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Abstract

Recently V. H. Lopez Solis and I. Shestakov [9] solved an old problem by N.Jacobson
[2] on describing of unital alternative algebras containing the matrix 2 X 2 algebra
M, as a unital subalgebra. Here we give another description of M,-algebras via the
6-dimensional alternative superalgebra B(4, 2) and an auxiliar Z,-graded algebra I'. It
occurs that the category of alternative M,-algebras is isomorphic to the category of I
-algebras. We describe also the free I'-algebras and construct their bases.

Keywords Alternative algebra - Coordinatization theorem - Category of M,
-algebras - Jordan superalgebra - Grassmanian

1 Introduction

The classical Wedderburn Coordinatization Theorem says that if a unital associative
algebra A contains a matrix algebra M, (F) over a field F with the same identity ele-
ment then it is itself a matrix algebra, A = M, (D), “coordinated” by D. Generaliza-
tions and analogues of this theorem were proved for various classes of algebras and
superalgebras [2, 4, 7, 8, 10-12, 14, 15]. The common content of all these results is
that if an algebra (or superalgebra) contains a certain subalgebra (matrix algebra,
octonions, Albert algebra) with the same unit then the algebra itself has the same
structure, but not over the basic field rather over a certain algebra that “coordina-
tizes” it. The Coordinatization Theorems play important role in structure theories,
especially in classification theorems, and also in the representation theory, since
quite often an algebra A coordinated by D is Morita equivalent to D, though they
could belong to different classes (for instance, Jordan algebras are coordinated by
associative and alternative algebras).
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I. Kaplansky [4] proved an analogue of Wedderburn’s theorem for alternative
algebras containing the Cayley algebra. He showed that if A is an alternative algebra
with identity element 1 which contains a subalgebra B isomorphic to a Cayley alge-
bra and if 1 is contained in B, then A is isomorphic to the Kronecker product BQ T,
where T is the center of A.

The Wedderburn coordinatization theorem in the case n > 3 admits a generaliza-
tion for alternative algebras, since every alternative algebra A which contains a sub-
algebra M, (F) (n > 3) with the same identity element is associative (see [15, Corol-
lary 11, Chapter 2]). The result is not true for n = 2, the split Cayley algebra and
its 6-dimensional subalgebra are counterexamples. The problem of description of
alternative algebras containing M,(F) or, more generally, a generalized quaternion
algebra H with the same identity element was posed by Jacobson [2].

In [9], this problem was solved for the split case H = M,(F). The correspond-
ing M, (F)-coordinatization in [9] involves two ingredients: an associative algebra
D and a commutative D-bimodule V (that is, V is annihilated by any commutator
of elements of D), on which a skew-symmetric mapping is defined with values in
the center of D, satisfying Pliicker relations. More exactly, A = M,(D) @ V?, with a
properly defined multiplication.

Here we give another characterization of M,(F)-algebras, based on the 6-dimen-
sional simple alternative superalgebra B = B(4,2) [17] and an auxiliar Z,-graded
algebra I': a unital alternative algebra A is an M,(F)-algebra if and only if Aisa I’
-envelope of the superalgebra B: A = Iy ® By + I'} @ B,. Moreover, the category
of alternative M,-algebras is isomorphic to the category of I'-algebras. We describe
the free I'-algebras and construct their bases. It occurs that these algebras are closely
related to coordinate algebras of grassmannians Gr(2, n).

Throughout this paper the ground field F is of arbitrary characteristic.

2 Definitions, examples, and preliminary results

Let A be a composition algebra (see [3, 6, 15, 18]). Recall that A is a unital alterna-
tive algebra, it has an involution a — a such that the trace t(a) = a + a and norm
n(a) = aaliein F.

An alternative bimodule V over a composition algebra A is called a Cayley bimod-
ule if it satisfies the relation

av = va, (1)

where a € A, v € V, and a — a is the canonical involution in A.

