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Abstract 

A technical item operates under a maintenance strategy that calls 
for preventive repair actions every T units of time and minimal re­
pair actions whenever a failure occlUS between the scheduled repairs. 
Preventive repair actions produce random age reductions of size not 
greater than T. Explicit mathematical expressions for typical relia­
bility and maintainability characteristics are derived and important 
related optimization problems are presented. 
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1 Introduction 
Since the pioneering paper of Barlow and Hunter (1960), the study of main­
tenance strategies for technical items has enjoyed a great deal of interest 
and space in the literature and models have been developed to accomodate 
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different forms of modeling the item's degradation along time, as well as the 
frequency and effect of repair interventions. In particular, models for ma.in­
tenance strategies involving both complete and minimal repair actions, are 
a.mong the ones which received a grea.t deal of attention in the late 1970's 
and 1980's. We refer to Barlow et al. (1965), Gertsba.kh (1977), Block et 
al. (1990), (other referenc.es), as well as the references therein, for a partial 
account of these developments. 

More recently, however, attention has shifted to maintenance strategies 
involving repa.ir actions that can result in age reductions that can vary ran­
domly between the extreme results of minimal and complete repa.ir, that is, no 
reduction and full reduction (recall that while minimal repair actions merely 
put a failed item back in operation without affecting its current age a.nd 
failure rate, complete repair actions completely recover the item's functional 
ability, restoring it to a. ." as good as new" condition). These repair actions, 
sometimes called "general" or "imperfect" repairs, have been treated by Gu 
(1993 and 1994). Similar actions appear also in Guo and Love (1994) and 
Dimitrov et al. (1999) who analyze the effect of proportional age reducing 
repairs in a reliability context. 

In this report we consider the operation of a technical item under a main­
tenance strategy in which preventive ma.intenance check points (pmcp's) a.re 
scheduled after every T units of time. At ea.ch pmcp a repair action will in­
stantly reduce the current age of the item by a random a.mount Z, 0 ~ Z ~ T, 
that is, an imperfect repair action that cannot make the item any better that 

it was immediately after the previous preventive repair. Between consecu­
tive pmcp's, failures of the item a.re instantly removed by minimal repa.ir 
actions, that is, repair procedures that merely put the item back to work, 
without affecting its current age and failure rate. In this context we de­
velop a stochastic model to describe the maintenance intervention times and 
establish explicit mathematical expressions for the system's reliability and 
maintainability characteristics of greatest interest. This will be done in sec­
tion 2. The constructive approach used is ea.c1y to deal with and is sufficiently 

general to fit many interesting structure settings. In section 3 we give a brief 
description of some related optimization problems that are currently under 
investigation and will be the object of forthcomming articles. , 
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2 Stochastic Model 

A technical item of age x0 ~ 0 starts operating at time O under the following 
conditions: 

• preventive maintenance check points (pmcp's) are scheduled after every 
T units of time; 

• at then-th pmcp, n ~ 1, a repair action of cost c,,(n) will be executed 
which will instantly and independently reduce the current age of the 
item by a random amount Zn such that P{O $Zn$ T} = l; 

• between pmcp's, a failure of the item at age u will be instantly removed 
by minimal repair action of cost c,,.(u). 

We will refer to the maintenance procedure just described as a mixture 
of minimal and imperfect preventive repairs or, briefly, an MMIPR(xo, T) 
strategy. The parameters x0 and T indicate, respectively, the item's initial 
age and cycle length, that is, the time interval between consecutive pmcp's. 
With this provision, the cases in which a new item (x0 = 0) or an old one 
(x0 > 0), is put in operation at time 0, a.re treated simultaneously. The time 
interval ( (n - l)T, nT], n ~ 1, will be refered to as then-th cycle. 

We assume, throughout, that the item's original life distribution F is a 
continuous function such that F(O) = 0 and F(x) < 1 for all x ~ 0, and 
denote its corresponding survival distribution by F = l - F. 

We shall also assume that the independent non-negative random variables 
Yn = T- Z,., n ~ 1, have a common distribution function 

G(y,T) = P{Yn $ y}, 0 $ y $ T, 

depending on the parameter T, such that 

y 
G(y,T) = G(T,l), O $ y $ T. 

