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a b s t r a c t

A generalized Poisson ensemble is constructed using the maximum entropy prin-
ciple based on the non-extensive entropy. It is found that the correlations which
are introduced among the eigenvalues lead to statistical distributions with heavy
tails. As a consequence, long-range statistics, measured by the number variance, show
super-Poissonian behavior and the short-range ones, measured by the nearest-neighbor-
distribution show, with respect to Poisson, enhancement at small and large separations.
Potential applications were found for the sequence data of protein and DNA, which
display good agreement with the model. In particular, the ensuing parameter λ of the
generalized Poisson ensemble can be utilized to facilitate protein classification.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Few years after Wigner’s proposal of the now-famous ensemble of Gaussian random matrices [1,2], it was shown
y Balian [3] that it can be obtained from a maximum entropy principle (MEP) based on the Shannon entropy. Several
ecades later, the so-called Tsallis entropy [4] became popular and, despite the various applications it has found, also
ontroversial [5,6]. It has then become natural that, at some point, the generalized maximum entropy principle (GMEP)
ased on the new entropy would be used to generate random matrices. In fact, this was done independently by two
roups [7,8] and several developments have followed the generation of the new ensemble via the GMEP [9–13]. As it
ould have been expected, the statistical measures of the new ensemble are distributions with heavy tails [8]. Another
mportant feature of the generalized ensemble is its preservation of the symmetry under the unitary transformation of
he Gaussian ensemble that leads to independence between the eigenvalue and the eigenvector distributions.

The dominant spectral characteristic of the Wigner Gaussian ensemble is the strong correlations among eigenvalues.
n the other hand, at the opposite extreme, stays the Poisson ensemble, in which levels behave independently. At the
eginning of the 80s, the Bohigas–Giannoni–Schmit conjecture stated that chaotic systems have spectra similar to those
f the Gaussian ensemble while regular systems follow Poisson [14]. This conjecture has been corroborated by a large
mount of evidence and, besides, with an analytic proof [15]. This shows that, in random matrix theory (RMT), the Poisson
nsemble appears on an equal footing with the Gaussian ensemble. It is therefore entirely justified to investigate the
orrelations that are introduced among eigenvalues when a generalized Poisson ensemble is constructed by using the
MEP. As a matter of fact, this is something that is due in the GMEP program to generate random matrices.
As will be seen in Section 2, the behavior of the family of ensembles generated depends on the domain of variation

f the Tsallis entropic parameter q. Thus, if q < 1, the matrix elements occupy a compact support, while for q > 1, their
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omain of variation is the whole real axis. Considering the limit of large matrix size N , for q < 1, the standard Poisson
ase is recovered when N → ∞, but, for q > 1, this same limit can be combined with the limit q → 1 in such a way that
new family of ensembles is defined.
The statistics and correlations, as well as the statistical physics of DNA and protein sequences, have been studied over

he past few decades [16–18]. In recent years, RMT methods have also led to great success in the understanding of modular
rganizations of cell-constituent biological networks [19]. However, the distributions of spacings [16] in Protein and DNA
equences are not yet well characterized. It is gratifying to show that the results obtained in this paper can be applied
o the sequence data of protein and DNA, which once again demonstrate the efficacy of RMT methods in distinguishing
ystem-specific, nonrandom features from random noise in complex systems. This suggests that RMT methods provide
n alternative avenue for the comparisons of biological sequence data.
The remainder of this paper is organized as follows: In the following section, we derive the generalized Poisson

nsemble via the GMEP, in which the cases for q < 1 and q > 1 are treated separately. Section 3 features the applications
of the generalized Poisson distribution to the sequence data of protein and DNA. Finally, Section 4 summarizes this work
and provides a brief outlook.

2. The generalized Poisson ensemble

An ensemble of diagonal matrices H whose elements are sorted from a normal distribution is a representation of the
Poisson ensemble. The joint distribution of matrix elements can be written as

PGN (H) =
1

(2π )N/2 exp
(

−
1
2
trH2

)
, (1)

where the subscript ‘‘G’’ reflects the Gaussian nature of the matrix elements and ‘‘N ’’ denotes the size of the matrix. From
Eq. (1) we immediately deduce the density

ρG(x) =
N

√
2π

exp
(

−
1
2
x2
)

, (2)

and hence the unfold variable reads s = NG(x) =
N
2 erf

(
x

√
2

)
. Now we can state the main results of the Poisson ensemble.

