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ABSTRACT

We report remarkable pattern formation of quasiperiodic domains in the two-dimensional parameter space of an intrinsically coupled system,
comprising a rotor and a Duffing oscillator. In our analysis, we characterize the system using Lyapunov exponents, identifying self-similar
islands composed of intricate regions of chaotic, quasiperiodic, and periodic behaviors. These islands form structures with an accumulation
arrangement, denominated here as metamorphic tongues. Inside the islands, we observe Arnold tongues corresponding to periodic solutions.
In addition, we surprisingly identify quasiperiodic shrimp-shaped domains that have been typically observed for periodic solutions. Similar
features to the periodic case, such as period-doubling and secondary-near shrimp with three times the period, are observed in quasiperiodic
shrimp as torus-doubling and torus-tripling.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0234904

In the context of nonlinear dynamics, several studies have
reported the characterization of systems in the control param-

eter space. Periodic regimes are frequently observed, embedded
in chaotic regions, presenting self-similar structures with highly
organized patterns. Among the possible periodic structures,
shrimp-shaped domains have been identified in a wide variety of
dynamical systems, such as a predator–prey model, electrochem-
ical oscillators, electronic circuits, and a two-gene model. More
recently, shrimp-shaped domains associated with quasiperiodic
regimes (torus attractors) were observed in a coupled radio-
physical generator and in a discrete-time predator–prey model. In
this work, we consider a mechanical oscillator with intrinsic cou-
pling, focusing on the quasiperiodic scenario. As a key finding,
we identify, in two-dimensional parameter space, quasiperiodic
shrimp-shaped domains exhibiting interesting properties, such
as self-similarity, highly organized pattern, torus-doubling, and
torus-tripling regions.

I. INTRODUCTION

Over the past few decades, a considerable amount of work on
nonlinear systems has examined the dynamics in two-dimensional
parameter space using Lyapunov exponents.1–4 Consequently,
regular solutions have been visualized within continuous param-
eter planes, forming periodic structures embedded in quasiperi-
odic or chaotic regions. In numerous situations, the distribution
of these periodic structures appears highly organized, exhibiting
self-similarity and universal properties.5–10 In this context, Arnold
tongues and shrimp-shaped domains emerge prominently among
the possible structures.11–14 Shrimps, a term coined by Professor
Jason Gallas,11,12 have been identified for a dissipative model of rela-
tivistic particles,15 a tumor growth model,16 a predator–prey model,17

electronic circuits,18 a red grouse population model,19 and plasma
physics,20 to name just a few. In the recent past, Stankevich and col-
laborators reported substantial findings on the study of quasiperiod-
icity, showing shrimp-shaped domains composed of quasiperiodic
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attractors.21 More recently, Pati identified the existence of spiral con-
nections for the self-organization of the quasiperiodic shrimps in a
discrete-time predator–prey model.22

In nonlinear mechanics, intrinsically coupled oscillators
represent an important class of systems with technological
applications.23–25 From a dynamical point of view, these oscilla-
tors have attracted significant attention due to their complexity,
involving coexistence of attractors, quasiperiodicity, and chaotic
vibrations.26–28

In this work, we investigate the parameter space organization of
an intrinsically coupled system, composed of a rotor and a Duffing
oscillator. Our main goal is to shed some light on the investigation
of quasiperiodicity in two-dimensional parameter space.

This article is organized as follows: In Sec. II, we present the
mathematical description of the rotor-Duffing oscillator using the
Lagrangian formalism. In Sec. III, we show numerical findings from
the characterization of quasiperiodic structures in two-dimensional
parameter space. Section IV contains our main remarks.

II. ROTOR-DUFFING OSCILLATOR

In the context of the mathematical description for intrinsically
coupled mechanical systems, Lagrangian formalism performs as a
useful tool to determine the equations of motion.29–31 We consider a
coupled system combining a rotor and a Duffing oscillator. Figure 1
displays the schematic model of this coupled system, which includes
a block with mass M connected to a fixed frame through a non-
linear spring, −k1X + k2X

3, and a dashpot, b1Ẋ. Mounted on the
block is a rotor with mass m and length of the massless rod r. In this
model, X represents the displacement of the block, while ϕ denotes
the angular displacement of the rotor.