Typical examples of composition algebras are the algebras of (generalized)
quaternions H and octonions O (or a Cayley algebra) with symplectic involutions.
Recall that O = H @ vH, with the product defined by

a-b=ab, a-vb=vab), vb-a=v(ab), va-vb = (ba)>, 2)

where a,b € H, 0 #v* € F, a — ais the symplectic involution in H.
ymp
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The subspace vH C O is invariant under multiplication by elements of H and it
gives an example of a Cayley bimodule over H. If H is a division algebra then vH is
irreducible, otherwise H = M, (F) and

VH = (veyy, —veyy) @ (—veyy, veyy),

where M, (F)-bimodules (ve,,, —ve,,) and (—ve,;,ve;;) are both isomorphic to the
2-dimensional Cayley bimodule Cay = F - m; + F - m,, with the action of M,(F)
given by

e,-j-mkzéikmj, m-a=a-m, 3)

where a € M,(F), m € Cay, i,j,k € {1,2}and a — a is the symplectic involution in
M, (F). In the last case the algebra O = M, (F) @ vM,(F) is called the split octonion
algebra.

Let us call a unital alternative algebra A an M,-algebra if there exists a homomor-
phism of unital algebras ¢ : M, — A, where M, = M,(F).

Examples of M, -algebras:

1. A associative, AD M, 31, = A=M,(B) =M, ® B, Bassociative.
. O split octonion algebra, O = M, @ (M,)v.
3. §=M,(F)@® Cay C O, Cay* = 0, the split null extension of M, by bimodule Cay

4. G(B4,2)) =G, ® M, + G, @ Cay, char F = 3, the Grassmann envelope of the
simple alternative superalgebra B(4,2) = M, @ Cay (see [17]), with the following
multiplication in Cay:

2 _ 2 _ _ _
nmy = ey, My = —€yp, MMy = =€y, MyMmy = €.

Remark 1 The odd product in B(4, 2) in [17] has different sign; one can get the old
product by the following change of the basis:

€] © —€1. €1y > =€y, Ny < —M,.

Any M,-algebra A may be considered as a unital alternative M,-bimodule. The
structure of such bimodules is given by the following result:

Theorem 1 [3, 17] Let V be a unital alternative My-bimodule. Then V is completely
reducible, moreover,V =V, @ V., where V is an associative M,-bimodule and is a
direct some of regular bimodules Reg M,, while V., is a Cayley M,-bimodule which is
a direct sum of irreducible Cayley bimodules of type Cay .

In particular, any M,-algebra A may be written as A = A, @ A,. It was proved in
[9] that

AA, +AA, CA,  AA, CA, AA, CA,.
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That is, A is a Z,-graded algebra. We have A, = (Reg M,)", A, = (Cay )". Moreo-
ver, the subalgebra A, is associative [9].

The M, (F)-coordinatization in [9] involves two ingredients: an alternative M,(F)
-algebra A is “coordinated” by an associative algebra D and by a commutative
D-bimodule V (that is, V is annihilated by any commutator of elements of D), on
which a skew-symmetric form is defined with values in the center of D, satisfying
Pliicker relations. More exactly,

A=MyD)® V2,

with a properly defined multiplication.

In more details, let D be an associative unital algebra and V be a left D-mod-
ule such that [D, D] annihilates V. Clearly, in this case V has a structure of a com-
mutative D-bimodule with v-a=a-v, vE€ V, a € D. Assume that there exists a
D-bilinear skew-symmetric mapping {,) : V> — D such that (V, V) C Z(D) and for
any u,v,w € V

{u, vIw + (v, whu + (w,v)u = 0. 4)
Consider A = M,(D) ® V2 Let X,YeA, X= X, +&x,y), Y=Y,+(z1), where
X,, Y, € M,(D) and (x,y), (z,t) € V2. Define a product in A by formula:

_ —(.X,l> _<y’t> *
XY_XaYa+<<x,Z> m@>+@ﬁ&+mmnu

<ab>* <d —b)
where = .
cd —c a

Theorem 2 [9] The algebra A with the product defined above is an alternative unital
algebra containing M,(F) with the same identity element. Conversely, every unital
alternative algebra that contains the matrix algebra M,(F) with the same identity
element has this form.