First, the probability that the interval (− θ
2 , θ

2 ) is empty in the unfolded spectrum s = 2NG( θ
2 ) is given by

EG(s) = exp(−s) = exp
[
−2NG(

θ

2
)
]

. (3)

Second, the fluctuations in the number of eigenvalues in the interval (− θ
2 , θ

2 ) is characterized by the number variance
n2

⟩ − ⟨n⟩2 which in terms of the unfolded interval length L = 2NG( θ
2 ) is given by

⟨n2
⟩ = 2NG(

θ

2
) + 4N 2

G (
θ

2
) = L + L2 and ⟨n⟩ = 2NG(

θ

2
) = L , (4)

such that the linear number variance of Poisson follows.
The above joint distribution can be easily derived by maximizing the Shannon entropy subjected to normalization and

to the moment constraint
⟨
trH2

⟩
= N . The Shannon entropy can be generalized by the expression

Sq =
1 −

∫
dHPq(H)

q − 1
(5)

such that, when the real parameter q goes to one, the Shannon entropy is recovered. This is the Tsallis entropy and we
want to maximize it subjected to the normalization constraint and to a moment constraint that in the GMEP formalism,
is performed with respect to the escort distribution Pq(H) as [20]∫

dHPq(H)trH2
− µ

∫
dHPq(H) = 0 . (6)

Constructing then the functional

S{P(H)} = Sq − α0

∫
dHP(H) − α

[∫
dHPq(H)trH2

− µ

∫
dHPq(H)

]
, (7)

where α0 and α are Lagrangian multipliers, and by imposing δS{P(H)} = 0, it is obtained that

P(H) ∼

(
1

1 − q
+ αµ − αtrH2

) 1
1−q

. (8)

Comparing to Eq. (1), the immediate consequence of this expression is that the matrix elements, i.e. the eigenvalues, are
not any more independent variables such that the correlation among them must be taken into account. Before proceeding
2
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o show how this can be done, it is convenient to consider separately the cases q ≤ 1 and q ≥ 1. We emphasize that H
emains diagonal throughtout the above derivation. Consequently there is no Vandermonde term in the joint eigenvalue
istribution, giving rise to a great simplification to the problem, as will be seen in what follows.

.1. The case q ≤ 1

Using the moment constraint, we find that α =
N
2µ , and with µ = N , we have

PN (H) =
Γ ( 1

1−q +
N
2 + 1)[

2( 1
1−q +

N
2 )π

]N/2
Γ ( 1

1−q + 1)

[
1 −

trH2

2( 1
1−q +

N
2 )

] 1
1−q

, (9)

which satisfies the condition that when q → 1, PN (H) → PGN (H). Defining the quantities

λk =
1

1 − q
+

k
2

(10)

nd

Qk = 1 −
1

2λN

k∑
i=1

x2i , (11)

he above distribution can be written as

PN (H) =
Γ (λN + 1)Q λ0

N

(2λNπ)N/2 Γ (λ0 + 1)
. (12)

y integrating out N − k variables, the k-point correlation [2] that gives the probability of having k eigenvalues at the
positions x1, x2, . . . , xk is found to be expressed as

Rk(x1, . . . , xk) =
N!

(N − k)!
Γ (λN + 1)Q λN−k

k

(2λNπ)k/2 Γ (λN−k + 1)
=

N!

(N − k)!
Pk(x1, . . . , xk) . (13)

hese n-point functions can be used to generate a correlated sequence of the N eigenvalues by writing the identity

P(x1, . . . , xN ) = P(x1)
[
P(x1, x2)
P(x1)

][
P(x1, x2, x3)
P(x1, x2)

]
...

