
Vol.:(0123456789)

São Paulo Journal of Mathematical Sciences
https://doi.org/10.1007/s40863-023-00366-8

1 3

MEMORIAL VOLUME FOR SASHA ANAN’IN

Alternative M
2
‑algebras and � ‑algebras

A. Grishkov1 · I. Shestakov1 

Accepted: 2 May 2023 
© Instituto de Matemática e Estatística da Universidade de São Paulo 2023

Abstract
Recently V. H. López Solís and I. Shestakov [9] solved an old problem by N.Jacobson 
[2] on describing of unital alternative algebras containing the matrix 2 × 2 algebra 
M

2
 as a unital subalgebra. Here we give another description of M

2
-algebras via the 

6-dimensional alternative superalgebra B(4, 2) and an auxiliar Z
2
-graded algebra �  . It 

occurs that the category of alternative M
2
-algebras is isomorphic to the category of �

-algebras. We describe also the free � -algebras and construct their bases.

Keywords  Alternative algebra · Coordinatization theorem · Category of M2

-algebras · Jordan superalgebra · Grassmanian

1  Introduction

The classical Wedderburn Coordinatization Theorem says that if a unital associative 
algebra A contains a matrix algebra Mn(F) over a field F with the same identity ele-
ment then it is itself a matrix algebra, A ≅ Mn(D) , “coordinated” by D. Generaliza-
tions and analogues of this theorem were proved for various classes of algebras and 
superalgebras [2, 4, 7, 8, 10–12, 14, 15]. The common content of all these results is 
that if an algebra (or superalgebra) contains a certain subalgebra (matrix algebra, 
octonions, Albert algebra) with the same unit then the algebra itself has the same 
structure, but not over the basic field rather over a certain algebra that “coordina-
tizes” it. The Coordinatization Theorems play important role in structure theories, 
especially in classification theorems, and also in the representation theory, since 
quite often an algebra A coordinated by D is Morita equivalent to D, though they 
could belong to different classes (for instance, Jordan algebras are coordinated by 
associative and alternative algebras).
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I.  Kaplansky [4] proved an analogue of Wedderburn’s theorem for alternative 
algebras containing the Cayley algebra. He showed that if A is an alternative algebra 
with identity element 1 which contains a subalgebra B isomorphic to a Cayley alge-
bra and if 1 is contained in B, then A is isomorphic to the Kronecker product B⊗ T  , 
where T is the center of A.

The Wedderburn coordinatization theorem in the case n ≥ 3 admits a generaliza-
tion for alternative algebras, since every alternative algebra A which contains a sub-
algebra Mn(F) (n ≥ 3) with the same identity element is associative (see [15, Corol-
lary 11, Chapter 2]). The result is not true for n = 2 , the split Cayley algebra and 
its 6-dimensional subalgebra are counterexamples. The problem of description of 
alternative algebras containing M2(F) or, more generally, a generalized quaternion 
algebra ℍ with the same identity element was posed by Jacobson [2].

In [9], this problem was solved for the split case ℍ ≅ M2(F) . The correspond-
ing M2(F)-coordinatization in [9] involves two ingredients: an associative algebra 
D and a commutative D-bimodule V (that is, V is annihilated by any commutator 
of elements of D), on which a skew-symmetric mapping is defined with values in 
the center of D, satisfying Plücker relations. More exactly, A = M2(D)⊕ V2 , with a 
properly defined multiplication.

Here we give another characterization of M2(F)-algebras, based on the 6-dimen-
sional simple alternative superalgebra B = B(4, 2) [17] and an auxiliar Z2-graded 
algebra �  : a unital alternative algebra A is an M2(F)-algebra if and only if A is a �
-envelope of the superalgebra B: A = 𝛤0 ⊗ B0 + 𝛤1 ⊗ B1 . Moreover, the category 
of alternative M2-algebras is isomorphic to the category of � -algebras. We describe 
the free � -algebras and construct their bases. It occurs that these algebras are closely 
related to coordinate algebras of grassmannians Gr(2, n).

Throughout this paper the ground field F is of arbitrary characteristic.

2 � Definitions, examples, and preliminary results

Let A be a composition algebra (see [3, 6, 15, 18]). Recall that A is a unital alterna-
tive algebra, it has an involution a ↦ ā such that the trace t(a) = a + ā and norm 
n(a) = aā lie in F.

An alternative bimodule V over a composition algebra A is called a Cayley bimod-
ule if it satisfies the relation

where a ∈ A , v ∈ V  , and a → ā is the canonical involution in A.
Typical examples of composition algebras are the algebras of (generalized) 

quaternions ℍ and octonions � (or a Cayley algebra) with symplectic involutions. 
Recall that 𝕆 = ℍ⊕ vℍ , with the product defined by

where a, b ∈ ℍ, 0 ≠ v2 ∈ F, a ↦ ā is the symplectic involution in ℍ.