3 The new construction

Consider the vector space direct sum I' =D @ V, where D and V are taken from
theorem 2, and define a multiplication on it as follows

(a+ u)b+v) = (ab+ (u,v)) + (av + bu).

Then I' becomes a Z,-graded algebra with Iy = D, I'| = V, that satisfied the follow-
ing conditions:

(i) [T, isaunital associative algebra, [T, I'|] = (I, I, I') =0,
Gi) I?CZ(I),
(i) xy+yx=0,x,ye I,
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iv) @y)z+Ox+ @)y =0, x,y,z € I}.

Theorem 3 The “I'-envelope” I'(B(4,2)) =1, ® M, + I'} ® Cay is isomorphic to
the algebra M,(I}) @ F12 from theorem 2. In particular, an algebra A is an alter-
native M,-algebra if and only if A = I'(B(4,2)) for a certain Z,-graded algebra I’
satisfying the above conditions.

Remark 2 Note that the superalgebra B(4, 2) is alternative only in char F = 3 case,
but the theorem holds in any characteristic.

Proof of the theorem. It is clear that I}y ® M, = M,(I})). Let us prove that the
mapping
P X+xy) = X+xQ@m +yQ@m,, X € My(Iy), x,y €I,

is an isomorphism of M,([}) @ Flz and I'(B(4,2)). Let X = (Z; dz >,dl:]. € I
Consider
PX - (x,y)) =@(xd,| + ydy, xd,; + ydy))
=(xd,; +ydy)) @ m; + (xd,, + yd,,) @ m,.
On the other hand,

PX)P(x,y) =Xx @ my +y @ my) = () d; ® e)(x@m; +y @ n)
ij
=(d|;x + dyy) @ m; + (dox + dpyy) @ m,.

Since [l I71=0, we have X - (x,y)) = p(X)p(x, y). Similarly,
@((x,y) - X) = @(x,y)p(X). Let now z,¢ € I'|, consider

_ () =\ _ (= =)
P 2)z 1) “”( (62 (3.2) >‘< (62 (3.2) >

On the other hand,

P, NP ) =xQ@m +yQ@n)(z @ m, +t Q@ m,)
=(x,2) @ €y — (x,1) @ €11 + (¥, 2)ex, — (1, 1) @ €y

=<—<x,r> — () >
2y (2
This proves the theorem. O

Let us consider the examples of M,-algebras from section 2 and determine the
structure of the corresponding algebra I' in every case.
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1. Aassociative, A2 M, > 1, > A = M,(B) 2 M, ® B, Bassociative. In this case
Ir=rI,=8B.

2. O split octonion algebra, O = M, @ (M,)v. Here I' = B(1, 2), the 3-dimensional
simple superalgebra from [17] which is alternative in characteristic 3 case.
B(1,2),=F, B(1,2); = Fx+ Fy, x> =y =0,xy = —yx = 1.

3. S=M,(F)®Cay CO, Cay2 =0, the split null extension of M, by bimod-
ule Cay. In this case I' = F + Fx, x2 =0, is the 2-dimensional algebra with
Iy=F, T, =Fx

4. G(B4,2)) =G, Q@ M, + G, @ Cay, char F = 3, the Grassmann envelope of the
simple alternative superalgebra B(4, 2). Here I' = G since the Grassmann algebra
G satisfies the conditions for I" in the case of characteristic 3.