Using the Euler–Lagrange equations for kinetic energy and
potential energy given by

T =
m + M

2
Ẋ2

+
mr2

2
ϕ̇2 + mrẊϕ̇ cos(ϕ), (1)

V = −
k1

2
X2

+
k2

4
X4, (2)

adding the damping terms b1Ẋ and b2ϕ̇, and including an excitation
term, E cos(ω1t), on the rotor, the equations of motion are given by

(m + M)
d2X

dt2
+ b1

dX

dt
− k1X + k2X

3

= mr

(

dϕ

dt

2

sin ϕ −
d2ϕ

dt2
cos ϕ

)

, (3)

mr2 d2ϕ

dt2
+ b2

dϕ

dt
= E cos(ω1t) − mr

d2X

dt2
cos ϕ. (4)

Considering x ≡ X/r and derivatives with respect to τ , for

τ ≡ ω0t (ω0 ≡

√

k1
m+M

), the equations of motion are reformulated

FIG. 1. Schematic model of the rotor-Duffing oscillator.

as follows:

ẍ + β1ẋ − x + γ x3
= ε

(

ϕ̇2 sin ϕ − ϕ̈ cos ϕ
)

, (5)

ϕ̈ + β2ϕ̇ = F cos(ωτ) − ẍ cos ϕ (6)

for β1 ≡
b1

(m+M)ω0
, β2 ≡

b2
mr2ω0

2 , γ ≡
k2
k1

r2, ε ≡
m

m+M
, F ≡

E
mr2ω0

2 , and

ω ≡
ω1
ω0

.

These equations of motion align with a simplified mathematical
model for non-ideal oscillators,32–34 except for the periodic excitation
term applied to the rotor.

III. METAMORPHIC TONGUES AND QUASIPERIODIC

SHRIMPS

In this section, we present a set of numerical results revealing a
collection of remarkable dynamical domain organizations in two-
parameter space for the rotor-Duffing oscillator. The simulations
were performed by using the fourth-order Runge–Kutta method
with a fixed time step of 10−2. In addition, we discarded a transient
phase of 2.0 × 105 iterations and utilized additional 2.0 × 107 trajec-
tory points to compute the Lyapunov exponents. For our numerical
analysis, we consider the control parameters F and ω from an exci-
tation term, while the remaining control parameters were fixed at
ε = 0.025, β1 = 0.02, β2 = 1.5, and γ = 1.6. The control parameter
values correspond to those used in the numerical analysis to evaluate
the experimental data from nonideal oscillators.35

Initially, to gain some insight into the dynamics, we investigate
the system in terms of one-dimensional parameter ω for F = 2.3.
Figures 2(a) and 2(b) display a bifurcation diagram and the cor-
responding Lyapunov exponent evaluation, respectively. For the
bifurcation diagram, excluding the transient behavior of 2.0 × 105

iterations, we plot the asymptotic values of the local maxima x as a
function of ω. We construct the diagram using the following attrac-
tor method. In other words, for each value of the parameter, we
start the system by using the final state of the preceding parameter
value as the initial conditions. In this case, we show only a transition
sequence of attractors, omitting the multistability coexistences. To
characterize the nature of the attractors, we evaluate the Lyapunov
exponents using the Benettin algorithm,36 with the code provided by
Wolf and collaborators.37 In Fig. 2(b), we plot three out of the five
Lyapunov exponents, disregarding both the smallest and one of the
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FIG. 2. (a) Bifurcation diagram for the local maxima of x as a function of ω

with F = 2.3. (b) Three out of the five corresponding Lyapunov exponents, dis-
regarding both the smallest and one of the null exponents. The remaining control
parameters are fixed at ε = 0.025, β1 = 0.02, β2 = 1.5, and γ = 1.6.

null exponents. (To analyze a continuous-time system, we discon-
sider a zero exponent and focus on the largest Lyapunov exponent:
positive indicates a chaotic attractor, negative indicates a periodic
attractor, and zero indicates a quasiperiodic attractor.)