Recall that for an item with original life distribution F, 

F(x + r) 
F(rlx) = 1- F(x) , r ~ O._ 

(1) 

(2) 

(3) 

describes both its residual life distribution at age x and its ,life distribution 
after being recovered by an age reducing repair action when failing at age y, 
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y ~ x, at any time. In the later case, z = y- x is the age reduction achieved. 
Repair is called minimal if z = 0. Furthermore, if after start operating with 
age :r a.t time t, all its failures are instantly removed by minimal repairs at 
times t ~ Ti ~ T2 ~ ... ,the counting process {N(t): n ~ l} corrresponding 
to the sequence {Tn - t : n ~ 1} is a non-stationary Poisson process with 
mean function 

M(s) = E[N(s)] = -log.F(slx) = A(x + s) - A(x), s ~ 0, (4) 

where 
A(x) = 1"' F(du)P- 1(u) = -log.F(x), x ~ O. (5) 

is the cumulative hazard function of F. If Fis absolutely continuous with 
probability density function f, its failure rate function >. = f P-1 is also well 
defined and 

A(x) = fa"' du>.(u), (6) 

M( s) gives us then the average number of minimal repair actions in the time 
interval [t, t + s). 

The relevant reliability and maintenance characteristics of a mixture of 
minimal and imperfect preventive repairs maintenance procedure are sum­
marized in the following theorem. 

Theorem 1 Under an MM/PR(zo,T) strategy: 

(i) The item's age at time t, t ~ 0, is given by 

At= Yo+ Yi+½+ ... + Yn, + (t - ntT), (7) 

where Yo= xo and n, = [}] denotes the integer part off• Futhermore, 
the total age reduction up to time t, t ~ 0, provided by the maintenance 
strategy is given by 

(8) 

where Zo = 0. 

{ii} If F is absolutely continuous, 

(9) 
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gives us the maintained item's conditional failu.re rate at time t, that 
is, the limit 

F~ ¼P{R, ~ hjA, =a}, 

where Rt denotes the time to the first repair action after t. 

(iii) If 11,. denotes the number of minimal repair actions in the n - th cycle, 
then 

E[v,.jA(n-t)T] = foT F( dulA(n-l)T )P-1 
( u!A(n-l)T) 

= A(A(n-l)T + T)- A(A(n-l)T), (10) 

(iu) If T,.,1 denotes the first repair time in the n - th cycle and (n - l)T ~ 
t < nT, then 

P{T,.,1 > t!A(n-l)T} = 
= exp{-[A(A(n-l)T + t- (n - l)T)-A(A(n-t)T)]}. (11) · 

On the other hand, if t ~ nT, we have 

P{T,.,1 > tjA(n-l)T} = 0. (12) 

(v) If C,.(x0 , T) denotes the item's total maintenance cost in the n - th 
cycle, then 

E[C,.(xo, T)IA(n-t)T] = ep(n) + 

+ LT F(dulAcn-l)T)P-1(ulAc .. -1)T)Cm(Ac .. -1)T + u). (13) 

(vi) If C(x0 , T, W) denotes the item's total maintenance cost over an arbi­
trary time interval (0, W], then 

nw 
E[C(xo, T, W)IA, : t :5: W] = LC,+ 

i=O 

+ foW-nwT F(dulA..wT)P-l(ulA..wT)Cm(A..wT + u), (14) 

where nw = [~], Co= 0 and C; = E[C;(xo, T)IA(i-t)T] if i ~ 1. 
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Proof: Since between pmcp's minimal repairs will keep item ageing as if 
no failures had occurred, and at the n-th such point an age reduction of Zn 
time units is achieved, it is clear that 

and 

At= A(n-l)T + t - (n - l)T, if (n - l)T St< nT, (15) 

AnT = A(n-l)T + T- Zn 

= Acn-l)T + Yn 
= Yo + ... + Yn, n ~ 1, (16) 

provided that Ao = Yo = xo. Also, letting Zo = 0, 

Dt = Zo + Z1 ... + Zn-1, if (n - l)T :St< nT. (17) 

From (15),(16) and (17), (7) and (8) follow. Typical trajectories of the item's 
aging process {At : t ~ O}, and of the age reduction process {Dt : t ~ O}, 
are pictured in Figures 1 and 2. 

To prove (ii), note that if (n - l)T St < nT and At = a, the time, R,, 
to the first repair action after t is such that 

P{R, > hjA, =a}= l(o,nT-t)(h)F(hla), h ~ 0. 