4 Tensor algebras of bimodules and free / -algebras

Recall the definition of a tensor algebra of bimodule (see [5]). Let A be an alge-
bra in a variety M and let V be an M-bimodule over A. Consider the free M
-algebra F,[A @ V] and let I be the ideal of this algebra generated by the set
{faxb—ab,axv—a-v,vxa—v-ala,b €A, veV}, where % denotes the mul-
tiplication in F',,[A @ V] and a - v, v - a denote the action of A on V. Then the quo-
tient algebra F([A @ V]/I is called the tensor algebra of the A-bimodule V.

By the standard arguments, one can prove the following universal property of ten-
sor algebra.

Proposition 1 Let B M and let ¢ : A - B be a homomorphism of algebras.
Then B has a natural structure of an A-bimodule. Now, for any homomorphism
of A-bimodules v .V — B there exists a unique homomorphism of algebras
¥ . FylA® V] — Bsuch that {(a) = @(a), y(v) = y(v) foranya € A, v € V.

In particular, the tensor algebra M,[V] of an alternative M,-bimodule V plays a
role of a free object in the category of alternative M,-algebras: for any M,-algebra B,
any homomorphism of M,-bimodules ¢ : V — B is uniquely extended to an algebra
homomorphism @ : M,[V] — B.

Let us call a Z,-graded algebra satisfying conditions (i)—(iv) of section 3 a I’
-algebra. We want to prove

Theorem 4 The category of alternative My-algebras is isomorphic to the category of
I-algebras.

Proof There is a natural functor from the category of I'-algebras to the category

of M,-algebras: F : I' - I'(B(4,2)), which sends a morphism of I-algebras

@ : I' > I'"to the morphism F(¢) : I'(B(4,2)) — I''(B(4,2)) identical on B(4, 2).
It is clear from the proof of theorem 3 that this functor is bijective on objects:

every My-algebra A = M, (D) @ V? defines uniquely I'y = D and I', = V. It remains
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to show that any morphism ¢ : I'(B(4,2)) - I'"(B(4,2)) is induced by a mor-
phism y : I' - I'" such that ¢ = F(y). Denote A = I'(B(4,2)), A’ = I''(B(4,2)).
Since ¢ is identical on M,, it is a homomorphism of M,-bimodules; in particular,
0(A,) = p(My(Iy)) C AL = My(I) and @(A,) = o(I'} ® Cay) C (A), = I'| ® Cay.
It is well known that a homomorphism of matrix algebras is induced by a homomor-
phism of their coordinates, hence there exists a homomorphism ys, : Iy — I}y which
induces @/, .

Now, fix 0#y el Let
ey@m)=a@m +Qmy, p(y @m,) =AQm; + um, for some
a,B, A, u€ Fl’. We have

a@m+pQm =p(y @m) = (1 Qe ))(y ® m))
=(1®e;Dp(y @ m)) =a @ my,
which implies § = 0. Similarly, A = 0. Futhermore,
U my =p(y @ m,) = @((1 @ e,)(y @ my))
=(1Qep)ply m)) =a@m,,

which implies a = u. Therefore, p(y ® Cay) = a ® Cay, and we put y,(y) = a. One
can easily check that w =y, +y, : I' - I'" is a homomorphism of algebras such
that F(y) = @. O

Corollary 1 Let I'[X,, X,] be the free I'-algebra on sets X, and X, of even and odd
generators. Then I'[X,, X,1(B(4,2)) = M,[V], where V = Reg™o @ Cay#X‘.

In view of the Corollary, it seems important to determine the structure of free I’
-algebras.

Let V =F" be an n-dimensional vector space over F and F[Gr(2, V)] be
the coordinate algebra of the Grassmannian Gr(2,n) = Gr(2,V). Recall that
F[Gr(2,V)] = F[V"?]/P, where P is the ideal generated by the double Pliicker
relations

WUAVIWAD+UAWEZAV)+FUAZDVAW), u,v,w,z € V.