As a result of this preliminary numerical analysis, we learn that
decreasing the control parameter results in an interesting pattern
composed of an accumulating sequence of quasiperiodic and chaotic
solutions, interspersed with periodic solutions.

To gain further insights, we should analyze the system using
at least a two-dimensional parameter diagram. Along these lines,
Fig. 3 exhibits a parameter plane diagram for F vs ω for a grid of
800 × 800 cells. The colors of the cells correspond to the range of
the largest Lyapunov exponent values, excluding a null one, indi-
cated in the bar on the right side of the figure. Periodic solutions are
plotted in white, black, and green, quasiperiodic in blue, and chaotic
in yellow and red. This parameter plane uncovers an outstanding
pattern of formation behind the quasiperiodic–chaotic sequence of
the bifurcation diagram shown in Fig. 2(a). Self-similar islands, sur-
rounded by periodic regions, distribute along both parameters F and
ω. Here, we observe the self-similar pattern even within the peri-
odic domains. Green regions trace the compound islands spreading
across the parameter plane, while black wave-like regions delineate
the sequence of islands. Moreover, the narrow black strips between
the white and blue regions indicate smooth transitions between peri-
odic and quasiperiodic states. In this case, these compound islands
predominantly blend both quasiperiodic and chaotic domains. In

FIG. 3. Parameter plane diagram for F vs ω. Periodic solutions are plotted in
white, black and green, quasiperiodic in blue, and chaotic in yellow and red. The
remaining control parameters are fixed at ε = 0.025, β1 = 0.02, β2 = 1.5, and
γ = 1.6.

addition, the set of islands covers the parameter plane, forming
metamorphic tongues, whose pattern of formation resembles the
periodic resonance domains identified in parametric pendulums.3

To investigate the island structures in greater detail, we pro-
vide specific magnifications of the parameter plane. Figure 4(a)
displays an overview of the region outlined by the golden solid-line
box shown in Fig. 3. As mentioned before, the island is composed
of different dynamical domains. Additionally, periodic structures
arise in a recognizable way through the formation of resonance
tongues, as shown in Fig. 4(b), 4cation of the golden dashed-line
box in Fig. 4(a). These familiar structures, denominated Arnold
tongues, are identified in a plethora of systems, from continuous-
time mechanical oscillators28 to discrete-time biological models.38 In
terms of the periodicity, these tongues exhibit both period-adding
and Fibonacci-type sequences.5

Shifting our focus to quasiperiodic domains, we present in
Fig. 4(c) a magnification of the golden dashed-line box shown in
Fig. 3 and in Figs. 4(d)–4(f) successive magnifications of Fig. 4(c).
Surprisingly, the quasiperiodicity, in blue, appears well structured,
manifesting as shrimp-shaped forms, and highly organized for some
portions of the parameter plane, as evidenced in Figs. 4(e) and 4(f).

Shedding some light on quasiperiodic shrimp-shaped domains,
we reevaluate the parameter plane by focusing on the third largest
Lyapunov exponent. In quasiperiodic domains, valuable informa-
tion lies in the third largest exponent, such as torus bifurcation lines
where this exponent is zero. For regions involving only quasiperi-
odic and chaotic attractors with two zero Lyapunov exponents,
we can easily characterize the parameter plane by summing the
three largest Lyapunov exponents. Figure 5(a) shows, with this
new approach, the same portion of the parameter plane depicted
in Fig. 4(e). Chaotic regions are plotted in white, quasiperiodic
domains in black and green, and the torus-doubling bifurcations,
with three zero exponents, are highlighted in blue. In this case, as
observed for the coupled radio-physical generators,21 the quasiperi-
odic shrimps are surrounded by chaos with two zero Lyapunov
exponents. In Fig. 5(b), we provide a magnification of the rectangu-
lar area (golden box) from Fig. 5(a), revealing, similar to the periodic
shrimps, a highly organized sequence of secondary shrimps near the
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FIG. 4. Parameter plane diagrams showing magnified views of selected regions: (a) the solid-line box from Fig. 3, (b) the dashed-line box from Fig. 4(a), (c) the dashed-line
box from Fig. 3, (d) the solid-line box from Fig. 4(c), (e) the solid-line box from Fig. 4(d), and (f) the dashed-line box from 4(d).

legs of the main shrimp. In the periodic case, the shrimps satisfy the
three times self-similar property.5,6 In other words, the largest sec-
ondary shrimps exhibit a period that is three times the period of the
corresponding main shrimps.