(1)av = vā,

(2)a ⋅ b = ab, a ⋅ vb = v(āb), vb ⋅ a = v(ab), va ⋅ vb = (bā)v2,
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The subspace vℍ ⊂ 𝕆 is invariant under multiplication by elements of ℍ and it 
gives an example of a Cayley bimodule over ℍ . If ℍ is a division algebra then vℍ is 
irreducible, otherwise ℍ ≅ M2(F) and

where M2(F)-bimodules ⟨ve22, −ve12⟩ and ⟨−ve21, ve11⟩ are both isomorphic to the 
2-dimensional Cayley bimodule Cay = F ⋅ m1 + F ⋅ m2 , with the action of M2(F) 
given by

where a ∈ M2(F), m ∈ Cay, i, j, k ∈ {1, 2} and a ↦ ā is the symplectic involution in 
M2(F) . In the last case the algebra � = M2(F)⊕ vM2(F) is called the split octonion 
algebra.

Let us call a unital alternative algebra A an M2-algebra if there exists a homomor-
phism of unital algebras � ∶ M2 → A , where M2 = M2(F).

Examples of  M2 -algebras:

1.	 A associative, A ⊇ M2 ∋ 1A ⇒ A = M2(B) ≅ M2 ⊗ B, B associative.
2.	 � split octonion algebra, � = M2 ⊕ (M2)v.
3.	 S = M2(F)⊕ Cay ⊆ �, Cay2 = 0 , the split null extension of M2 by bimodule Cay

.
4.	 G(B(4, 2)) = G0 ⊗M2 + G1 ⊗ Cay, char F = 3 , the Grassmann envelope of the 

simple alternative superalgebra B(4, 2) = M2 ⊕ Cay (see [17]), with the following 
multiplication in Cay : 

Remark 1  The odd product in B(4, 2) in [17] has different sign; one can get the old 
product by the following change of the basis:

Any M2-algebra A may be considered as a unital alternative M2-bimodule. The 
structure of such bimodules is given by the following result:

Theorem 1  [3, 17] Let V be a unital alternative M2-bimodule. Then V is completely 
reducible, moreover, V = Va ⊕ Vc , where Va is an associative M2-bimodule and is a 
direct some of regular bimodules RegM2 , while Vc is a Cayley M2-bimodule which is 
a direct sum of irreducible Cayley bimodules of type Cay .

In particular, any M2-algebra A may be written as A = Aa ⊕ Ac . It was proved in 
[9] that

vℍ = ⟨ve22,−ve12⟩⊕ ⟨−ve21, ve11⟩,

(3)eij ⋅ mk = 𝛿ikmj, m ⋅ a = ā ⋅ m,

m2
1
= e21, m

2
2
= −e12, m1 m2 = −e11, m2 m1 = e22.

e21 ↔ −e21. e12 ↔ −e12, m2 ↔ −m2.

AcAa + AaAc ⊆ Ac, AaAa ⊆ Aa, AcAc ⊆ Aa.
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That is, A is a Z2-graded algebra. We have Aa = (Reg M2)
n, Ac = (Cay )m . Moreo-

ver, the subalgebra Aa is associative [9].
The M2(F)-coordinatization in [9] involves two ingredients: an alternative M2(F)

-algebra A is “coordinated” by an associative algebra D and by a commutative 
D-bimodule V (that is, V is annihilated by any commutator of elements of D), on 
which a skew-symmetric form is defined with values in the center of D, satisfying 
Plücker relations. More exactly,

with a properly defined multiplication.
In more details, let D be an associative unital algebra and V be a left D-mod-

ule such that [D, D] annihilates V. Clearly, in this case V has a structure of a com-
mutative D-bimodule with v ⋅ a = a ⋅ v, v ∈ V , a ∈ D . Assume that there exists a 
D-bilinear skew-symmetric mapping ⟨, ⟩ ∶ V2

→ D such that ⟨V ,V⟩ ⊆ Z(D) and for 
any u, v,w ∈ V

Consider A = M2(D)⊕ V2 . Let X, Y ∈ A, X = Xa + (x, y), Y = Ya + (z, t) , where 
Xa, Ya ∈ M2(D) and (x, y), (z, t) ∈ V2 . Define a product in A by formula:

where 
(
a b

c d

)∗

=

(
d − b

−c a

)
.

Theorem 2  [9] The algebra A with the product defined above is an alternative unital 
algebra containing M2(F) with the same identity element. Conversely, every unital 
alternative algebra that contains the matrix algebra M2(F) with the same identity 
element has this form.

3 � The new construction

Consider the vector space direct sum 𝛤 = D⊕ V  , where D and V are taken from 
theorem 2, and define a multiplication on it as follows

Then �  becomes a Z2-graded algebra with �0 = D, �1 = V  , that satisfied the follow-
ing conditions: 

	 (i)	 �0 is a unital associative algebra, [�0,�1] = (�0,� ,� ) = 0,
	 (ii)	 𝛤

2
1
⊆ Z(𝛤0),

	 (iii)	 xy + yx = 0, x, y ∈ �1,

A = M2(D)⊕ V2,

(4)⟨u, v⟩w + ⟨v,w⟩u + ⟨w, v⟩u = 0.