P ...... y~( 
I 

• -
x. -------~ 

0 T 2T 3T 

Fig. 1. Aging process of an item under a mixed minimal 
and imperfect preventive repairs strategy. 
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D, 

• z, ;-----
Z,! 

0 T 'ti' 3T • 

Fig, 2. Age reduction process of an item under a mixed minimal 
and imperfect preventive repairs strategy. 

Consequently, as h \i 0, 

~P{R < hlA = } = ~ F(a+h)-F(a) '() 
h 1 _ t a h F(a) ➔ "' a . 

Equation (9) follows since At+ Dt = z0 + t for all t ~ 0. 
To prove (iii), recall that if A(n-l)T == a and 

(n - l)T < T,.,1 < T .. ,2 < ... 

denote the minimal repair action times in the n-th cycle, 

00 

N,.(s) = L lco,.J(T,.,i - (n - l)T), 0 < s ~ T, 
i=l 

behaves like a non-stationary Poisson process with mean function 

M,.(s) = E[N,.(s)] = 1• F(dula)F-1(ula) = A(a + s) -A(a). ' 

Consequently, the conditional average number of minimal repair actions in 

the time interval ((n - l)T, nT) is given by M,.(T), as stated in (10). 
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The result in (iv) follows easily, since 

P{Tn,1 > tlA(n-l)T = a} = P{Nn(t - (n - l)T) = OIA(-t)T = a} 
= exp{-[A(a + t - (n - l)T) -A(a)]} 

if (n - l)T ~ t < nT, and 

P{Tn,1 > tlA(n-l)T = a} = 0 

if t ~ nT. 
To prove (v), note that if A(n-t)T = a, 

00 

Cn(Xa, T) = ep(n) + L l(o,T](Tn,i - (n - l)T) X c,,,(a + Tn,i - (n - l)T) 
i=l 

Equation (13) now follows by taking conditional expectation. 
To prove (vi), note that if (n - l)T < W ~ nT and A;T = a;, for 

i = O, 1, ... , n - 1 , with ao = :z:o, 

with fo = O and 

e; = C,(xo, T) = c,,(i} + 1T N,(ds)c,,,(a,-1 + s) , 

for i = 1, ... , n -1. Equation (14) now follows by ta.lcing conditional expec­
tation since 

E[C(xa, T, W)IAt: t ~ W] = E[C(xa, T, W)IAa, AT, ... ' Acn-l)T] 

and 
E[C,(xo, T)IAo, AT, ... , A(n-l)T] = E[C;(xo, T)IA(i-I)T] , 

for i = 1, . .. ,n -1. 

□ 

Theorem 1 gives us constructive relationships between model components 
that specify important conditional sistem's reliability and maintainability 
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characteristics. Unconditional averages of these characteristics can now be 
easily obtained by ma.king use of the fact that E[X] = E[E[XIY]]. The 
results a.re collected in the corollary below. As usual, then-fold convolution 
of the cumulative distribution function G will be denoted by G(n). 

Corollary 1 Under an MM IPR( x0 , T) strategy: 

(i) The item's expected age at time t and the expected total age reduction 
up to time t, t ~ 0, are given by 

E(At] = Xo + t - ntT fo1 
daG(a, 1) 

and 
E[Dt] = ntT fo1 

daG(a, 1), 

respectively, where n, = l:rl-

(18) 

{19) 

(ii) If F is absolutely continuous, the maintained item's unconditional fail­
ure rate, that is, the limit 

is given by 

where G(0l = 110,oo)• This reduces to 

p(t) = A(x0 + t) 

if O ~ t < T, and to 

if (n - I)T ~ t < nT, with n > l. 
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{iii} The expected number of minimal repairs in the ·n-th cycle is given by 

E[vn] = fo00 

a<n-l)(da - Xo, T)[A(a + T) -A(a)] . , (23) 

This reduces to 
E[vn] = A(xo + T) -A(xo) (24) 

if n = 1, and to 

E[vn] = fo 1 

G(dx1, 1) .. -11 
G(dxn-i, l)x 

0 0 . 

n-1 n-1 
x[A(xo + T(l + E xi))-A(xo +TE Xi)] (25) 

i=l i=l 
othenoiae. 

(iv) The expected time to first repair in the n-th cycle is given by 

µ .. = foT du fo00 

o(n-l)(Ja - Xo, T)exp{-[A(a + u) - A(a)]} . (26) 

This reduces to 

µ1 = T fo1 
ds exp{-[A(xo + sT) - A(xo)]} {27) 

if n = 1, and to 

n-1 n-1 
xexp{-[A(xo + T(s + L x;)) - A(xo +TL x;)]} {28) 

otherwise. 