Furthermore, consider the tensor product F[Gr(2,V)]® V which has a natu-
ral structure of F[Gr(2, V)]-module. Denote by F[Gr(2,V)], the quotient mod-
ule (F[Gr(2,V)] ® V)/I where I is the F[Gr(2, V)]-submodule generated by the
ordirnary Pliicker relations

UAVIQWH+OVAWQu+ WAL RV, u,v,w V.
Define multiplication in F[Gr(2, V)], with results in F[Gr(2, V)] by setting
@@ubVv)=aburv)®1,
where a,b € F[Gr(2,V)], u,v € V. The product is defined correctly, since
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(UAVIQWH+H (VAW QRu+ WAL RV)(a®z) =
al((UAVIWAD+ VAW A+ WAU)(VAZ)®1=0.

Theorem 5 The Z,-graded algebra I'(#;V] = F[Gr(2,V)] + F[Gr(2, V)], is a free I’
-algebra generated by the space of odd generators V.

Proof In fact, it is easy to check that the unital algebra I'[@;V] satisfies conditions
(1)—(iv) defining I'-algebras, and is generated by the space V. Let I' = I'; + I', be a
I'-algebra and ¢ : V — I a linear mapping. For v € V denote by ¥ its image in I.
The mapping ¢ is extended to a linear mapping VA? — I}, u Av + iiv and further
to an algebra homomorphism F[V*?] — I,. In view of condition (iv) the ordinary
Pliicker relation holds in I". Moreover, for any u, v, w,z € V we have in I

@v)(wz) + (@aw)(@v) + (@) (vw) = a(vwz + wzv) + z7vw) = 0.

Therefore, the mapping ¢ can be extended to an algebra homomorphism
@ Tgv]->T. |

Let now U be another vector space, construct the free I'-algebra I'[U;V] gener-
ated by the space U of even generators and the space V of odd generators. Denote
by F(U) and by F[U] the free associative and polynomial algebras over the space
U. Furthermore, by F[Gr(2,V)]° denote the augmentation ideal of the algebra
F[Gr(2, V)], that is, the ideal of elements without scalar terms. Consider the Z,
-graded vector space

T'[U;V] = (F(U) & (FIU] ® FIGr(2, V)I") & (FIU1 ® FIGr(2,V)])),

with r'[u;v], = F(U) ® (FIU] ® FIGr(2,V)]°) and
I'[U;V], = F[U] ® F[Gr(2,V)],. Observe that

I = (FIU] ® FIGr(2, V)I°) @ (FIU]1 ® FIGr(2,V)],) =
FIU] ® (FIGr2, V)]’ + FIGr(2,V)];) € FIU] ® T'[#;V]

Define multiplication on I'[U;V] in the following way: the space / is an ideal of
I'[U;V] with the product defined as in a subalgebra of the algebra F[U] ® I'[#;V];
the algebra F(U) is a subalgebra of I'[U;V], and the element f € F(U) acts on I by

f E®a+h®@ bRV =fgQ®a+fh® bR,

where g, h € F[U], a,b € F[Gr(2,V)], v € V,and f € F[U]is the image of f under
the natural epimorphism F(U) — F[U].

Theorem 6 The algebra I'[U;V] with the multiplication defined above is a free I’
-algebra generated by the spaces U and V of even and odd generators.
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Proof First of all, one can easily check that the algebra I'[U;V] satisfies conditions
(1)—(@v). Furthermore, let I’ = ) + I''be a I'-algebraand @ : U = I, w : V = I
be linear mappings. By above, y can be extended to an algebra homomorphism
¥ : I'[@;V] - I'. By the property of free algebras, there exists also an algebra
homomorphism ¢ : F(U) — I} extending ¢. Now the mapping

@+9) : f+(h®@a+g®@bV) » &(f) + p(h)w(a) + Py (b)y (v)

for f € F(U), g,h € F[U], a,b € F[Gr(2,V)] and v € V is an algebra homomor-
phism of I'[U;V]to I extending ¢ + . O

5 [-algebras and Jordan superalgebras

Observe that if I' is a I'-algebra with commutative even part I, then I" is a commu-
tative superalgebra. Moreover, in this case it is a Jordan superalgebra.