XY = XaYa +

�
−⟨x, t⟩ − ⟨y, t⟩
⟨x, z⟩ ⟨y, z⟩

�
+ (z, t)Xa + (x, y)(Ya)

∗,

(a + u)(b + v) = (ab + ⟨u, v⟩) + (av + bu).
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	 (iv)	 (xy)z + (yz)x + (zx)y = 0, x, y, z ∈ �1.

Theorem  3  The “ � -envelope” 𝛤 (B(4, 2)) = 𝛤0 ⊗M2 + 𝛤1 ⊗ Cay is isomorphic to 
the algebra M2(𝛤0)⊕ 𝛤

2
1
 from theorem 2. In particular, an algebra A is an alter-

native M2-algebra if and only if A = � (B(4, 2)) for a certain Z2-graded algebra �  
satisfying the above conditions.

Remark 2  Note that the superalgebra B(4, 2) is alternative only in char F = 3 case, 
but the theorem holds in any characteristic.

Proof of the theorem. It is clear that 𝛤0 ⊗M2 ≅ M2(𝛤0) . Let us prove that the 
mapping

is an isomorphism of M2(𝛤0)⊕ 𝛤
2
1
 and � (B(4, 2)) . Let X =

(
d11 d12
d21 d22

)
, dij ∈ �0 . 

Consider

On the other hand,

Since [�0,�1] = 0 , we have �(X ⋅ (x, y)) = �(X)�(x, y) . Similarly, 
�((x, y) ⋅ X) = �(x, y)�(X) . Let now z, t ∈ �1 , consider

On the other hand,

This proves the theorem. 	�  ◻

Let us consider the examples of M2-algebras from section 2 and determine the 
structure of the corresponding algebra �  in every case. 

𝜑 ∶ X + (x, y) ↦ X + x⊗ m1 + y⊗ m2, X ∈ M2(𝛤0), x, y ∈ 𝛤1,

𝜑(X ⋅ (x, y)) =𝜑(xd11 + yd21, xd12 + yd22)

=(xd11 + yd21)⊗ m1 + (xd12 + yd22)⊗ m2.

𝜑(X)𝜑(x, y) =X(x⊗ m1 + y⊗ m2) = (
∑

ij

dij ⊗ eij)(x⊗ m1 + y⊗ n)

=(d11x + d21y)⊗ m1 + (d12x + d22y)⊗ m2.

�((x, y)(z, t)) =�

�
−⟨x, t⟩ − ⟨y, t⟩
⟨x, z⟩ ⟨y, z⟩

�
=

�
−⟨x, t⟩ − ⟨y, t⟩
⟨x, z⟩ ⟨y, z⟩

�
.

𝜑(x, y)𝜑(z, t) =(x⊗ m1 + y⊗ n)(z⊗ m1 + t⊗ m2)

=⟨x, z⟩⊗ e21 − ⟨x, t⟩⊗ e11 + ⟨y, z⟩e22 − ⟨y, t⟩⊗ e12

=

�
−⟨x, t⟩ − ⟨y, t⟩
⟨x, z⟩ ⟨y, z⟩

�
.
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1.	 A associative, A ⊇ M2 ∋ 1A ⇒ A = M2(B) ≅ M2 ⊗ B, B associative. In this case 
� = �0 = B.

2.	 � split octonion algebra, � = M2 ⊕ (M2)v . Here � = B(1, 2) , the 3-dimensional 
simple superalgebra from [17] which is alternative in characteristic 3 case. 
B(1, 2)0 = F, B(1, 2)1 = Fx + Fy, x2 = y2 = 0, xy = −yx = 1.

3.	 S = M2(F)⊕ Cay ⊆ �, Cay2 = 0 , the split null extension of M2 by bimod-
ule Cay . In this case � = F + Fx, x2 = 0, is the 2-dimensional algebra with 
�0 = F, �1 = Fx.

4.	 G(B(4, 2)) = G0 ⊗M2 + G1 ⊗ Cay , char F = 3 , the Grassmann envelope of the 
simple alternative superalgebra B(4, 2). Here � = G since the Grassmann algebra 
G satisfies the conditions for �  in the case of characteristic 3.

4 � Tensor algebras of bimodules and free � ‑algebras

Recall the definition of a tensor algebra of bimodule (see [5]). Let A be an alge-
bra in a variety M and let V be an M-bimodule over A. Consider the free M
-algebra FM[A⊕ V] and let I be the ideal of this algebra generated by the set 
{a ∗ b − ab, a ∗ v − a ⋅ v, v ∗ a − v ⋅ a | a, b ∈ A, v ∈ V} , where ∗ denotes the mul-
tiplication in FM[A⊕ V] and a ⋅ v, v ⋅ a denote the action of A on V. Then the quo-
tient algebra FM[A⊕ V]∕I is called the tensor algebra of the A-bimodule V.

By the standard arguments, one can prove the following universal property of ten-
sor algebra.

