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We obtain the partial-wave unitarity constraints on the lowest-dimension effective operators which
generate anomalous quartic gauge couplings but leave the triple gauge couplings unaffected. We consider
operator expansions with linear and nonlinear realizations of the electroweak symmetry and explore the
multidimensional parameter space of the coefficients of the relevant operators: 18 dimension-eight
operators in the linear expansion and 5 O(p*) operators in the derivative expansion. We study two-to-two
scattering of electroweak gauge bosons and Higgs bosons, taking into account all coupled channels and all
possible helicity amplitudes for the J = 0, 1 partial waves. In general, the bounds degrade by factors of a
Jfew when several operator coefficients are considered to be nonvanishing simultaneously. However, this
requires considering constraints from both J = 0 and J = 1 partial waves for some sets of operators.
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I. INTRODUCTION

The structure of the triple (TGC) and quartic (QGC)
electroweak gauge-boson interactions in the Standard
Model (SM) is determined by the gauge symmetry
SU(2);, ® U(1)y. Therefore, it is important to measure
both TGC and QGC, not only to further test the SM or have
indications of new physics, but also to determine whether
the gauge symmetry is realized linearly or nonlinearly in
the low-energy effective theory of the electroweak sym-
metry breaking sector [1].

Generically, deviations from the SM predictions for TGC
and QGC are generated by higher-order operators para-
metrizing indirect effects of new physics. Collider experi-
ments probe TGC in the pair production of electroweak
gauge bosons, while the study of QGC requires the pro-
duction of three electroweak vector bosons, the exclusive
production of gauge-boson pairs, or the vector-boson-
scattering production of electroweak vector boson pairs
[2-17]. Therefore, the Wilson coefficients of effective
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operators that contain both TGC and QGC are more strongly
constrained through the study of their TGC component.

For this reason, most of the present LHC searches for
effects of QGC focus on the so-called genuine QGC
operators, that is, operators that generate QGC but do
not have any TGC associated with them. In a scenario
where the SU(2), ® U(1)y is realized linearly, the lowest-
order QGC are given by dimension-eight operators [18].
Alternatively, if the gauge symmetry is implemented non-
linearly, the lowest-order QGC appear at O(p*) [19,20].

It is well known that departures of the TGC and QGC
from the SM predictions lead to the growth of scattering
amplitudes [21], signalizing the existence of new physics.
Thus, when probing anomalous QGC, one must verify
whether perturbative partial-wave unitarity is satisfied to
guarantee consistency of the analyses. This is all well
established, and it has been previously addressed in the
literature [4,22-28]. It is also implemented in some form in
the QGC searches by both the ATLAS and CMS collab-
orations (see for instance Refs. [9-13,15,17]), either by
introducing ad hoc form factors or unitarization procedures
(see Ref. [29] for a study of the dependence on the
unitarization procedure employed), or by directly evaluat-
ing the maximum center-of-mass energy allowed by
unitarity as obtained from the VBENLO framework [25].
However, these unitarity studies are not complete since they
consider just a few scattering channels or a limited set of
QGC effective operators, or they restricted the analysis to
the J = 0 partial wave.

Published by the American Physical Society
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In this work we complement the existing literature on the
subject by systematically presenting the unitarity bounds in
the multidimensional parameter space of the coefficients of
the relevant operators in both linear and nonlinear realiza-
tions of the electroweak symmetry. We study two-to-two
scattering of electroweak gauge bosons and Higgs bosons,
taking into account all coupled channels and all possible
helicity amplitudes for the J = 0, 1 partial waves. Indeed,
we find that J =1 partial-wave unitarity effects are
relevant to derive the most stringent limits in some
scenarios when the effects of several operators are consid-
ered simultaneously.

This paper is organized as follows: We present in Sec. 11
the QCG operators that we consider in our analyses, as well
as basic expressions of partial-wave unitarity needed for
our studies. Section III contains our results, which are
discussed in Sec. IV.

II. ANALYSES FRAMEWORK

Here, we introduce the effective interactions considered
in this work, as well as the unitarity relations that we use to
constrain them.

A. Effective Lagrangian

1. Linear realization of the gauge symmetry

Assuming that the new state observed in 2012 is in fact
the SM Higgs boson and that it belongs to an electroweak
scalar doublet, we can construct a low-energy effective
theory where the SU(2), ® U(1), gauge symmetry is
linearly realized [30-36], which takes the form

eff*£SM+ZZAn 7] , (1)

where the dimension-n operators (’)l(.") involve gauge
bosons, Higgs doublets, fermionic fields, and covariant
derivatives of these fields. Each operator has a correspond-

ing Wilson coefficient fl , and A is the characteristic
energy scale at which new physics (NP) becomes apparent.

Here, we are interested in operators that lead to
QGC without a TGC counterpart. The lowest dimension
of such genuine QGC operators is eight [18]. In what
follows, we consider the bosonic dimension-eight operators
relevant to two-to-two scattering processes involving
Higgs and/or gauge bosons at tree level, and that
conserve C and P [37]. Moreover, we classify them by
the number of gauge-boson strength fields contained in the
operator.

In the first class of genuine QGC, the operators contain
just covariant derivatives of the Higgs field:

Os0 = [(D,®)'D, @] x [(D'®@)" D' @],
Os,1 = [(D,®@)"D®] x [(D,®)"D* @],
Os. = [(D,®)'D, @] x [(D*®)"DI®], (2)

where @© stands for the Higgs doublet, the covariant
derivative is given by D,® = (9, + igWi, o +igB, 1),
and o/ ( j =1, 2, 3) represent the Pauli matrices.

