process of failure pattern J 
and (AJ(t) ; J E A)t~o the multivariate hazard process. 

As N(k) ,J<k/t) can only count on the time interval (T(k-l), T(k)], the 
corresponding compensator differential dA(k),J<k>(t) must vanish outside that 
interval. We denote 
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Another equivalent way to describe the failure is the following: Fixed 

J E 6 let TJ and NJ(w,t) be defined by 

TJ = inf{T(k) : J(k) = J} 

where inf0 = 0 and NJ(w,t) = l{T;9}· 

and 

The stopping times T(k),JckJ are rarely of direct concern in reliability 
theory. One is more interested in system failures times, which depend on the 
cumulative pattern of failed components. In more detail, let 4> a monotone 

(or coherent) system with lifetime T. We let 

D(t) ~ { Jc1J u ... u Jc1:i, !f T(kJ $ t < r,H1J, 
0 1f t < T(l}· 

be the cumulative pattern of failed components up to time t. The sample 
paths t -+ D(w, t) are then right continuous and increasing in the natural 
partial order of /1. We let D(t-) = lim3 tt D(s). If 

A<1> = {K1, ... ,Kk0 },ko ~ k, 

is Lhe collection of all the cut seLs of 4>, we clearly have 

T = inf { t ~ 0 : D(t) E A4,} = min{T(k),JckJ : J(1J U ... U J(kJ E A4i } . 

We can therefore think that the point process with its only point at T, 
or equivalently the counting process 

N<1>(t) = l(T:9},t ~ 0, 

has been derived from the multivariate point process (T(kJ, J(k) )k~ 1. 

The behavior of the stochastic process P(T $ tl~t). as the information 
flows continuously in time : 

Theorem 2.1 Let T1,T2 , ••• ,Tn be the component lifetimes of a coherent 
system with lifetime T. Then, 

q 

P(T $ tl~t) = L L l(T=TckJ.Jck1ll{rck>.J<k>9l· 
k=l J(kJE.O. 
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Proof From the total probability rule we have 

q 

P(T $ tl~t) = I: I: P({T $ t} n {T = TckJ,Jck,l~t) = 
k=l J(k)EA 

q 

L L E[l{S=T(k),J(k)}l{T(k),J(k):-,t}l~tl­
k= I J(k)El>. 

As T and T(k),Jckl are ~ 1-stopping time and it is well known that the 

event {T = T(k),Jckl} E ~Tck>,J<kl where 

~Tck>,Jck> = {A E ~oo: An {TckJ,Jck> :5 t} E ~t , Vt~ O}, 

we conclude that {T = T(k).Jckil n {T(k) ,Jck, $ t} is ~t-measurable. 
Therefore 

q 

P(T $ tl~t) = L L E[l{T=T(k),J(k)}l{T(k),J(k):<,t}l~d = 
k=l J(k)El>. 

q 

L L l{T=T(k),J(k)} l{T(k),J(k) :-,t} · 
k=l J(k)EA 

The above decomposition allows us to define the signature point process 

at component level. 

Definition 2.2 The vector (l{T=T(kl,J<kl} , 1 :5 k $ n, J(k) Et.) is clrfincd as 

the pattern's signature point process of the system <fJ with lifetime S . 

Remark 2.3 
We can calculate the system reliability as 

q 

P(T > t) = E[P(T > tPt)] = E[L L I{T=T(k),J(k)} l{T(k),J(k) >t}] = 
k=l J(k)Et. 

q 

L L P( {T = T<kJ ,1,k)} n {T(kJ.Jck> > t} ). 
k=I J(k)Et. 
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If the component lifetimes are continuous, independent and identically dis­
tributed we have, 

n 

P(T > t) = L P(T = T(k))P(T(k) > t) 
k=l 

recovering the classical result as in Samaniego (1985). 

Example 2.4 
We analize a system of three dependent components. To this purpose 

the Marshall three-dimensional distribution with positive parameters given by 
>-1, >-2, A3, >-12, >.13, A23 and >-123, is used with three variate reliability function 
given by P(T1 > t1,T2 > t2,T3 > t3) = 

where T1, T2 and T3 are the component's lifetimes. 
An interpretation of this distribution is as follows: Seven independent 

exponential random variables Z1, Z2 , Z3, Z12, Z13, Z23, Z123, with correspon­
dent parameters >-1, >-2, A3, >-12, A13, A23, >-123 describe the time point when a 
shock causes failure of component 1 or 2 or 3 or the components 1 and 2 si­
multaneously, the components 1 and 3 simultaneously, the components 2 and 
3 simultaneously or, even, the three components simultaneously, respectively. 

The components lifetimes are given by T1 = min{ Z1, Z12, Z13, Z123}, 
T2 = min{ Z2, Z12, Z23, Z123} and T3 = min{ Z3, Z13, Z23, Z123}. Note that 
T1 =f. T{I), as we have on Z123 < min{Z1,Z2,Z3,Z12,Z13,Z23}. 