Proposition 1  Let B ∈ M and let � ∶ A → B be a homomorphism of algebras. 
Then B has a natural structure of an A-bimodule. Now, for any homomorphism 
of A-bimodules � ∶ V → B there exists a unique homomorphism of algebras 
𝜓̃ ∶ FM[A⊕ V] → B such that 𝜓̃(a) = 𝜑(a), 𝜓̃(v) = 𝜓(v) for any a ∈ A, v ∈ V .

In particular, the tensor algebra M2[V] of an alternative M2-bimodule V plays a 
role of a free object in the category of alternative M2-algebras: for any M2-algebra B, 
any homomorphism of M2-bimodules � ∶ V → B is uniquely extended to an algebra 
homomorphism 𝜑̃ ∶ M2[V] → B.

Let us call a Z2-graded algebra satisfying conditions (i)–(iv) of section  3 a �
-algebra. We want to prove

Theorem 4  The category of alternative M2-algebras is isomorphic to the category of 
� -algebras.

Proof  There is a natural functor from the category of � -algebras to the category 
of M2-algebras: F ∶ � → � (B(4, 2)) , which sends a morphism of � -algebras 
� ∶ � → �

� to the morphism F(�) ∶ � (B(4, 2)) → �
�(B(4, 2)) identical on B(4, 2).

It is clear from the proof of theorem 3 that this functor is bijective on objects: 
every M2-algebra A = M2(D)⊕ V2 defines uniquely �0 = D and �1 = V  . It remains 
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to show that any morphism � ∶ � (B(4, 2)) → �
�(B(4, 2)) is induced by a mor-

phism � ∶ � → �
� such that � = F(�) . Denote A = � (B(4, 2)), A� = �

�(B(4, 2)) . 
Since � is identical on M2 , it is a homomorphism of M2-bimodules; in particular, 
𝜑(Aa) = 𝜑(M2(𝛤0)) ⊂ A�

a
= M2(𝛤

�
0
) and 𝜑(Ac) = 𝜑(𝛤1 ⊗ Cay) ⊂ (A�)c = 𝛤

�
1
⊗ Cay . 

It is well known that a homomorphism of matrix algebras is induced by a homomor-
phism of their coordinates, hence there exists a homomorphism �0 ∶ �0 → �

�
0
 which 

induces �|Aa
.

Now, fix 0 ≠ � ∈ �1 . Let 
𝜑(𝛾 ⊗ m1) = 𝛼 ⊗ m1 + 𝛽 ⊗ m2, 𝜑(𝛾 ⊗ m2) = 𝜆 ⊗ m1 + 𝜇 ⊗ m2 for some 
�, �, �,� ∈ �

�
1
 . We have

which implies � = 0 . Similarly, � = 0 . Futhermore,

which implies � = � . Therefore, 𝜑(𝛾 ⊗ Cay) = 𝛼 ⊗ Cay , and we put �1(�) = � . One 
can easily check that � = �0 + �1 ∶ � → �

� is a homomorphism of algebras such 
that F(�) = � . 	�  ◻

Corollary 1  Let � [X0,X1] be the free � -algebra on sets X0 and X1 of even and odd 
generators. Then � [X0,X1](B(4, 2)) ≅ M2[V] , where V = Reg#X0 ⊕ Cay#X1 .

In view of the Corollary, it seems important to determine the structure of free �
-algebras.

Let V = Fn be an n-dimensional vector space over F and F[Gr(2,  V)] be 
the coordinate algebra of the Grassmannian Gr(2, n) = Gr(2,V) . Recall that 
F[Gr(2,V)] ≅ F[V∧2]∕P , where P is the ideal generated by the double Plücker 
relations

Furthermore, consider the tensor product F[Gr(2,V)]⊗ V  which has a natu-
ral structure of F[Gr(2,  V)]-module. Denote by F[Gr(2,V)]1 the quotient mod-
ule (F[Gr(2,V)]⊗ V)∕I where I is the F[Gr(2,  V)]-submodule generated by the 
ordirnary Plücker relations

Define multiplication in F[Gr(2,V)]1 with results in F[Gr(2, V)] by setting

where a, b ∈ F[Gr(2,V)], u, v ∈ V  . The product is defined correctly, since

𝛼 ⊗ m1 + 𝛽 ⊗ m2 =𝜑(𝛾 ⊗ m1) = 𝜑((1⊗ e11)(𝛾 ⊗ m1))

=(1⊗ e11)𝜑(𝛾 ⊗ m1) = 𝛼 ⊗ m1,

𝜇 ⊗ m2 =𝜑(𝛾 ⊗ m2) = 𝜑((1⊗ e12)(𝛾 ⊗ m1))

=(1⊗ e12)𝜑(𝛾 ⊗ m1) = 𝛼 ⊗ m2,

(u ∧ v)(w ∧ z) + (u ∧ w)(z ∧ v) + (u ∧ z)(v ∧ w), u, v,w, z ∈ V .

(u ∧ v)⊗ w + (v ∧ w)⊗ u + (w ∧ u)⊗ v, u, v,w ∈ V .

(a⊗ u)(b⊗ v) = ab(u ∧ v)⊗ 1,
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Theorem 5  The Z2-graded algebra � [�;V] = F[Gr(2,V)] + F[Gr(2,V)]1 is a free �
-algebra generated by the space of odd generators V.