[
P(x1, . . . , xN )

P(x1, . . . , xN−1)

]
, (14)

in which each term can be interpreted as the conditional probability of sorting a new value once the previous ones have
been sorted. We remark that all these conditional probabilities are univariate density distributions. Explicitly, once the
set of k − 1 variables have been determined, the next one, xk with k > 1, is given by

xk = ±

√
2λNQk−1t , (15)

here t is sorted from the beta distribution

f (t;
1
2
, λN−k + 1) (16)

nd the signs ± are chosen with equal probability. With Q0 = 1, these expressions are also valid for k = 1.
In the limit of large N , the density R1(x) rapidly approaches the Gaussian distribution of the original Poisson ensemble

as N increases, which is also followed by the two-point correlation that becomes the product of two independent
Gaussians. As a consequence, statistical measures like nearest-neighbor-distribution (NND) and number variance (NV)
that depends on the two-point correlation function become Poissonian, that is, exponential and linear, respectively (a
result corroborated by numerical simulations). Notwithstanding, higher-order correlations that involve a number k of
oints of order N are preserved, since then the quantities 1

2λN

∑k
i=1 x

2
i cannot be treated as small. In particular, the joint

distribution of matrix elements, Eq. (9), does not factorize as a product of the same individual functions.

2.2. The case q ≥ 1

Considering now q ≥ 1, the joint distribution of the matrix elements becomes the correlated distribution

PN (H) =
Γ ( 1

q−1 )

(2λπ)N/2 Γ (λ)

(
1 +

trH2

2λ

) 1
1−q

, (17)

here the parameter

λ =
1

−
N

(18)

q − 1 2

3
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as introduced. It is easily verified that the condition q → 1, PN (H) → PGN (H) is again satisfied. In contrast to the case
< 1, in which the limit N → ∞ leads back to the original Gaussian situation, there is the possibility of taking that limit
y concomitantly making q → 1 in such a way that the parameter λ is kept fixed. This parameter therefore defines in
he limit of large N the generalized Poisson ensemble.

As above, defining

Q̂k = 1 +
1
2λ

k∑
i=1

x2i , (19)

ith Q̂0 = 1, all the eigenvalues, xk, sequentially can be obtained as

xk√
2Q̂k−1λ

= ±

√
t

1 − t
, (20)

here t is sorted from the beta distribution

f
(
t; λ +

k − 1
2

,
1
2

)
. (21)

Alternatively, using the integral representation of the gamma function, we have the more manageable expression

PN (H) =
1

(2λπ)N/2 Γ (λ)

∫
∞

0
dξ exp

(
−ξ −

ξ trH2

2λ

)
ξλ+N/2−1 , (22)

hich shows that the statistics measures of the generalized ensemble are obtained by averaging the Gaussian measures
ith the distribution

w(ξ ) =
1

Γ (λ)
exp(−ξ )ξλ−1 , (23)

here λ = ⟨ξ⟩ = ξ̄ . Also note that ⟨
√

ξ⟩ = Γ (λ + 1/2)/Γ (λ). Using then the above expressions, we obtain for the
eneralized Poisson ensemble the corresponding quantities as discussed at the beginning of this section for the Poisson
nsemble. Starting from the density, the expression

ρ(x) =
N

√
2π

∫
∞

0
dξw(ξ )

√
ξ

λ
exp

(
−

ξx2

2λ

)
=

NΓ (λ + 1/2)
√
2πλΓ (λ)

(
1 +

x2

2λ

)−λ−1/2

(24)

s derived and the cumulative function reads

N (x) =

∫ x

0
dyρ(y) =

NΓ (λ + 1/2)
√
x

2
√

πλΓ (λ)
B
(

x2

2λ
;
1
2
, λ +

1
2

)
, (25)

here B(t; a, b) is the incomplete beta function. For the probability that the interval (− θ
2 , θ

2 ) in the middle of the spectrum
as no levels, that is, the so-called gap probability, it is found that it is given by

E(s) =

∫
∞

0
dξw(ξ )EG

[
2NG

(√
ξ

λ

θ

2

)]
=

∫
∞

0

dξ
Γ (λ)

exp

[
−ξ − 2NG

(√
ξ

λ

θ

2

)]
ξλ−1, (26)

here s = 2N (θ/2) is the interval in the unfolded spectrum.
From Eqs. (2), (4) and (24), the variance ⟨n2

⟩ − ⟨n⟩2 of the number of eigenvalues in the interval (− θ
2 , θ

2 ) is given by

Σ2(L) =

∫
∞

0
dξw (ξ)

[
2NG

(√
ξ

λ

θ

2

)
+ 4N 2

G

(√
ξ

λ

θ

2

)]
− L2

= L + 4
∫

∞

0
dξw (ξ)N 2

G

(√
ξ

λ

θ

2

)
− L2, (27)

here L = 2N ( θ
2 ) is the unfolded interval.