In the second class of genuine QGC, the operators
exhibit two covariant derivatives of the Higgs field, as
well as two field strengths:

Owo = Tr[W,,W*] x [(D;®)' D/ ®),

Oy = Te[W,, W] x [(D;®) ' DF @),

Oua = [B,B*] x [(Ds®@)' D/ @],

Owms = [B,,B”] x [(Dy®@) D' @),

Opa = (D, @)W, DF®] x B,

Ous = [(D,®)"W,,D*®] x B# + H.c.,

Ou = [(D,®) Wy, WD ®]. (3)

where W, = W}, % is the SU(2), field strength while B,,,
stands for the U(1), one.

In addition to the above operators, there are also genuine
QGC ones that contain just field strengths:

Oro = Tr[WWW"”] X Tr[WaﬂW"/’]
Or.y = Tr[W, W] x Tr[W W]
Ora = Tr[W,, W] x Tr[W,, W),
Ors = Tt[W,,W*] x B,zBY
Org = Tr[W,, W] x B,;B™,
Or7 = Tt[W,,W*] x B;, B

Ors = B,,B*“B,;B* Org = By B*"Bs,B**.  (4)

These 18 operators induce all possible modifications to
vertices VVVV, VVVH, and VVHH (V = W*, Z and A)
that are compatible with electric charge, C and P con-
servation; for further details on the anomalous vertices
generated by each dimension-eight operator, see Ref. [37].

2. Nonlinear O(p*) realization of the gauge symmetry

In dynamical scenarios, the Higgs boson is a composite
state; i.e., it is a pseudo-Nambu-Goldstone boson of an
exact global symmetry. Therefore, the gauge symmetry of
the low-energy effective Lagrangian is realized nonlinearly
[38-41], and the effective Lagrangian is a derivative
expansion. In this case, the effective Lagrangian is written
in terms of the SM fermions and gauge bosons and of the
physical Higgs A. The building block at low energies is a
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dimensionless unitary matrix transforming as a bidoublet of
the global symmetry SU(2), ® SU(2)g:
U(x) = efoam®)/v, U(x) — LU(x)R", (5)

where L, R denote SU(2),  global transformations,
respectively, and z¢ are the Goldstone bosons. Its covariant
derivative is given by

=9,U(x) + iga—jWL(x)U( )= %B (x)U(x)o3

2
(6)

From this basic element, it is possible to construct the
vector chiral field

D,U(x)

(D,U)U', (7)

and the scalar chiral field 7 = Us;U". For further details
see Ref. [37].

The lowest operators respecting C and P and exhibiting
genuine QGC are of order p*, which, in the notation of
Refs. [19,20], are

Pe = Tr[VFV,|Tr[VYV, | Fe(h),
Py = TT[V”VU]TI[Vqu]fll(h), (8)

which respect the SU(2), custodial symmetry and

Py = Tr[vﬂvﬂ](Tr[TVU])2f23(h)’
P24 = TI‘[V”VD]TI‘[TV//JTI‘[TVU]]:ZA‘(I/I)
Prs = (Tr[TV”]Tr[TVD})Z}'%(h), )

which violate SU(2),.. Note that F;(h) are generic func-
tions parametrizing the chiral-symmetry breaking inter-
actions of h. As we are looking for operators whose lowest
order vertex contains four gauge bosons, we take F; = 1.
So, the most general Lagrangian at O(p*) for genuine

QGC is

It is interesting to notice that the above nonlinear operators
do not contain photons.

B. Partial-wave unitarity

In the two-to-two scattering of electroweak gauge
bosons (V),

VinVar, = Vi, Vas,, (11)

the corresponding helicity amplitude can be expanded in
partial waves in the center-of-mass system as [42]

M(Vul Vuz - Vm V4/14)

—16712 (27+1 \/+5”2\/ + 8y, (0)

X e'M'pTJ(Vu, Vo, = Vi Vi), (12)

where 1 :ll —/12, Y24 :/13 —/14, MZ/II —/12—/13 +/14,
and 6 (@) is the polar (azimuth) scattering angle. Here, d
is the usual Wigner rotation matrix. For processes where we
substitute a vector boson by a Higgs, this expression can be
used by setting the corresponding A to zero.

Partial-wave unitarity for a given elastic channel requires
that

T/ (V13,Vas, = Vi, Vo) < 1, (13)

where we considered the limit s > (My, + My,)*. More
stringent bounds can be obtained by diagonalizing 77 in the
particle and helicity space and then applying the condition
in Eq. (13) to each of the eigenvalues.

In our analysis we evaluated 7° and 7' amplitude
matrices in particle and parameter space as a function of
the Wilson coefficients of the dimension-eight operators
and the nonlinear ones. These matrices are formed with the
s-divergent parts of the amplitudes corresponding to all
combinations of gauge boson and Higgs pairs with a given

ESZ‘é = Z fpiPi. (10) total charge Q =2, 1, 0 with possible projections on a
i=6,11.23,24.26 given partial wave J, which are
(0.J) States Total
(2,0) Wiwi wWiwg 3
@.1) | wiwt wiwg wiwi 6
(L) | WiZ, WgZy Wiy. WgH 6 (14)
(1,1) WoZo WiZo WigZo WiZ. Wgiyre Wiye WgH WiH 14
(0,0) Wiwy WiWy Z.Zy ZyZy Ziy: yiy: ZoH HH 12
(0,1) WeWy WiWwg WeWi WiWy Z.Zy ZyZ. Zyy. ZH Z.H y.H 18
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where upper indices indicate charge and lower indices
helicity. We also display in Eq. (14) the dimensionality of
the particle and helicity matrix for each independent (Q, J)
channel. Parity conservation at tree level leads to the
reduction of the number of independent helicity amplitudes
once we take into account the relation

TJ(VMI Vuz - V313 V4/14)
= (=1t ATI(V Vo, = Vi Vi), (15)

Furthermore, time-reversal invariance also reduces the
number of helicity amplitudes that need to be evaluated.