Proposition 2 Let I' is a I'-algebra with commutative even part I,. Then I is a Jor-
dan superalgebra. Moreover, if char F = 3 then I' is an alternative superalgebra.

Proof Recall that a commutative superalgebra is called a Jordan superalgebra if it
satisfies the super-identity

(o, 2, 1) + (=1 (xt, 2, y) + (= 1O (g 7 x) = 0, ®)

where X for x € I, U I'| denotes the parity of element x: X =i & x € I;. Note that
[L,, I'T =0, hence I}, is contained in the center of I'. Therefore, if at least 2 ele-
ments of x, y, t lie in I, or z € I, all the associators in identity (5) vanish. If all the
elements x, y, z, ¢ are in I then xy, xt, yt € I}, and again (5) holds. Therefore, it suf-
fices to consider the case when x,y,z € I}, t = a € I},. We have

(xy,z,a) — (xa,2,y) + (va,z,x) = —(xa, z,y) + (ya, z,X)
=a(—(x,z2,Y)+ (,z,x) =a(—xz2-y+x-2y+yz- X —y - 2X)
=a(—(xz + zx)y + x(zy + yz)) = 0.

Furthermore, let char F = 3. Since I}y € Z(I'), in order to check alternativity we
have to consider only associators on odd generators. Let x, y, z € I'}, then we have

Xy, —(X,2,Y) =Xy - 2—X-yZ—XZ-y+X-Zy=Xy-2—2y7-X+2x Yy
=xy-z+yz-x+z-y=0,

and similarly (x, y, z) — (¥, x,z) = 0, hence the superalgebra I' is alternative. O
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An important example of supercommutative I'-algebras can be obtained as fol-
lows. Let A be a unital commutative associative algebra, consider I'(A) = A @ A?
with the grading I'(A), = A, I'(A), = A% and the following multiplication:

a-b=ab,a-(b,c)=(b,c)-a=(ab,ac), (a,b) - (c,d) = ad — bc; a,b,c,d € A.

We have only to check condition (iv) in the definition of I'-algebra. Consider

(a,b)(c,d) - (e.f) + (c,d)(e.f) - (a,b) + (e, f)(a, D) - (c,d)
= (ad — bc)(e,f) + (cf — de)(a,b) + (eb — fa)(c,d) = (0,0).

Therefore, I'(A) is a [-algebra. Since A is commutative, I'(A) is a Jordan
superalgebra.

Proposition 3 Let A be a domain, then I'(A) is a central order in the simple Jordan
superalgebra of type B(1, 2) (the superalgebra of a skew-symmetric bilinear form on
a 2-dimensional vector space). In particular, in this case I'(A) is prime and special.

Proof 1In fact, let K be the quotient field of A, then we have an inclusion I'(A) C I'(K);
moreover, since K = A™!A and A = Z(I'(A)), we have A~'I"'(A) = I'(K). It is clear

that dimy I'(K) = 3 and I'(K) = B(1,2) as a K-superalgebra.

It is well known that B(1, 2) is a special superalgebra, hence so is I'(A). Finally, a
central order in a simple (super)algebra is evidently prime. O

6 Bases of free /-algebras

In this section we will construct bases of free I'-algebras defined in terms of free
generators.

Let A, = Flx;, ..., X5y, ---,¥,], consider the I'-algebra I'(4,). We want to prove
that the subalgebra of I'(4,) generated by the odd elements v; = (x;,y,), i =1, ... ,n,
is a free I"-algebra on these set of generators.