As is usual in random matrix theory, the interest is in the asymptotic limit of large spectra, that is, in the expressions
btained when N goes to infinity while keeping however the product Nθ finite. Practically, this means to replace the
umulative functions by linear approximations that consist of multiplying their argument by the value of density at the
rigin, namely, N (x) ∼ ρ(0)x =

N⟨
√

ξ⟩
√
2πλ

x and NG(x) ∼ ρG(0)x =
N

√
2π

x. Starting with the number variance, the parabolic
expression

Σ2(L) ≃ L +

⎡⎣( √
λ

⟨
√

ξ⟩

)2

− 1

⎤⎦ L2 (28)
4
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Fig. 1. The effect of the parameter λ on the generalized Poisson nearest-neighbor distribution and on its number variance. One can observe that
when the parameter λ approaches to zero, a strong disorder regime is reached in which the local statistics show a power-law decay.

is derived in which the linear Poisson term competes with the square super-Poisson term.
Turning to the gap probability, using the approximation s ≃

N⟨
√

ξ⟩
√
2πλ

θ , Eq. (26) becomes

E(s) ≃
1

Γ (λ)

∫
∞

0
dξ exp

[
−ξ −

√
ξ

⟨
√

ξ⟩
s
]

ξλ−1, (29)

nd from p(s) =
d2E
ds2

the nearest-neighbor-distribution (NND) is given by

p(s) ≃
1

Γ (λ)⟨
√

ξ⟩2

∫
∞

0
dξ exp

[
−ξ −

√
ξ

⟨
√

ξ⟩
s
]

ξλ

=
k2Γ (2ξ̄ + 2)

2ξ̄Γ (ξ̄ )
exp

(
k2s2

8

)
U
(
2ξ̄ +

3
2
,

ks
√
2

)
, (30)

here k = (⟨
√

ξ⟩)−1 and U(a, x) is the parabolic cylinder function [21]. Using the asymptotic form of U(a, x) for a ≫ x,
hat is, for λ ≫ s, we find that p(s) ≃ exp(−s), which is the Poisson limit. We observe that, for the moments of p(s), we
ave

⟨sγ ⟩ =
⟨
√

ξ⟩
γ−1Γ (1 + γ )
Γ (λ)

Γ

(
2λ + 1 − γ

2

)
, (31)

ith which the usual NND normalizations, ⟨s0⟩ = 1 and ⟨s⟩ = 1, are satisfied. Moreover, it shows that the distribution
oes not have moments for γ > 2λ + 1, a signature of a power-law decay for large s. Consistent with this result, at the
rigin we have the inequality

p(0) =
λ

⟨
√

ξ⟩2
=

Γ (λ)Γ (λ + 1)
Γ 2(λ + 1/2)

≥ 1 (32)

hat follows from the logarithmic convexity property of the gamma function. The above shows that, with respect to
oisson, there is enhancement at small and large separations.
To assess the effect of the parameter λ on the generalized Poisson ensemble, we plot the NND and the NV with respect

o five λ values in Fig. 1. For comparison, the curves for the Poisson ensemble and the GOE are also displayed. As can
e seen from the curves for both the NNDs and the NVs, the generalized Poisson approaches the Poisson when λ takes
large value. The NND is rather insensitive to the changes of λ for λ > 1. In stark contrast, the generalized Poisson
rastically deviates from the Poisson and becomes super-Poissonian when λ approaches zero, indicating that smaller λ
eads to a stronger disorder in the ensemble. In this respect, the parameter λ, originating from Eq. (23), describes the
isorder intensity of the generalized Poisson ensemble.