At this point, we would like to point out that there are
further dimension-eight and p* nonlinear operators that can
contribute to the processes listed in Eq. (14). For instance,
the operators

B ®'®(D,®)'D*®  and
Te[D,UUTD,UUT |+ Fyd* Fy (16)

contribute to VV — HH; for a complete list see
Refs. [1,43,44]. Here, we focus on effective operators
leading to genuine quartic gauge interactions, and we do
not attempt to perform a full analysis for dimension-eight
(p*) operators.

As an illustration, let us study the Q =2 and J =0
channel. The leading term in the center-of-mass energy +/s
of the unitarity violating amplitudes is O(s?) as expected
from a naive dimensional analysis." Working in the basis
(WIWL, WSWS, WEWDE), the 3 x 3 matrix in helicity
particle space reads

Lo 6fr, +3fr, 0 4fr, +8fr, +fr,
S
4fr, +8fr, + fr, 0 6fr, +3fr,

The strongest unitarity limits from this channel come from
the eigenvalues of the above matrix:

2fr,tfr,—fr, 2

3fs +fs, +

‘Wz <96, ’ o <48,
2fr +7fr +2
‘ 1, /{Zl szsz <487. (18)

Clearly this allows us to constrain the coefficients only
under the assumption of no cancellations between the
different coefficients. So in order to obtain the most
stringent bounds on the full set of coefficients, we diag-
onalize the six 77 matrices and impose the constraint
Eq. (13) on each of their eigenvalues.

III. RESULTS

We start our analysis by studying the operators that
contain four covariant derivatives of the Higgs field, which
are given in Eq. (2). The strongest unitarity limits for these
operators originate from the J = 0 partial wave. When we
diagonalize the helicity-particle matrices for the three
charges (Q = 0, 1, 2), we obtain three distinct nonvanish-
ing eigenvalues given by

'Since genuine QGC do not have a TGC counterpart, gauge
invariance does not lead to the cancellation of the s2 terms [45], in
contrast to what happens for dimension-six QGC [46].

s> <3fs,0 + fs +fs,2) S_z(fs,()‘f'fs,l +3fs.2>

967 A4 967 A?

s (3fso+7fs1+5fs2

2 (2lsoT s T s2), 19
967 ( A? ) (19)

where we kept only the leading term in the center-of-mass
energy.

These eigenvalues allow us to obtain limits on the three
Wilson coefficients fg;/A*. In order to explore the
dependence of the bounds on the possible relations among
operators imposed by specific forms of the ultraviolet
physics, we consider two scenarios: In the first one, we
assume that only one Wilson coefficient is nonvanishing.
The second case assumes that all Wilson coefficients of the
subset of operators considered are nonvanishing, and we
look for the possible largest values of each coefficient in the
unitarity region. Notice that in this second scenario, the
limits for all couplings cannot be achieved simultaneously
as they are simply extreme points in the three-dimension
(Fso/N*, fsi/N*, fso/A*) region delimited by Egs. (13)
and (19). We present in Table I the bounds on f ;/ A* for
these two scenarios. Expectedly, the limits in the second
case are weaker since the undisplayed Wilson coefficients
can be adjusted to mitigate unitarity violation, but as
explicitly shown, this is only an effect of O(1.5-4).

Next, we focus on the unitarity constraints on the seven
operators Oy,; from their leading contributions [O(s?)] to
the scattering amplitudes. For these operators, the analysis
of the J = 0 partial wave for the three charges yields two
independent nonvanishing eigenvalues,
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TABLE L.

Unitarity constraints on the Wilson coefficients of the Oy ; operators [Eq. (2)] when just one coefficient

is nonvanishing (second and third columns), as well as when all coefficients are included (last two columns). For
convenience, in the third and fifth columns, we give the numerical value of the bounds for maximal subprocess

center-of-mass energy of 1.5 and 3 TeV.

Bound
1 operator All 3 operators

Wilson coefficient For /s < 1.5(3) TeV For /s < 1.5(3) TeV
\fw | 327572 20(1.2) Tev~ 487572 30(1.9) Tev™

Isa L 52 8.5(0.53) TevV™ 288z ;=2 35(2.2) TeV~™

L] : :

\fn | Lns? 8.5(0.53) Tev~ Bhr g2 35(2.2) Tev™

s? (f st Fuas), Ci=12fyo+5fm1. Co=12fyo—11fp1+8fm7.