Proof  In fact, it is easy to check that the unital algebra � [�;V] satisfies conditions 
(i)–(iv) defining � -algebras, and is generated by the space V. Let � = �0 + �1 be a 
� -algebra and � ∶ V → �1 a linear mapping. For v ∈ V  denote by v̄ its image in �1 . 
The mapping � is extended to a linear mapping V∧2

→ 𝛤0, u ∧ v ↦ ūv̄ and further 
to an algebra homomorphism F[V∧2] → �0 . In view of condition (iv) the ordinary 
Plücker relation holds in �  . Moreover, for any u, v,w, z ∈ V  we have in �

Therefore, the mapping � can be extended to an algebra homomorphism 
𝜑̃ ∶ 𝛤 [�;V] → 𝛤  . 	�  ◻

Let now U be another vector space, construct the free � -algebra � [U;V] gener-
ated by the space U of even generators and the space V of odd generators. Denote 
by F⟨U⟩ and by F[U] the free associative and polynomial algebras over the space 
U. Furthermore, by F[Gr(2,V)]0 denote the augmentation ideal of the algebra 
F[Gr(2,  V)], that is, the ideal of elements without scalar terms. Consider the Z2
-graded vector space

with 𝛤 [U;V]0 = F⟨U⟩⊕ (F[U]⊗ F[Gr(2,V)]0) and 
𝛤 [U;V]1 = F[U]⊗ F[Gr(2,V)]1 . Observe that

Define multiplication on � [U;V] in the following way: the space I is an ideal of 
� [U;V] with the product defined as in a subalgebra of the algebra F[U]⊗ 𝛤 [�;V] ; 
the algebra F⟨U⟩ is a subalgebra of � [U;V] , and the element f ∈ F⟨U⟩ acts on I by

where g, h ∈ F[U], a, b ∈ F[Gr(2,V)], v ∈ V , and f̄ ∈ F[U] is the image of f under 
the natural epimorphism F⟨U⟩ → F[U].

Theorem 6  The algebra � [U;V] with the multiplication defined above is a free �
-algebra generated by the spaces U and V of even and odd generators.

((u ∧ v)⊗ w + (v ∧ w)⊗ u + (w ∧ u)⊗ v)(a⊗ z) =

a((u ∧ v)(w ∧ z) + (v ∧ w)(u ∧ z) + (w ∧ u)(v ∧ z))⊗ 1 =0.

(ūv̄)(w̄z̄) + (ūw̄)(z̄v̄) + (ūz̄)(v̄w̄) = ū(v̄w̄z̄ + w̄z̄v̄) + z̄v̄w̄) = 0.

𝛤 [U;V] = (F⟨U⟩⊕ (F[U]⊗ F[Gr(2,V)]0))⊕ (F[U]⊗ F[Gr(2,V)]1),

I = (F[U]⊗ F[Gr(2,V)]0)⊕ (F[U]⊗ F[Gr(2,V)]1) =

F[U]⊗ (F[Gr(2,V)]0 + F[Gr(2,V)]1) ⊆ F[U]⊗ 𝛤 [�;V]

f ⋅ (g⊗ a + h⊗ b⊗ v) = f̄ g⊗ a + f̄ h⊗ b⊗ v,
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Proof  First of all, one can easily check that the algebra � [U;V] satisfies conditions 
(i)–(iv). Furthermore, let � = �0 + �1 be a � -algebra and � ∶ U → �0, � ∶ V → �1 
be linear mappings. By above, � can be extended to an algebra homomorphism 
𝜓̃ ∶ 𝛤 [�;V] → 𝛤  . By the property of free algebras, there exists also an algebra 
homomorphism 𝜑̃ ∶ F⟨U⟩ → 𝛤0 extending � . Now the mapping

for f ∈ F⟨U⟩, g, h ∈ F[U], a, b ∈ F[Gr(2,V)] and v ∈ V  is an algebra homomor-
phism of � [U;V] to �  extending � + � . 	�  ◻

5 � � ‑algebras and Jordan superalgebras

Observe that if �  is a � -algebra with commutative even part �0 then �  is a commu-
tative superalgebra. Moreover, in this case it is a Jordan superalgebra.

Proposition 2  Let �  is a � -algebra with commutative even part �0 . Then �  is a Jor-
dan superalgebra. Moreover, if char F = 3 then �  is an alternative superalgebra.