(v) If Fis absolutely continuous, the item's expected total maintenance cost 
in the n-th cycle is given by · 

E[Cn(xo, T)] = ep(n) + kT du fo00 

a<n-I)(da - x0, T)em(a + u)A(a + u). · 

· (29) 



This reduces to 

if n = 1, and to 

n-1 n-1 

xc,,.(xo + T(s + L x;)).X(xo + T(s + Ex;)) (31) 
i=l 

otherwise. 

(vi) If Fis absolutely continuous, the item's expected total maintenance cost 

over an arbitrary time interval (0, W] is given by 

nw 

E[C(xo, T, W)] = LC; + 
i=O 

(32) 

where nw = [':] and C. = E[Ci], i ~ 0, with C; as defined in {v}. Also 
as in (v), the second term in {92) reduces to 

(33) 

if nw = 0, and to 

{W-nwT f1 (1 
Jo du Jo G(dx1 , 1) .. · Jo G(dxn-1, 1) X 

' nw nw 

xc,,.(x0 + u + TEx,).X(xo + u + TEx;) (34) 
~1 ~1 

otherwise. 
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Proof: From (2) and (7), 

E[A,] = fo
00 

da P{A, > a} 

= fo00 

da c;(n,)(a - (t - n,T) - Xo, T) 

= x0 + (t - n,T) + n, kT da G(a, T) 

= xo + (t - n,T) + n,T fo1 

da G(a, 1) 

= Xo + t - n,T foT da G( a, 1) , 

which proves (18). Equation (19) now follows from (18) and the fact that 
A, + Dt = xo + t for all t ~ O. This proves (i). 

To prove (ii), observe tha.t equations (20), (21) and (22) follow immedi­
atelly from (2), (9) and (7) since 

P{R, ~ h} = fo
00 

P{A, E da}P{R, ~ hlA, = a} 

= fo
00 

a<n,)(da - Xo - (t - n,T), T)P{Rt ~ hlA, =a}, 

and G<0J = 110,00)· 
Similar arguments prove the other statements in the corollary. Equations 

(23), (24) and (25) follow immediatelly from (2), (10) and (7) since 

E(vn] = E[E[vnlA(n-l)T]) 

= loo P{Acn-l)T E da}[A(a + T) -A(a)] 

= loo a(n-t)(da - xa, T)[A(a + T)-A(a)]' 

which proves (iii). 
Equations {26), (27) and (28) follow immediatelly from (2), (11), (12) 

and (7) since 

µ,. = fo
00 

duP{T,.,1 - (n - l)T > u} 

= fo
00 

du E(P{T,.,1 > U + (n - l)TIAcn-l)T}] 

= foT du fo
00 

a<n-l)(da - zo, T)P{T,.,1 > U + (n - l)TIA(n-l)T = a} 1 
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which proves (iv). 
Equations (29), (30) and (31) follow immediatelly from (2)~ (13), (7) and 

the basic fact that 

l:,; F(dula)F-1(ula) = l:,; du,\(a + u), 

if F is absolutely continuous, since 

E[Cn(xo, T)] = fo00 

a<n-l)(da - Xo, T)E[Cn(Xo, T)IA(•-l)T = a] 

= ep(n) + fa00 

a(n-l)(da - Xo, T) LT du c.,.(a + u),\(a + u) 
1 

which proves (v). 
Finally, the same argument used to prove (v) can be used to establish (32), 

(33) and (34) from (2), (14), (7) and the basic fact stated above, proving (vi). 
D 

3 Related Optimization Problems 

Several optimization problems of interest, related to the operation of an 
item under an MM IPR( x0 , T), can be studied under the model and the 
results developed. in the previous section. Some of them are currently under 
inveistiga.tion a.nd their re11ults will be the object of future articles. We shall, 

however, briefly describe them for completion. 