647\t

52

2567 A

\/32(—4fM,2 +fmu3)?+6(8fp0—2 i+ fuq)
(20)

They allow for constraining the Wilson coefficients when
considering only one operator at a time. Nevertheless,
they are not enough to bound all coefficients in the most
general scenario with several nonvanishing operators
entering the amplitudes simultaneously. Consequently, to
obtain the limits from the leading O(s?) contribution, in
this case one must also consider the bounds from the J =1
partial-wave unitarity. In so doing, we find seven additional
independent nonzero eigenvalues in the O = 2, 1 helicity-
particle matrices,

5 52

15362A% Cias 61447A* <C“ /G5 + C62)’
s2
614dnA? (C7 /G + C"z)’

with

(21)

Cy=4fua.
Cys==£(24fp0+10fpr1 = 15fu7) +48fu2 +20f 3,
Co =4V3(6fu4=5Fus):
Crg=£(=24fy0+22fma—fur)
Co=4V3(6f 4+ 111u5)-

—48fuo+44f m 3.

Altogether, the total number of unitarity constraints origi-
nating from the unitarity condition Eq. (13), with Egs. (20)
and (21), allow for independently bounding each of the
u j/A4 Wilson coefficients even when all seven are
considered simultaneously. In fact, due to the algebraic
structure of the eigenvalues, it is technically possible to
analytically solve the system of nine constraints in the
seven-dimensional parameter space.

We present in Table II the unitarity bounds on the
Wilson coefficients of the operators Oy, ; for the two
scenarios described above. Even though the J = 1 partial
waves have to be invoked to obtained bounds in the full
seven-dimensional parameter space and the limits of higher
angular momentum amplitudes are weaker, it is interesting
that the constraints on the Wilson coefficients do not

TABLE II.  Same as Table I but for the operators Oy, ; [Eq. (3)].
Bound
1 operator All 7 operators

Wilson coefficient For /s < 1.5 (3) TeV For /s < 1.5 (3) TeV
o 32 7572 8.1(0.5) TeV—* 2(72 4 5v/6)7)s~2 35(2.1) Tev—*
| Lt fM' | %ﬂs‘2 32(2) Tev™ 8(24 + \/?5),”—2 122(7.6) TeV~
| AT b A Bas™? 7(0.44) Tev—* (24 + 52)ns™> 20(1.3) TeV™
\fw| %n’s‘z 28(1 7) Tev—™ 96752 60(3.7) Tev™
|t | 3215 20(1.2) Tev~ 4(5 + 8v/3)152 58(3.6) Tev—
\st | 647572 40(2.5) TeV™ 64+/37s™2 69(4.3) Tev—™
|| s~ 65(4.0) Tev— (24 + v/6) s~ 210(13) Tev—
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degrade substantially and become (O(3-4) weaker than
those obtained from the J = 0 partial waves under the
assumption of only one nonvanishing coefficient.

The third class of dimension-eight operators exhibits
only field strength tensors, and it contains eight indepen-

dent operators, given in Eq. (4). Considering only leading

contributions to the scattering amplitudes that grow as s,

the diagonalization of the J = 0 helicity-particle matrices
for the three Q channels leads to eight distinct eigenvalues,

52 52

2 2
Toaras D108 g (D5 VD D3,
S2
S5 (Ds /D3 + D}y ). (22)

where

=8Q2fro+ fra—fra)
=8Q2fro+7fr1+2fr2)
=8Q2frs+ fre—fra)
=8Q2frs+7fre+2fra)
D5.6 =4Q2fro+4f1a
D7 =8V3f 7.

Dy g =80f70+40f71 +26f75 = (12875 +56f70),
Dyg=4V3(12f75+2fr6 +3fr7).

—fra£8frs—4fr9))

In this case the total number of unitarity constraints
originating from the unitarity condition Eq. (13), together
with the J = 0 eigenvalues in Eq. (22), allow for inde-
pendently bounding each of the f7 j/A4 Wilson coeffi-
cients even when the eight are considered simultaneously.
And again, it is technically possible to analytically solve the
system of eight constraints in the nine-dimensional param-
eter space. The bounds emanating from the J = 1 partial
wave are weaker than the ones from the J =0 one;
therefore, we neglected them in this analysis.

We list in Table III the corresponding bounds for the
frj/ A* coefficients assuming the two scenarios described
above. Comparing the results in Tables I-III, we learn that the
Wilson coefficients of the operators Or ; are subject to
stronger unitarity bounds than the other QGC classes.
Moreover, for only one nonvanishing f7 ;/A* =1 TeV™,
unitarity is not violated for subprocess center-of-mass
energies smaller than 1.5-2.8 TeV, depending on the anoma-
lous QGC.

We end by presenting the unitarity constraints on the
O(p*) QCG given in Egs. (8) and (9) that originate in the
nonlinear realization of the gauge symmetry. For this set of
operators the most stringent limits stem from the J =0
partial wave. After diagonalizing the Q = 0, 1, 2 channels,
we obtain four non-vanishing eigenvalues:

s S g [F i\/8F2+F2} (23)
24047V 240t P 240t ? 4 3]’
where

Fy=4(fps+2fp11)

Fy=4(fps+2fp11 + fros+2fpoa),
F3=13fps+ 11fp11 +10fp23 + 10fp2s +20fp 2.
Fy=3fps+ fra1+3fraz+fpos
Fs=3fps+fri1—10fp23 = 10fp2s —20fp .

Again, the structure of the four eigenvalues allows for
independently constraining the five fp; coefficients, even
when considered to be all nonzero, simultaneously.
Table IV contains the corresponding bounds on the
coefficients. Notice that these results indicate that the
present experimental analyses require the introduction of
a unitarization procedure such as the one in Ref. [11].