Proof  Recall that a commutative superalgebra is called a Jordan superalgebra if it 
satisfies the super-identity

where x̄ for x ∈ �0 ∪ �1 denotes the parity of element x: x̄ = i ⇔ x ∈ 𝛤i . Note that 
[�0,� ] = 0 , hence �0 is contained in the center of �  . Therefore, if at least 2 ele-
ments of x, y, t lie in �0 or z ∈ �0 , all the associators in identity (5) vanish. If all the 
elements x, y, z, t are in �1 then xy, xt, yt ∈ �0 , and again (5) holds. Therefore, it suf-
fices to consider the case when x, y, z ∈ �1, t = a ∈ �0 . We have

Furthermore, let char F = 3 . Since 𝛤0 ⊆ Z(𝛤 ) , in order to check alternativity we 
have to consider only associators on odd generators. Let x, y, z ∈ �1 , then we have

and similarly (x, y, z) − (y, x, z) = 0 , hence the superalgebra �  is alternative. 	�  ◻

(𝜑̃ + 𝜓̃) ∶ f + (h⊗ a + g⊗ b⊗ v) ↦ 𝜑̃(f ) + 𝜑̃(h)𝜓̃(a) + 𝜑̃(g)𝜓̃(b)𝜓(v)

(5)(xy, z, t) + (−1)ȳz̄+ȳt̄+z̄t̄(xt, z, y) + (−1)x̄(ȳ+z̄+t̄)+z̄t̄(yt, z, x) = 0,

(xy, z, a) − (xa, z, y) + (ya, z, x) = −(xa, z, y) + (ya, z, x)

=a(−(x, z, y) + (y, z, x)) = a(−xz ⋅ y + x ⋅ zy + yz ⋅ x − y ⋅ zx)

=a(−(xz + zx)y + x(zy + yz)) = 0.

(x, y, z) − (x, z, y) =xy ⋅ z − x ⋅ yz − xz ⋅ y + x ⋅ zy = xy ⋅ z − 2yz ⋅ x + zx ⋅ y

=xy ⋅ z + yz ⋅ x + zx ⋅ y = 0,
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An important example of supercommutative � -algebras can be obtained as fol-
lows. Let A be a unital commutative associative algebra, consider 𝛤 (A) = A⊕ A2 
with the grading � (A)0 = A, � (A)1 = A2 and the following multiplication:

We have only to check condition (iv) in the definition of � -algebra. Consider

Therefore, � (A) is a � -algebra. Since A is commutative, � (A) is a Jordan 
superalgebra.

Proposition 3  Let A be a domain, then � (A) is a central order in the simple Jordan 
superalgebra of type B(1, 2) (the superalgebra of a skew-symmetric bilinear form on 
a 2-dimensional vector space). In particular, in this case � (A) is prime and special.

Proof  In fact, let K be the quotient field of A, then we have an inclusion 𝛤 (A) ⊆ 𝛤 (K) ; 
moreover, since K = A−1A and A = Z(� (A)) , we have A−1

� (A) = � (K) . It is clear 
that dimK � (K) = 3 and � (K) = B(1, 2) as a K-superalgebra.

It is well known that B(1, 2) is a special superalgebra, hence so is � (A) . Finally, a 
central order in a simple (super)algebra is evidently prime. 	�  ◻

6 � Bases of free � ‑algebras

In this section we will construct bases of free � -algebras defined in terms of free 
generators.

Let An = F[x1,… , xn;y1,… , yn], consider the � -algebra � (An) . We want to prove 
that the subalgebra of � (An) generated by the odd elements vi = (xi, yi), i = 1,… , n, 
is a free � -algebra on these set of generators.

Denote 𝛼ij = vivj = xiyj − xjyi (1 ≤ i < j ≤ n), Sn = F[𝛼
12
,… , 𝛼(n−1)n] ⊂ An, Vi = Fvi, V =

∑n

i=1
Vi

 . 
We have the relations

The following lemma is well known (see, for instance, [13]).

Lemma 1  The algebra Sn is the free algebra modulo relations (7), (8). Moreover, it 
has the following base over F:

a ⋅ b = ab, a ⋅ (b, c) = (b, c) ⋅ a = (ab, ac), (a, b) ⋅ (c, d) = ad − bc; a, b, c, d ∈ A.

(a, b)(c, d) ⋅ (e, f ) + (c, d)(e, f ) ⋅ (a, b) + (e, f )(a, b) ⋅ (c, d)

= (ad − bc)(e, f ) + (cf − de)(a, b) + (eb − fa)(c, d) = (0, 0).

(6)�ijvk + �jkvi + �kivj =0,

(7)�ij + �ji =0,

(8)�ij�kl + �ik�lj + �il�jk =0.
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In fact, the algebra Sn = F[Gr(2, n)] is the coordinate algebra of grassmanian 
Gr(2, n) (see, for example, [16, vol. 1, p. 42]).

Let Sn,m = F[�ij | j ≥ m] , then we have

Denote by Im the ideal of Sn generated by the set {𝛼ij | i < j < m}, 3 ≤ m ≤ n ; then 
0 = I2 ⊆ I3 ⊆ I4 ⊆ ⋯ ⊆ In . Let also S̄n,m = (Sn,m + Im)∕Im.