Denote a; =vy;=xy;—xy,(1<i<j<n), S, =Flay,...,a4_1,] CA,, Vi=Fy, V= Z:l:l Vie
We have the relations

avi + apv; + av; =0, (6)
@; + a;; =0, 7
a;ay + agay; + agay =0. 8)

The following lemma is well known (see, for instance, [13]).

Lemma 1 The algebra S, is the free algebra modulo relations (7), (8). Moreover, it
has the following base over F:
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B, =A{a; o a;; i) i <o <y Jy Sy S0 S0 <) )

In fact, the algebra S, = F[Gr(2,n)] is the coordinate algebra of grassmanian
Gr(2, n) (see, for example, [16, vol. 1, p. 42]).
LetS, ,, = Fla;|j = m], then we have

nn =

S c Sn,n—l € C Sn,2 = Sn,l = Sn‘

Denote by 1,, the ideal of S, generated by the set {a; | i <j <m}, 3 <m < n; then
0=1,CI;CI,CCl,LetalsoS,,, =(S,,, +1,/],

m

Lemma2 The image in S‘nm of the following set forms a base of the algebra S'n,m over F:
By =0y, @i € By |jy 2 m}.

Proof It is easy to prove using identities (8) that the set B, ,, spans S, , modulo
I,,. Let us prove that it is linearly independent modulo /,,. Consider the algebra
E=E,, =Flx,...,x;ty, ... ,y,] and the homomorpism

¢ A —E yy,i= 1,...,n;x‘A|—>xj,jZm;xk»—)tyk,k<m.
Let D, ,, = ¢(S,). Note that ¢(a;) =0 if j <m, hence I,, C ker ¢. Introduce the
deg lex order in E by setting

Xy > Xy 1 > > X, >V >V > >y, >,

and let f denotes the leading term of polynomial f. Then for i < m <j we have

Play) = ty;y; — x;y; = —x;y;, hence

= — s cee e o
d)(ailj] ®irjy ™ ai.;i.c) =D Xy o X i e Vi

Therefore, if u and v are monomials in ¢(e;) then u = v if and only if & = v. This
easily implies that the set ¢(B, ,,) is linearly independent over F, and thus the set
B, is linearly independent modulo /,,. O

Consider the elements of the base B, with more details. For any u € B, of form
(9) there exist uniquely defined numbers / < p such that

U= Qo Qe Oy e Oy (10)

where j; <m,ji . 2 m;i, <m,i,, >m.
Lemma 3 The intersection I, NS, , has a base formed by elements (10) with
r—-p=>l>1

Proof Let us first prove that every element u of form (10) with » — p > | > 1 belongs to
I,NnS,,. Sincel > 1, u € I,. In order to prove thatu € S, ,, it suffices to show that

n,m>
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(ailjl ailjl)(aip+lzj,7+l

%) € Sum

Since r—p > 1, it suffices to prove that every product a;ay with j<m, k>m
belongs to S, ,,. But this follows easily from relation (8).

In order to prove the inverse inclusion, we associate with any element u € B, the
set of its indices ind(u) = {i},j;, ..., i,.j,}. Note that relation (8) does not change
the set of indices, hence the algebras S, and S, ,, are homogeneous with respect to
the sets of indices, that is, they may be represented as direct sums of subspaces with
the same sets of indices. Moreover, so is the ideal /,,. Since the elements of S, ,,
polynomials in a; with j > m, it is clear that for any homogeneous element u € S
with ind(u) = {11, Ji>---»i,.j,} we should have at least r indices that are greater or
equal to m. Assume now that Y Au; €1, N S,,.m for some u; of form (10), then we
have ind(u;) = md(u) ={i.j1s s lpp - p,]p, eesipj,.} with [>1 for all the
summonds u;, u;. The set ind(u;) has l+p mdlces which are smaller than m, hence
thesumhesmS nonlyifi+p<rorr—p>1L O