. Applications

RMT is a statistical theory of spectra [1]. As such, it can be applied to any sequence of points on a line that are not
ecessarily levels of a physical system. One of the first impressive success of RMT was its application to the statistics of
5
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Fig. 2. The NNDs (top) and the NVs (bottom) of protein sequences. The NV curves are more separated and are hence utilized for fitting the parameter
. Proteins with closer biological origins assume closer λ values.

the zeros of Riemann zeta function [2], which subsequently led to attempts of finding a Hamiltonian whose eigenvalues
would be the zeros [22,23]. By removing punctuations from a text, it becomes a sequence of words separated by blanks
that can be regarded as levels. Using RMT, two of us analyzed this spectrum of blanks as a tool to study the distributions
of the lengths of words in literary texts of several languages [24]. Protein and DNA are also sequences of letters, and here
we use the generalized Poisson model to investigate the spectra extracted from them. Different from what occurs with
texts, Protein and DNA are sequences of letters without blanks. The spectra are then defined by choosing one given letter,
as will be explained below, to play the role of blanks.

3.1. Protein

Protein sequences consist of 20 amino acids that are coded with corresponding letters. As an illustration, in Table 1
and Fig. 2, we present the analyses for four proteins from the Swiss-Prot protein database [25], the primary accession
numbers of which are A2ASS6, Q8WZ42, Q8WXI7, and Q9I7U4 respectively. More results for a total number of 57 protein
sequences are available in [26]. In order to obtain meaningful statistics, the lengths of the sequences being analyzed should
be long enough. For example, the Titin protein with the accession numbers A2ASS6, Q8WZ42, and Q9I7U4, corresponding
to the protein homologues in mouse, human and fruit fly, is the largest known protein [27]. All these three variants play
similar protein functions: both A2ASS6 and Q8WZ42 are key components in the assembly and functioning of vertebrate
striated muscles, while Q9I7U4 constitute the key component in the assembly and functioning of adult and embryonic
striated muscles and muscle tendons. The Mucin-16 protein (also known as CA-125) with the accession number Q8WXI7
is another large protein, which plays a role in advancing tumorigenesis and tumor proliferation [28].

By exploiting the analogy of amino acids as words [29] in texts, it is natural to denote the most frequent amino acid
of a protein as the blank. It is then straightforward to analyze the NNDs and the NVs of protein sequences as in the text
sequence analyses [24]. In this respect, the NND of a sequence is just computed as the distribution of the reduced spacing
s = Ls/⟨Ls⟩ where Ls denotes the length of spacing between two consecutive ‘‘blanks’’, while the NV simply measures the
ariance of the number of ‘‘blanks’’ contained in the interval of length L, averaged over all non-overlaping intervals taken
rom the sequence.

Fig. 2 suggests that the NNDs and the NVs of the protein sequences can be well fitted with the NND and NV [cf. Eqs. (28)
nd (30)] of the generalized Poisson ensemble. Note that both the NND and the NV only depend on the fitting parameter
. The NND curves almost overlap entirely with each other regardless of their distinct λ values, thus the NNDs of the data
an be considered as fluctuations around an average distribution for the generalized Poisson ensemble that is greater
han one in the vicinity of the origin and displays a power-law decay in the tail. Therefore, as indicated at the end of
ection 2.2, there is enhancement at small s and large s. Furthermore, the parabolic behavior of the NV indicates that the
V of the generalized Poisson distribution is consistent with Taylor’s law [30], which is caused by the fluctuation scaling
echanism [31–33]. These observations suggest that the NV is visually a better classifier. We can also observe that the
V of the generalized Poisson distribution has a super-Poissonian behavior that is characterized by a larger variance than
he Poisson distribution; cf. Fig. 1.

Table 1 lists the average spacing length ⟨Ls⟩, the fitting parameter λ and the goodness-of-fit measure R2, i.e. the
oefficient of determination, for the corresponding sequence data. From Table 1 and Fig. 2, on the one hand, it can be
nferred that the sequences corresponding to the Titin protein, i.e. A2ASS6, Q8WZ42, and Q9I7U4, give rise to similar

alues for the parameter λ. What is more, the sequences A2ASS6 and Q8WZ42 assume almost identical values for λ. This

6
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Table 1
Parameter values of the protein and DNA sequence data. ⟨Ls⟩ is the average spacing
length. λ is the parameter for the NV of the generalized Poisson ensemble; see
Eq. (28). R2

NND and R2
NV are measures for the fitting qualities of the NNDs and the

NVs.
Area Sequence ⟨Ls⟩ λ R2

NND R2
NV

Protein

A2ASS6 9.764 2.441 0.946 0.998
Q8WZ42 9.468 2.415 0.956 0.9997
Q9I7U4 5.663 3.365 0.901 0.996
Q8WXI7 4.478 13.124 0.978 0.961