TABLE III.  Same as Table I but for the operators O ; [Eq. (4)].
Bound
1 operator All 8 operators

Wilson coefficient For /s < 1.5(3) TeV For /s < 1.5(3) TeV
) 12 72 1.5(0.093) TeV— 136 -2 7.7(0.48) Tev™
) 2 572 3.0(0.19) TeV— 352 572 7.0(0.44) Tev—*
|sz | % 752 6(0.29) TevV—* 327572 20(1.2) Tev—*
1| 572 2.9(0.18) Tev~ 8(1 +453) g2 7. 3(0 46) TeV™
|fT6 ‘ %ﬂ:s_2 ](0.27) Tev— ]6(%)7‘[&_2 ( ) 6) TeV™
| fra ‘ 3—\/%755_2 1 ](0.72) TeV—* 32(1 + 1—13)71'5_2 ( ) Tev~*
|frx | 3572 0.93(0.058) TeV—* 18 7g2 2.2(0.14) Tev~*
|z | L g2 2.1(0.13) Tev—™ 8ms~2 5.0(0.31) Tev™
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TABLE IV. Same as Table I but for the operators in the nonlinear representation of the electroweak symmetry

[Egs. (8) and (9)].

Bound

1 operator

All 5 operators

Wilson coefficient

For /s < 1.5(3) TeV

For /s < 1.5(3) TeV

fpel 120t 2 2.6(0.15) x 1073 6rvts™ 14(0.85) x 107
fpal 12gt -2 3.9(0.24) x 1073 6rvts™ 14(0.85) x 107
|fp2sl slf”m s72 2.5(0.42) x 1073 12 <2+¢5§>m4 2 22(1.4) x 1073
|f P24l 513% 572 2.9(0.18) x 1073u 12 <2+¢5§>w4 §2 22(1.4) x 1073
£ sl 3t =2 1.5(0.09) x 1073 Rayts2 5.8(0.36) x 1073

IV. DISCUSSION

Exploration of the structure of the quartic couplings of
electroweak gauge bosons is at the forefront of the tests of
the SM, in general, and of its mechanism of symmetry
breaking, in particular. Parametrizing deviations from
the SM predictions in terms of effective operators is the
standard methodology followed in such studies in the
present experimental searches at the LHC [6-17].
Notwithstanding, the contribution of effective operators
leads to unitarity violation at high energies, and therefore
the methodology must be applied only in the energy regime
in which this is not the case. For the specific case of
genuine QGC operators, this has been partially addressed
in the literature by studying the bounds imposed by
partial-wave unitarity of gauge-boson scattering in specific
channels and/or waves.

In this work we have presented a complete partial-wave
analysis of two-to-two scattering of electroweak gauge
bosons and Higgs bosons, all for the charged channels in
Eq. (14). We have considered operator expansions with
linear and nonlinear realizations of the electroweak sym-
metry. The leading anomalous contribution is proportional
to s, and we studied the conditions to obtain the most
stringent limits for all couplings.

Quantitatively, our results are summarize in Tables I-IV.
In the minimal scenario with just one nonvanishing QCG
Wilson coefficient, our analyses show that the strongest
unitarity constraints can be obtained from the analyses of
the J = 0 partial wave for Q = 0, 1, 2. However, in more

realistic scenarios where more than one QGC operator
contributes, the J = 0 partial-wave analyses do not lead to
the strongest unitarity bounds for all Wilson-coefficient
combinations. In this case, we must also take into account
the J = 1 partial wave. Once all waves are considered, the
bounds on each Wilson coefficient become a factor of a few
weaker than in the minimal scenario.
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APPENDIX: HELICITY AMPLITUDES

Here, we present the list of unitarity violating ampli-
tudes in Tables V-VIII for all the 2 — 2 scattering
processes considered in the evaluation of the unitarity
constraints.
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TABLE V. Unitarity violating (growing as s?) terms of the scattering amplitudes M (V, 3 Va2, = Vi, Vs 5,) for
longitudinal gauge bosons generated by the operators that contain four covariant derivatives of the Higgs field
[Eq. (2)]. Here, X = cos 0, and the overall factor extracted from all amplitudes is given at the top of the table.

s2

¥

WHwt - wrwt
WZ - WZ

WZ - WH

WH - WH
WHW- - Wrw-
WHw- - 727
WtW- - ZH
WtW- - HH
77 - 77

77 - HH

ZH - ZH

HH - HH

(4fso+ (1 +X)(fs1+ fs2))/8
((5+3X)fs0—2(=1+X)fs1 +(5+3X)fs2)/16
—((=1+X)3+ X)(fs0 — fs2))/16
((5+3X)fs0—2(=1+X)fs1 + (5+3X)fs2)/16

((2+6X)fso— (=5+X)(fsa+ fs2))/8
(fso+Xfso+4fsi+fs2+Xfs2)/(8V2)
—(X(fso—fs2))/4
—(fso+4fs1+ fs2+X*(fso+ f52))/(8V2)
(B+X)(fso+ fs1+fs2))/8
(fso—X*fso—2(fs1+ fs2))/8
A1+ X)fs0 = (=1 +X)(fs1 + fs2))/8
B+ X)(fso+ fsi1+fs2)/8

TABLE VL. Unitarity violating (growing as s2) terms of the scattering amplitudes M (V 1 Vas, = Vi, Vy,,) for the gauge boson
helicities given in the second column generated by the operators that contain two covariant derivatives of the Higgs field [Eq. (3)]. Here,
X=cos0,Xp=1-+cosl, Xy, =1-cosb, cy =cosby, sy = sinOy, coyy = cos 20y, caw = cos 40y, and s,y = sin 20y, and the
overall factor extracted from all amplitudes is given at the top of the table.