Lemma4 (S,,,v,) N (X SujVy) = Sy N L)V,

Proof Let us first prove that (S, , N1, )v, C Z S,;v;- Let u be an element of

j<m“nj’j
form (10) with r —p > 1> 1, then u = a; ; ', where i; <j, <m and ' is an ele-

ment of form (10) with ¥/ =r—1,p' =p—1,1' =1— 1. In particular, we have

r'—p' =r—p>1>1, therefore as in the proof of Lemma 3 we have u' €S,
Now by (6)

— 4,/ !
uv,, =u (ailjlvm) =u (ocilmvj1 7. 11) € SumVj, + Sumvi, € ZS

j<m
Note that Lemma 2 implies that S, , =(S,,N1,)®F-B,,. Let us prove that
B, Vn,N <Zj<m Swvj> = 0. Assume that w; = w, # 0, where
= Y Aap,. wo= Y by .y €F.

a;EB, Jj<m,b;€ES, ;

nm

In particular, we have Y. ,a,x,, = Z/‘ u;b;x; # 0. Consider the leading terms of both
parts with respect to the deg lex order in A, when

xn>xn_1>"'>x1>y1>y2>"'>y

ne

We have
Y Aax, = = O X, m < Sy < e S

Z'“jbjxj =g, - U g X = 8OIXXg, Xy, J<Mj S Gy Sy S0 LG

Since ¥, 4,a;x,, # X,; #;b;x;, we conclude that w) = w, = 0.
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Now, since (S,,,, N ,)v,, C 3., S, v;» we have

j<m = nj’j’
(Sn,mvm) N <Z Snij> =<(Sn,m N Im) SF- Bn,m)vm n (Z Sn,/‘vj>
j<m j<m
=<(Sn,m N Im)vm + Bn,mvm) n <Z S’lxivj>
j<m
=S, N1, +B,,V, N <Z S, ij>
j<m
=(Sn,m N Im)vm'

Lemma5 The subspace S,V C Ai is decomposed into a vector space direct sum

S,V =" B,V

i=1"ni’i*

Proof First of all, note that due to (6) we have S,V =3 S, ;v Denote

U,=X", 8,V then Uy CU, C-- CU,=S8,V. Furthermore, let W, = U;/U,_,,
then we have a vector space isomorphism S,V = @’_, W,. Finally, for any m < n we

have
m m—1 m—1
‘/Vm =<Z Sn,ivi>/<z Sn,ivi> = Sn,mvm/<Sn,mvm n (Z Sn,ivi>>
i=1 i=1 i=1

= (by Lemma 4) = Sn,mvm/(Sn,m n Im)vm E (Sn,m/(Sn,m n ]m))vm
~ (by Lemma2) =B, .V,

nm ' m*

O

Theorem 7 The space S, + S,V is a subalgebra of algebra I'(A,)) which is isomor-

phic to the free I'-algebra I'[@;V]. It has a base B, U <Uj’.’lenij >

Proof Consider the epimorphism ¢ : I'[#;V] — S, + S,V defined by the conditions

v; = (x;,¥;). Relations (6)—(8) hold in the algebra I'[@;V] as well, and using these
relations it is easy to see that it is spanned by the set B, U (UJ’?lenJ«\{i>. Since its
image is linearly independent in I'(4,), it forms a base of I'[#;V], and ¢ is an iso-

morphism. O
Theorem 8 The free I'-algebra I'(t,, ...,t,;V,...,V,] On even generators t,...,t,
and odd generators v, ..., v, has the following structure:
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Iy =F(t),....t,) + S Q@ F[t, ..., 1,1,

I, =F[t,....7,]1® < J’?len‘,.v),

where F(t,...,t,) and F[i,,...,I,] are the free associative and the polynomial
algebras on m variables, S! stands for the augmentation ideal of the algebra S,,
v;-v;=a; €S,, V;=Fv, and for any f =f(t,,....1,) € F({t,,...,t,) and v € I},
fv=fGE,....1,) Q.
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