DNA

A2ASS6 17.063 2.45 0.953 0.997
Q8WZ42 13.937 2.03 0.945 0.9996
Q9I7U4 11.139 1.328 0.839 0.997
Q8WXI7 2.628 23.435 0.994 0.994

Fig. 3. The NNDs (top) and the NVs (bottom) for the DNA sequences corresponding to the proteins in Section 3.1.

emarkable distinction can be further ascribed to the fact that the sequences A2ASS6 and Q8WZ42 reside in mammals,
hile the sequence Q9I7U4 is the protein homologue in fruit fly, which should be more distant from those in mammals

rom an evolution point of view. On the other hand, the parameter λ of Q8WXI7 is quite different from those of others
ince Q8WXI7 corresponds to a completely different kind of protein. We should remark that, in contrast to the case for
ext sequences [24], the average spacing length ⟨Ls⟩ shows a less discernible power in characterizing different groups of
roteins.

.2. DNA

DNA contains all the information that organisms need to live and reproduce themselves. This is realized through the
o-called transcription–translation process for protein synthesis, in which DNA is first used as a template to produce
RNA, and then the genetic code in mRNA is translated to make a protein. Therefore we study the corresponding DNA
equences of the above proteins. The primary accession numbers for these DNA sequences are again A2ASS6, Q8WZ42,
9I7U4, and Q8WXI7, which can be downloaded from [34]. There are four nucleotides (A,T,C,G) in DNA and thus we can
onsider the sequences are composed of four letters. We again selected the most frequent letter of a DNA sequence to form
spectrum of blanks and the corresponding NND and NV are analyzed in a similar manner as the previous subsection.
ore results for a total number of 57 DNA sequences, corresponding to the proteins in the previous subsection, are also
vailable in [26].
Fig. 3 shows that the chosen DNA sequences display similar behaviors with respect to the corresponding protein

equences. Especially, from Table 1, we observe that the fitting parameter λ of the DNA sequences led to the same grouping
ehavior as in the protein sequences. This is not at all surprising due to the maps between the DNA and the protein
equences. However, since these maps from DNAs to proteins are injective, the λ values are distinct for each DNA and its
corresponding protein.

These results indicate that this generalized Poisson spectral analysis works quite well in the case of protein classifica-
tion, either directly through the protein sequences or through the corresponding DNA sequences, and therefore it could
be served as a new method for protein analysis. In this classification scheme, the parameter λ for the generalized Poisson
7
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istribution is the signature characteristic for each protein. This is further corroborated by the analyses of more sequence
ata for protein and DNA in [26], which not only show that the NNDs and the NVs are well dictated by the generalized
oisson, but also demonstrate very diverse values for λ from sequence to sequence. Furthermore, since all amino acids (or
ucleotides) are statistically equal for most proteins (DNAs), one should expect that any given amino acid (or nucleotide)
hould distribute along the sequence as a generalized Poisson distribution.

. Conclusion

In this work, a family of correlated ensembles was constructed by using the Tsallis non-extensive entropy. For values
f the entropic parameter less than one, it was found that for large matrices, the NND and the NV are Poissonian, though
igher-order correlations are not destroyed. Following Ref. [35], the case q ≥ 1 can be interpreted as a situation in which
n external source of randomness is superimposed to the Gaussian ones. This puts ensembles generated by GMEP in the
ontext of disordered systems and sheds some light on the parabolic behavior of the number variance as a manifestation
f the Taylor law caused by a fluctuation scaling mechanism. Regarding the NND, we remark that heavy tails already have
een reported in studies of symbol frequency distributions [36]. We found that this generalized Poisson distribution has
atisfactory applications to the distributions of protein and DNA sequences, with which the NNDs and the NVs of the data
re adequately accounted for by the theoretical forms. Especially, the parameter λ of the generalized Poisson ensemble
rovides a quite good characteristic for the classification of proteins and hence can be exploited to devise new methods
or protein analysis. For instance, λ can be considered as one of the reduced dimensions for certain clustering algorithms.
his study also hints that disorders may prevail in many other systems that can be described by RMT and the generalized
oisson distribution may be applied to scenarios where the Poisson distribution fails.
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