2
Y
Xoas

WHwt - wtrwt 0+ 0-
0+ 0+

-+00—

+00+

W+Z - Wtz 00+ —
00 + +

0+ 0-

0+ 0+

+00—

+00+

W*Z — Wty 00 + —
00+ +

0+ 0-

0+ 0+

+00—

+00+

WtZ - WTH 0+ -0
0440

+-00

+0-0

++ 00

Wty - Wty 0+0-
0+ 0+

Wty - WrH 0+ -0
0++40

+ =00

++ 00

=Xy (=4Xpf a0+ Xufrn —2fm7)/64
Xp(2fmy — fu7)/32
~Xp(@Xpfyo—Xpfu1 +2fu7)/64
=X (2fu1 = fm7)/32

XMXPfM,SSW/16
Xfuzew +22fma+ fus)sw/16
X3 ((16f 30 = 4f w3)s% + (8fmo — 2fma + Fua)Cly = 22f ma + Fuas)saw)/64
Xp(4fussyy + 2fma — fur)cly + 2f mssaw)/16
Xp((=3+X)fuzcw —2Xp(2fya + fus)sw)/64
Xufmssw/8

~XuXpfuscw)/16
(=2(2fpa + fus)ew + Xfuzsw)/16
X3 (42 ma+ fus)caw + 8F o — 2fma = 16f a2 +4fms + fu7)s2w)/128
—Xp(4fmscow + (=2fm1 +4fus + fuz)sow)/32
Xp(2Xp(2fma + fus)ew + (=3 +X)fuy7sw)/64
—Xufmscw/8

Xp((=3+X)furcw —2Xp(2fma + frs)sw)/64
XMfM.SsW/g
~XuXpfussw/16
=Xy (3+X)f /64
(=(Xfmacw) =22fma+ fus)sw)/16

=X3((=8fmo +2fm1 = fua)sty + (=16fy2 +4fps)ch —2(2f pa + fus)saw)/ 64
Xp((2fma = fua)Shy +4Fmusch — 2fmssaw)/16

Xp(2Xp(2fya + fus)ew + (=3 +X)fy75w)/64
_szzfzvz.scvv/8
XuXpfuscw/16
(2(2fma + fus)ew — Xfuz5w)/16

(Table continued)
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TABLE VI. (Continued)

x5

WtH - WTH

WHW= - WTw-

WtW- - ZZ

WTW- = Zy

WtW~ - ZH

WTW~ = yy

WHW- - yH

WtW- - HH

77 - 77

77 — Zy

ZZ —yy

Z7Z - HH

+0-0
+0+4+0
00 + -
00 + +
0+ 0-
0+ 0+
00 + —
00 + +
0+0-
0+ 0+
+00—
+00+

00 + -
00 + +
0+0-
0+ 0+
+00—
+00+
0+-0
0+ 10
+0-0
+0+0
++00
00 + -
00 + +
0+-0
0+10
+0-0
+0+0
+—00
++00

00 + -
00 + +
0+0-
0+ 0+
+00—
+00-+
00 + —
00 + +
0+0-
0+ 0+
+00—
+00+
00 + -
00 + +
+-00
++00

X3 (8f w0 —2fm1 + fu7)/04
Xp(2fuma = fur)/16
~XuXp(2fyu1 = fur)/32
(8fmo—2fma +fu7+Xfuz)/16
Xy (=4Xyfro+ Fun = Xfua + fug+Xfuqg)/32
Xp(2fuma = fuz)/16

X Xp((=2f a1 + Fur)chy +4Fmash + 2fwssaw)/ (32v2)
(1632 = 4fw3)s% + (8o = 2f s + far7)Cly — 22 f ma + frrs)saw)/ (16v/2)
=X (B +X)furcw —2Xu(2f sa + Frus)sw)/ (64V2)
—XPfM.SSW/(g\/E)

—Xp((=34+X)furcw +2Xp(2fma + furs)sw)/ (64V2)

XS ssw/(8V2)

XuXp(@dfuscow + (=2fp1 +4fus + frz)saw)/64
(2Q2fma + fus)caw + (8fmo = 2fmn = 16f a2 +4fus + fuz)cwsw)/16
X (=2Xp (2fpa+ fus)ew — 3+ X)fuasw)/64
Xpfuscw/8
Xp(2Xp(2fya + fus)ew — (=3 + X)fuosw)/64
~Xufuscw/8
~Xp((=3+X)fuzcw +2Xp(2f s+ fus)sw)/64
Xufussw/8
Xu((B+X)fuzew —2Xu(2fma + fus)sw)/64
Xpfussw/8
Xfuz/16

—XuXp(2fma = Fua)sh +4fusch = 2fmssaw)/ (32V/2)
((8fmo=2fma + fun)siy = (=16fyo +4fm3)cy +2(2f pa + Fas)saw)/(16V2)
Xp(2Xp(2fya+ fus)ew — (=3 +X)fy75w)/64
—XMfM,SCW/S
~Xu(=2Xy (2fma + fus)ew — 3+ X)fursw)/ 64
—XPfM.scw/8
XuXp(2fua — fur)/(32V2)
~(8f w0 = 2f w1 + fu7)/(16V2)

XuXp(=4fu38ty + (=2fs1 + Fu7)Cly + 2f ussow)/ 64
((16fs2 —4fu3)s% + (8F w0 = 2f ma + fu7)hy +2(2f wma + fars)saw)/32