Lemma 2  The image in S̄n,m of the following set forms a base of the algebra S̄n,m over F:

Proof  It is easy to prove using identities (8) that the set Bn,m spans Sn,m modulo 
Im . Let us prove that it is linearly independent modulo Im . Consider the algebra 
E = En,m = F[xm,… , xn;t;y1,… , yn] and the homomorpism

Let Dn,m = �(Sn) . Note that �(�ij) = 0 if j < m , hence Im ⊆ ker𝜙 . Introduce the 
deg lex order in E by setting

and let f̄  denotes the leading term of polynomial f. Then for i < m ≤ j we have 
�(�ij) = tyiyj − xjyi = −xjyi , hence

Therefore, if u and v are monomials in �(�ij) then u = v if and only if ū = v̄ . This 
easily implies that the set �(Bn,m) is linearly independent over F, and thus the set 
Bn,m is linearly independent modulo Im . 	�  ◻

Consider the elements of the base Bn with more details. For any u ∈ Bn of form 
(9) there exist uniquely defined numbers l < p such that

where jl < m, jl+1 ≥ m; ip < m, ip+1 ≥ m.

Lemma 3  The intersection Im ∩ Sn,m has a base formed by elements (10) with 
r − p ≥ l ≥ 1.

Proof  Let us first prove that every element u of form (10) with r − p ≥ l ≥ 1 belongs to 
Im ∩ Sn,m . Since l ≥ 1, u ∈ Im . In order to prove that u ∈ Sn,m , it suffices to show that

(9)Bn = {𝛼i1j1𝛼i2j2 ⋯ 𝛼ir jr
| i1 ≤ i2 ≤ ⋯ ≤ ir, j1 ≤ j2 ≤ ⋯ ≤ jr; is < js}.

Sn,n ⊆ Sn,n−1 ⊆ ⋯ ⊆ Sn,2 = Sn,1 = Sn.

Bn,m = {�i1j1�i2j2 ⋯ �ir jr
∈ Bn | j1 ≥ m}.

𝜙 ∶ An → E, yi ↦ yi, i = 1,… , n; xj ↦ xj, j ≥ m;xk ↦ tyk, k < m.

xn > xn−1 > ⋯ > xm > y1 > y2 > ⋯ > yn > t,

�(�i1j1�i2j2 ⋯ �isjs
) = (−1)sxj1 ⋯ xjsyi1 ⋯ yis .

(10)u = �i1j1
⋯ �iljl

⋯ �ipjp
⋯ �ir jr

,
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Since r − p ≥ l , it suffices to prove that every product �ij�kl with j < m, k ≥ m 
belongs to Sn,m . But this follows easily from relation (8).

In order to prove the inverse inclusion, we associate with any element u ∈ Bn the 
set of its indices ind(u) = {i1, j1,… , ir, jr} . Note that relation (8) does not change 
the set of indices, hence the algebras Sn and Sn,m are homogeneous with respect to 
the sets of indices, that is, they may be represented as direct sums of subspaces with 
the same sets of indices. Moreover, so is the ideal Im . Since the elements of Sn,m are 
polynomials in �ij with j ≥ m , it is clear that for any homogeneous element u ∈ Sn,m 
with ind(u) = {i1, j1,… , ir, jr} we should have at least r indices that are greater or 
equal to m. Assume now that 

∑
�iui ∈ Im ∩ Sn,m for some ui of form (10), then we 

have ind(ui) = ind(uj) = {i1, j1,… , il, jl,… , ip, jp,… , ir, jr} with l ≥ 1 for all the 
summonds ui, uj . The set ind(ui) has l + p indices which are smaller than m, hence 
the sum lies in Sn,m only if l + p ≤ r or r − p ≥ l . 	�  ◻

Lemma 4  (Sn,mvm) ∩ (
∑

j<m Sn,jvj) = (Sn,m ∩ Im)vm.

Proof  Let us first prove that (Sn,m ∩ Im)vm ⊆
∑

j<m Sn,jvj . Let u be an element of 
form (10) with r − p ≥ l ≥ 1 , then u = �i1j1

u� , where i1 < j1 < m and u′ is an ele-
ment of form (10) with r� = r − 1, p� = p − 1, l� = l − 1 . In particular, we have 
r� − p� = r − p ≥ l > l� , therefore as in the proof of Lemma 3 we have u� ∈ Sn,m . 
Now by (6)

Note that Lemma 2 implies that Sn,m = (Sn,m ∩ Im)⊕ F ⋅ Bn,m . Let us prove that 
Bn,mVm ∩

�∑
j<m Sn,jvj

�
= 0 . Assume that w1 = w2 ≠ 0 , where

In particular, we have 
∑

i �iaixm =
∑

j �jbjxj ≠ 0 . Consider the leading terms of both 
parts with respect to the deg lex order in An when

We have

Since 
∑

i �iaixm ≠
∑

j �jbjxj , we conclude that w1 = w2 = 0.

(�i1j1 ⋯ �iljl
)(�ip+1,jp+1 ⋯ �ir jr

) ∈ Sn,m.

uvm = u�
(
𝛼i1j1

vm
)
= u�

(
𝛼i1m

vj1 − 𝛼j1m
vi1

)
∈ Sn,mvj1 + Sn,mvi1 ⊆

∑

j<m

Sn,jvj.

w1 =
∑

ai∈Bn,m

𝜆iaivm, w2 =
∑

j<m, bj∈Sn,j

𝜇jbjvj; 𝜆i,𝜇j ∈ F.

xn > xn−1 > ⋯ > x1 > y1 > y2 > ⋯ > yn.