A. Optimization of the expected total maintenance cost in finite 
horizon. Under an MM IPR( x0 , T) strategy, the question of which cycle 
length minimizes the item's expected total maintenance cost over an arbitrary 
but fixed finite time interval, is of great interest. Mathematically, the problem 
is that of finding the values T* of T for which 

E[C(xo, T*, W)] = inf E[C(xo, T, W)] , 
T>O 

where E[C(xo, T, W)] is given by (32) In certain settings, constraints on the 
total maintenance costs for ea.ch cycle are also imposed. In this case one is 
interested in solutions such that 

E[Cn(Xo, T*)] ::; Cn0, n = 1, 2, ... , 

where { C..o : n ~ 1} a.re given cycle cost limits. 
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B. Maximization of the mission time W. Under an MMIPR(x0 ,T) 
strategy, the equation 

E[C(x0, T, W)J = L 

specifies the mission time W as a.n implicit function of the item's initial age, 
x0 , the cycle length, T, and the expected total maintenance cost, L. The 
problem of interest consists of finding the values T• of T for which 

w• = W(x0 , T., L) = sup W(xo, T, L). 
T>O 

D 

C. The warranty cost optimization problem. In certain settings, the 
life of a product under warranty can also be viewed as a technical item 
under an MM IP R(x0 , T) strategy, e.g. Blischke and Murthy (1996). In this 
context, the mission time Wis interpreted as the product's warranty period, 
x 0 and T are given product characteristics, and the question of interest is 
which warranty period W will provide the best competitive position to the 
product in the ma.rketpla.ce. A precise ma.thema.tica.l fonnula.tion to this 
question can be given if we agree upon the use of the expected total warranty 
cost as a measure competitive position. With this provision the problem 
reduces to that of minimizing the expected total warranty cost. On behalf of 
the consumer, a constraint is usually imposed by requiring that the expected 
total age reduction at the end of the warranty period be no less than a given 
quantity. In summary, the problem of interest consists of finding the values 
w• of W for which 

E[C(xo, T, W-)] = inf E[C(xo, T, W)) , 
W>O 

subject to the condition that 

E[Dw•] ~ D. 

□ 

D. Optimization of the expected total maintenance cost in random 
horizon. Under an MM IPR( x0 , T) strategy, Gu ( 1993, 1994) considered 
the problem of finding the cycle length that minimizes the expected total 
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maintenance cost up to preventive maintenance time such that the average 
number of failures in the next cycle becomes large. Letting 

n 

Kn(xo, T) = L C;(xo, T) , n ~ 1 , 
j=l 

the problem is that of finding the values T* of T for which 

KN(xo, T*) = inf KN(xo, T) , 
T>O 

where 
N = inf{n ~ 0: E[vn+1] ~ C} . 

A variety of interesting constrained optimization problems such this can be 
formulated by specifying different criteria. For instance, a different and 
appealing one would be stopping at a preventive maintenance time if the 
expected total maintenance cost in the next cycle becomes large, that is, 
defining N as 

N = inf{n ~ 0: E[Cn+i(xo, T)] ~ C. 

0 

The solution to the optimization problems described above can also be 
of interest in special settings. Having general expressions for the mainte­
nance characteristics of an item operating under an MM IPR( xo, T) strat­
egy, one can explicitly write them down for any particular choice of the basic 
probability distributions and carry on the investigation under the apropri­
ate conditions. One particular setting has been investigated by the authors 
in Dimitrov et al. (2000), who considered the problem of determining the 
cycle length that minimizes the expected total maintenance cost over an ar­
bitrary but fixed finite time interval, for items whose original life distribution 
is Weibull with shape parameter a > 1 and scale parameter µ > 0, in the 
special case in which the age increments Yn, n ~ 1, are proportional to the 
cycle length T, that is, 

{ 
0 if y < aT 

G(y, T) = 1 otherwise, 

for some fixed a E {O, 1), and the cost functions c,,(n) and c.n(u) increase with 
n and u , respectively. In this case: 

a 1"'o+W E(C(xo, T, W)] = - c.n(s)sa-1ds 
µa zo 
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k · a: 1~+(n-1)6T+T 
E[C(xo, T, W)] = L (c,,(n) +-;; em(s)s0

-
1ds)+ 

n=l µ zo+(n-l)ST 

a 1zo+k6T+W-JrT 1 +- c.,.(s)s 0
- du, 

µ 0 ro+k6T 

if kT $ W < (k + l)T , k ~ 1 , and, if a > 1 , it can be shown that there 
exists an integer k ~ 0 such that 

inf E[C(xo, T, W)] = E[C(xo, Wk, W)], 
T>O 

that is, the optimal cycle length is of the form T• = f. , where k* is 
a non-negative integer such that E[C(zo, f., W)] = min{E[C(xo, ~, W)] : 
k = 0, 1, ... } . 
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