For the cross section of the shrimp domain shown with a
dashed line in Fig. 5(a), Figs. 6(a) and 6(b) display for F = 1.72 a
bifurcation diagram of ω and three out of five corresponding Lya-
punov exponents, respectively. The smallest and trivial zero expo-
nents associated with time are not plotted. Chaotic range, besides a
positive exponent in blue, are distinguished by two zero exponents:
one in red and another not plotted. In the quasiperiodic case indi-
cating torus-doubling bifurcations, some points exhibit three zero
exponents: two in blue and red and one not plotted.

Figures 7(a)–7(d) display a complete overview of the torus
attractors belonging to the quasiperiodic shrimp-shaped domains.
Using stroboscopic mapping to collect the data, obtaining points
periodically for T = 2πn/ω, Fig. 7(a) shows for F = 1.72 and
ω = 1.3446 a torus, in blue, and in the background, for F = 1.72
and ω = 1.3435 a chaos-torus in gray. These attractors correspond
to the dashed lines depicted in the bifurcation diagram of Fig.
6(a). Figure 7(b) illustrates a torus-doubling case for F = 1.776 and
ω = 1.343 64, marked with a yellow X symbol in the shrimp of
Fig. 5(b). Figure 7(c) displays a torus-tripling case for F = 1.784 and
ω = 1.343 35, indicated with a yellow cross in the largest secondary
shrimp of Fig. 5(b). In the end, from a magnification of a small part
of these tori in Fig. 7(d), we highlight the torus-doubling and torus-
tripling phenomena, comparing a single torus in blue to a double
torus in red and a triple torus in green.

FIG. 5. (a) Diagram for the sum of the three largest Lyapunov exponents for the
same portion of the parameter plane as in Fig. 4(e). (b) Amagnified view of the box
from Fig. 5(a). Chaotic regions are plotted in white, quasiperiodic domains in black
and green, and torus-doubling bifurcations, with three zero Lyapunov exponents,
in blue.
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FIG. 6. (a) Bifurcation diagram for F = 1.72 following the cross-sectional dashed
line of the shrimp from Fig. 5 (a). (b) Three out of the five corresponding Lyapunov
exponents.

IV. FINAL REMARKS

In this study, we characterized the dynamics of a rotor-
Duffing oscillator in two-dimensional parameter space, consider-
ing the parameters of the excitation function. By using Lyapunov

FIG. 7. Overview of the attractors: (a) Torus in blue for
(ω, F) = (1.3446, 1.72) and chaos-torus in gray for (ω, F) = (1.3435,
1.72). These attractors are indicated by dashed lines in the bifurcation diagram
from Fig. 6(a). (b) Torus-doubling for (ω, F) = (1.343 64, 1.776), indicated with a
yellow x in Fig. 5(b). (c) Torus-tripling for (ω, F) = (1.343 35, 1.784), indicated with
a yellow cross in Fig. 5(b). (d) Magnified comparison of the attractors showing
the doubling, in red, and tripling, in green, of the torus, in blue.

exponent evaluations, we identified a set of self-similar islands
exhibiting an interwoven pattern of chaotic, quasiperiodic, and peri-
odic regions. These islands present a distinguished accumulation
arrangement, termed here as metamorphic tongues. Moreover, we
observed Arnold tongues as periodic structures, forming boundaries
between quasiperiodic and chaotic regions for certain parts of the
islands.

Most remarkably, we identified quasiperiodic shrimp-shaped
domains, a type of structure typically associated with periodic solu-
tions. These quasiperiodic shrimps exhibit interesting properties,
such as torus-doubling and torus-tripling, corresponding, in the
periodic case, to period-doubling and period-three-times attractors,
respectively.

To conclude, the findings expand our understanding of non-
linear dynamical behaviors for coupled systems, highlighting the
importance of quasiperiodic solutions due to intrinsically coupling
interactions.
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