We consider the system with lifetime T = min{T1, max{T2 , T3}} and 
calculate, for all I E ti, the probabilities in the first failure: 

P(T = Tcii.1) =P(Z1 < min{ZJ,J =f. I})= 
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The probabilities of the second failures are: if IE ~ and I ::j:. {2, 3}, I :f; 
{2}, I :f; {3} we have 

and 

P(T = T(2),1) = P(Z2 < Z1 < min{ZJ, J E ~, J ::j:. I, J ::j:. {2} })+ 

P(Z3 < Z1 < min{ZJ,J E ~,J ::j:. J,J ::j:. {3}}) = 

1oc (1 - e-A2:r)e - LJe.<1..J,<1 ,J,<(21 AJ:r >.,e-A':rdx+ 

100 (1 - e-A3"')e - LJe.i..Ja<r,Ja<(JI AJ:z: >.,e-A'"'dx = 

..\1 ..\1 2..\1 
,\ - ..\2 + ,\ - ,\3 - ">:"° 1 

..\2 ..\2 
P(T = T(2),{2}) = ,\ _ ,\3 - T 

Also 

P(T = T. T. > t) = ~ -(A-A2)t + ~ -(A-A3)I - 2A/ -Al 
(2),1, (2),1 ,\ _ ,\

2 
e ,\ _ ,\

3 
e ,\ e , 

in the case where IE ~ and I :f; {2, 3}, I :f; {2}, I ::j:. {3}. 

P(T = T(2J,{2}, T(2J,{2} > t) = ,\ ~\
3 

e-(A-A3)t - ; e-At, 

and 

Therefore we can conclude 

P(T > t) = E{P(T > ti~t)} = 

E{ L l{T=T<kJ.J}l{TckJ,J>t}} = 
1$k$n,JE6 

8 



L P(T = Tc1>,1, Tc1>,1 > t) + L P(T = Tc2),I, Tc1> ,1 > t) = 
!EA /EA 

I: ~e-,\'+ 
!EA 

~ ~e-(.\-.\2)t + ~e-(.\-.\3)t - 2:~1 e-.\t+ 
~ >. - >-2 ,\ - >.3 >. 

I Eli,/ ¢{2,3}, {2 },{ 3} 

We now go on by studying the ;3't-compensator of the counting process 
(N,z,(t)}i?:O of system failure, denoting it by (A.i,(t))i?:O· It is natural to ask 
what is the contribution of the failure's component propensity for predicting 
the system 's failure propensity. Following, Corollary 2.4 chaLracterizes the 
relationship between the component's ~t- compensator and th,e system's ;3'i­
compensator processes. 

Corollary 2.5 Let Ti, T2, ... , Tn, be the components lifetimes of a coherent 
system with lifetime T. Then, the ;3',-submartingale P(T $ tj;3',), has the 
~,-compensator 

Proof 
We consider the process 

l{T=T<kJ,J<kl }(w, s) = l{T=T<kJ,J(kl } (w) . 

As T(k) ,J<kJ $ T, for all 1 $ k $ q, J(k) E 6., it is left continuous and 
~t-predictable. Therefore 

f l{T=~<kJ J }(s)dM.((k},j) lo · <k> 
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is an \)'t-martingale. 
As a finite sum of ~t-martingales is an \)'1-martingale, we have 

is an ~t-martingale. ·As the compensator is unique we finish the proof. 

3.Inspecting the system at a fixed time t. 
As in Samaniego et al.[15], in time dynamics we can observe the event 

{T > t} n {T{i) < t $ T(i+l)}- However it is well know that 

that is, the information up to t is the same information up to T(i) . It means 
that, after the i-th failure we continue to observe (\J'Tc;i+tlt~o, where 

Theorem 3.1 Let T1, T2 , .•• , Tn be the component lifetimes of a coherent 
system with lifetime T . Then, 

Proof 



In this situation we count 

M,t,(t) = E[N,t,(Tc;J + t) - N,t,(Tc;Jl<:::l'ru, I = 

E{E[N,t,(TciJ + t) - N,t,(Tc;Jl~dl<:::l'rc,>} = 

q 

E{L L l{T=TckJ.Jck,)l{rckJ,Jck>$Tc,,+t}­
k=l J(kJEll. 

q 

L L l{T=Tck>.J<kJ}l{T(k),JckJ$T<,,ll<:::l'Tc,,} = 
k=l J(k)Ell. 

q 

E[L L l{T=Tckl,Jck>}l{(TckJ,J<k>-TuiJ+91l<:::l<rcq} == 

k=l J(kJEll. 

q 

L L P(T = T(k),Jc•>, (T(k),J<k> - Tc;i)+ $ t!~Tc,,) = 

k=l J(k)E.0. 

q 

L L P(T = T(kl ,J<k, l<:::l'r<,,). 
k=l J(kJE.0. 

We can see that a version for P(T = T(k),Jc•i l~T<;i) is 

as, for any fl E ~Tc,, we have 

r P(r = r,k, .J(k)) 
},:i. P(T>Tc;i) l{T>Tc ,,)dP= 

P(T = T(k) ,J(k)) 
P(T > T(i)) P(Cl, T = T(k),J(k)) = 
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P(T = T(k),J(k) )P(T > T(i) -

P(T > Tc;J) -

P(T = T(k).Jck)) = P(T = T(k),Jckl' D.). 

The second and four equalities follows from {T > T(i)} = Uk>i{T = 
T(k),J(kJ} and D. f {T = T(k),JckJ }. Note that, in D. E ~T<il we have lln{T(i) $ 

x} E ~:r • However, if k > i a set in~"' is of the form {T(k),Jckl > x}. We 

conclude that if w E D. , w E {T(i) $ x} n {T(k),J(kl > x}, which implies 

T(k),JckJ - T(i) > 0 and D. s;; {T(i) > T}. 
Follows that 
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