Xor((16f 32 = 4fm3)sw + 8 mo = 2 ma + fua)ciy + 2(2f ma + furs)sow)/128
~Xp(=4fm35w + (=2f 1 + Fuz)Cly + 2f ussaw)/32

=X3((16f 12 = 4fu3)s% + 8fmo = 2fma + Fua)ciy +2Q2F ma + Furs)saw) /128
Xt (=4f 3% + (=2 m1 + fua)cly + 2f mssow) /32

X Xp(4f uscow + 2fsa = 4fms — Fu7)s2w)/ (64V2)

(=22fma + fus)eaw + 8F o = 2f w1 = 16f w2 +4f s + farr)cwsw)/ (16V2)
X3 (4(2f ma + faus)cow — (8Fmo — 2fmn — 16f s +4f us + fa7)sow)/ (128V2)
Xp(fuscow + 2fui —4fus = fur)saw)/ (32V2)

X3(4Q2f ma+ Fus)eaw = (8F o — 2fma — 16fya +4f w5 + fu7)saw)/ (128v2)
—Xu(4fuscow + (2fsa — 4fms = Fur)saw)/ (32V2)
~XuXp((2f a1 = Fua)siy +4Fmsciy + 2fussw)/64
((8f a0 =2fm1 + fua)sty — (=16fua +4fu3) ety —22f ma + Fus)sow)/32
—XuXp(=4fmasty + (=2fm1 + fu7)Cy + 2f mssow) /64
(A(=4f a2 + fus)sty — Bfmo — 2fma + Fua)cly —2Q2f ma + Fus)sow)/32

(Table continued)
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TABLE V1. (Continued)

x5

Zy = Zy

Zy - HH

ZH - ZH

ZH - yH

yy > HH

yH - yH
yH - yH

0+0-
0+ 0+
+-00
++00
+0-0
+0+0
+0-0
+0+0
+-00
++00
+0-0
+0+0

=X ((=8fm0+2f w1 — fua)sty + (16f a2 +4F y3)cty +2(2f ma + fus)saw)/64
Xp((2fma = Fua)sw + 4 sty + 2f ussow)/16

XuXp(Afuscow + 2fyua —4fms — fM,7)52W)/(64\/§)
(2(2fma + Fus)Caw — (8Fmo —2fma — 16fsa +4fms + Fuz)ewsw)/ (16v/2)

X3, ((16fp0 = 4fm3)st + 8fmo — 2fma + fua)Ch +2(2f ma + Fus)saw))/64
—Xp(=4fmasty + (=2fm1 + fu7)cly + 2f mssaw)/16

=X3(4Q2f wa+ fus)cow — 8F o — 2 w1 — 16f o +4f 3 + Fa7)s2w) /128
Xp(4fuscow + 2fmr —4fms — fuq)saw)/32

—XuXp(=2fm1 + Fua)sy = 4fmaciy — 2f mssaw)/64
(4(=4fyo + fus)ety + Q2Fua + fus)sow — 8fmo — 2 m1 + fua)sw)/32
X3, ((=8fmo +2fm1 — Fua)sty + (=16 y0 +4f y3) iy +2(2f ma + fars)sow) /64
Xp((2fma = fu7)sty + 4 msciy + 2fmssow)/16

TABLE VII. Same as Table VI but for the operators containing only field strength tensors [Eq. (4)].

2
e

WEW* > WEW* +——+

Wtz —-wtz +-——+

WHZ—-> Wty +——+

Wty —>Wty +-——+

WIW- > WHtw- +——+

WHW-—2ZZ  +——+

WtW-—>Zy +—-—+

X3 fro+fri+/fr2)/8
X3(2fro+fra+fr2)/8
(4Xpfro+2(5+X)fri+Xpfr2)/8
fra+tfra/2

X ((4frs+fra)sy+@&fro+fra)cy))/8
X3((2fre+fra)sw+ Q2fri+fra)ciy)/8
(4Xpfr5+10f16+6Xfr6+Xufra)sw+ (4Xufro+10f 11 +6Xfr1+Xufr2)ciy)/8
(2fre+fra)sw+2fra+fra)ey)/2

Xs(4fro+fro—4frs—Ffr7)s2w/16
Xp(2fra+fra=2fre—fr7)s2w/16
—(=4Xpf10=205+3X) fr1—Xufro+4Xufrs+10f16+6Xfr6+Xyfr7)52w/16
Cfratfra=2fre—Ffra)sow/4

Xy ((4fro+Ffra)siy+@frs+fra)ey)/8
X3(2fra+fra)sw+ 2fre+fra)ciy)/8
((4Xyfr0+10f71+6Xf11 4+ X fr2)st +(4Xpfrs5+10f76+6X 16+ Xpfr7)cw)/8
(fra+fro)sy+Q2fre+fra)cy)/2

Xy (2fro+fra+fra)/4
X3(2fra+fra)/4
(=4(=5+X)fro+2(7T+5X)fr1—(=5+X)fr2)/8
2frot+Srat+Sr2

X3 (2fro+fra)sk+Qfra+Fr2)ck)/ (8V2)

X3 ((2f 1o+ Fra)st + fra+fra)ety)/ (8V2)
((4frs+Xpfre+fra)sw+@Efro+Xpfri+fr2)ck)/ (2V2)
((Afrs+fra)sky+@fro+fra)cy)/(2V2)

X3 frai+fro—2fre—fra)sw/16
X3(2fra+fra—2fr6—fr7)82w/16
(A4fro+Xpfra+fro—4frs—Xufre—Fra)saw/4
(fro+Sfro—4frs—fr7)sw/4

(Table continued)
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TABLE VII. (Continued)

s
WIW=—yy -t X3 (fr1+fr2)shy+ 2f re+fra)ck)/(8V2)
-+ X3(Q2fra+F12)s% + fre+fr7)ck))/ (8V2)
T+ ((4fro+Xpfra+fr2)sk+ @frs+fre+Xfre+fra)ck)/(2vV2)
A+ ((4fro+fra)sk+@frs+Fra)ck)/(2V2)

27-277 +-—+ Xi(8fr5+8fre+6fr7)ct+ 4fro+4fT1+3fr2—8f1r5—8f16—6f17)CW +4(4f 1543 109)8%)/16
+-+- X3((8f15+8fr6+6fr7)chy+(4fro+4fr1+3fr2—8f15—8fr6—6fr7)Cly+4(4f18+3f10)5%)/16
++—= (B+X)2(4frs+4fro+fra)chy+@f ro+4f i+ r2a—8frs—8fre—2fr7)cw+4(4f 15+ f1o)s)/8
+++t ((8f1.5+8f16+6f77))ch+ 4fro+4fr1+3fra—8frs—8fre—6fr7))cy +4(4f15+3f10)s5/4

ZZ-Zy - X3 ((4f 15 +4f16+3f 17— 16f15=12f70)s% + (4f 70 +4F 1.1 +3f72)chy)s2w/ (16V2)
Tt Xp((4frs+4f16+3fr7=16f75=12f10)s% +(4fro+4f 11 +3r2)ci)s2w/(16V2)

T+ B+X)((4f 15 +4f 16+ r7=16f15—4f10)s% + (4f 10 +4f 11+ 12)ch)s2w/ (8V2)
Tt ((4frs+4f16+3fr7=16f15=12f10)s% + (4fr0+4f 1.1 +3f12) i) s20/ (4V/2)

ZZ-yy T =X (=4fr0=4fr1=3fr2+8f15=2f17=16f15=12f10)s3 —4(2f 1.6+ f17)C3y) /64
+-+- X3 ((=4f10=4 11 =3 12 +8f15=2f1r7=16f15=12f70)53y —4(2f 16+ [17)C3y)/ 64
++—= B@frs+Xpfre+fr7)+@B+X)(frot+fra—2(frs+fre—21s)+B+X)(fro=2fr1+4f109))s3y)/32
++++ ((4fro+4fr1+3 12+ 16f75=8f16+16f15+12f10)s3y +4(4f 75+ f17)c3)/16

Zy—=2Zy +-—+ X3 (=4fr0=4f11=3fr2=8fr5+2f17+8f 16— 16f15=12f710)83y —4(4f 15+ f17)c3y)/32
+-+- —X3((=4fr0=4f11=3f12+8 15 +2f17=16f15=12f10)83y —4(2f 16+ f17)C3w)/32
++-- Q2Q2(54+3X)fre+ 4frs+r)X5) +RGB+X)(fro+fri=2frs+fre—2frs))

+GB+X*)(2fro+2fra+fro—4frs—4fre—2fr1+8frs+4f109))s3y)/16
++++ ((4fr0+4f 1143 12=8fr5=2f1r7+16f75+12f10)83 +4(2f 1.6+ f17)C3w)/8

Zy=vr -t X3 ((=4fr0=4f11=3fra+4frs+4f 1.6 +3 r7)s% + (1675 +12f10)cty) 52w/ (16V2)
Tt Xp((=4f10=4f 11 =3fr2+4f 15 +4fr6+3f17)s%y + (16f 75+ 12f0)cy)sow) / (16V2)
- —B+X)((—4fr0—4fr1—fro+4frs+4fre+Fr2)s% +(16f15+4f70)c%)s2w)/ (8V2)
4+t —((=4fro—4fr1=3fra+4frs+4fr6+3fr2)s% + (16f75+12f70)ch )52w)/ (4V2)

Yr=vr ==t =Xy (24frs+4fre+3fra)cy 24 5 +4fr6+3f17-8f 15 =6 10)cWw—4fr0+4fT1+3f12)s5%)/16

+—t+= —X3(-2(4frs5+4fr6+3fr7)ch+2(4 15 +4f16+3f17—8 18 —6fr0)ch — (4f10+4 11 +3f12)s%)/16
== —B4X)(-24frs+4fre+fra)ch+2(4frs+4fre+fr7—8frs—2fr9)cly— (Af ro+4 1+ r2)sW)/8
++++ (4frs+4fr6+3f17))ct+(=4fr5—4fr6=3fr7+8frs+6f10)ch + ((8f70+8fr1+6f12)sW)/8

TABLE VIII. Same as Table V but for the operators in the nonlinear representation of the electroweak symmetry
[Egs. (8) and (9)].

Xg41&—24
WHW+ - Wrwt (5+X)fpa1 +2(1+X)fre)/16
Wtz - wtz ((5+3X)fpa1 —2(=1+X)fpas +5fpoa +3Xfpos +2fps —2Xfpes)/16
WHW- - Wtw- (7 +5X)fp11 =2(=5+X)fpe)/16
WrW™ - ZZ (Fpn +Xfpu +4fpos + froa+ Xfpoa+4fps)/(8V2)
7 - 77 (B+X)(fpa1 +2fpas+2fpoa+4fpas+frs))/8
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