∑

i

𝜆iaixm =𝛼i1j1 … 𝛼isjs
xm = f (y)xmxj1 ⋯ xjs , m ≤ j1 ≤ j2 ≤ ⋯ ≤ js,

∑

j

𝜇jbjxj =𝛼p1q1 … 𝛼psqs
xj = g(y)xjxq1 ⋯ xqs , j < m, j ≤ q1 ≤ q2 ≤ ⋯ ≤ qs.
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Now, since (Sn,m ∩ Im)vm ⊆
∑

j<m Sn,jvj , we have

	�  ◻

Lemma 5  The subspace SnV ⊆ A2
n
 is decomposed into a vector space direct sum

Proof  First of all, note that due to (6) we have SnV =
∑n

i=1
Sn,ivi . Denote 

Um =
∑m

i=1
Sn,ivi , then U1 ⊆ U2 ⊆ ⋯ ⊆ Un = SnV  . Furthermore, let Wi = Ui∕Ui−1 , 

then we have a vector space isomorphism SnV ≅ ⊕
n
i=1

Wi . Finally, for any m ≤ n we 
have

	�  ◻

Theorem 7  The space Sn + SnV  is a subalgebra of algebra � (An) which is isomor-
phic to the free � -algebra � [�;V] . It has a base Bn ∪

(
∪n
j=1

Bn,jvj

)
.

Proof  Consider the epimorphism � ∶ � [�;V] → Sn + SnV  defined by the conditions 
vi ↦ (xi, yi) . Relations (6)–(8) hold in the algebra � [�;V] as well, and using these 
relations it is easy to see that it is spanned by the set Bn ∪

(
∪n
j=1

Bn,jvj

)
 . Since its 

image is linearly independent in � (An) , it forms a base of � [�;V] , and � is an iso-
morphism. 	�  ◻

Theorem 8  The free � -algebra � [t1,… , tm;v1,… , vn] on even generators t1,… , tm 
and odd generators v1,… , vn has the following structure:

(Sn,mvm) ∩

(
∑

j<m

Sn,jvj

)
=
(
(Sn,m ∩ Im)⊕ F ⋅ Bn,m

)
vm ∩

(
∑

j<m

Sn,jvj

)

=
(
(Sn,m ∩ Im)vm + Bn,mVm

)
∩

(
∑

j<m

Sn,jvj

)

=(Sn,m ∩ Im)vm + Bn,mVm ∩

(
∑

j<m

Sn,jvj

)

=(Sn,m ∩ Im)vm.

SnV = ⊕
n
i=1

Bn,iVi.

Wm =

(
m∑

i=1

Sn,ivi

)
∕

(
m−1∑

i=1

Sn,ivi

)
≅ Sn,mvm∕

(
Sn,mvm ∩

(
m−1∑

i=1

Sn,ivi

))

= (by Lemma 4) = Sn,mvm∕(Sn,m ∩ Im)vm ≅
(
Sn,m∕(Sn,m ∩ Im)

)
vm

≅ (by Lemma 2) ≅ Bn,mVm.
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where F⟨t1,… , tm⟩ and F[t̄1,… , t̄m] are the free associative and the polynomial 
algebras on m variables, S′

n
 stands for the augmentation ideal of the algebra Sn , 

vi ⋅ vj = �ij ∈ Sn, Vi = Fvi , and for any f = f (t1,… , tm) ∈ F⟨t1,… , tm⟩ and v ∈ �1 , 
f ⋅ v = f (t̄1,… , t̄m)⊗ v.

Acknowledgements  The paper was written when the second author stayed at the International Math-
ematical Center of South China University of Science and Technology (SUSTech). He thanks Professor 
Efim Zelmanov for the invitation and the Mathematical department of SUSTech for the support and hos-
pitality. He was also supported by FAPESP and CNPq.

References

	 1.	 Jacobson, N.: Structure and Representations of Jordan Algebras. AMS, Providence, RI (1968)
	 2.	 Jacobson, N.: A Kronecker factorization theorem for Cayley algebras and the exceptional simple Jor-

dan algebra. Amer. J. Math. 76, 447–452 (1954)
	 3.	 Jacobson, N.: Structure of alternative and Jordan bimodules. Osaka Math. J. 6, 1–71 (1954)
	 4.	 Kaplansky, I.: Semi-simple alternative rings. Portugal. Math. 10, 37–50 (1966)
	 5.	 Kashuba, I., Ovsienko, S., Shestakov, I.: Representation type of Jordan algebras. Adv. Math. 226(1), 

385–418 (2011)
	 6.	 Kuzmin, E.N., Shestakov, I.P.: Nonassociative structures, VINITI, Itogi nauki i tekhniki, seria “Fun-

damental Branches”, v.57, 179-266, Moscow. In: Kostrikin, A.I., Shafarevich, I.R. (eds.) Encyclopae-
dia of Math. Sciences, v.57, Algebra VI, pp. 199–280, Springer-Verlag (1990)

	 7.	 López-Díaz, M.C., Shestakov, I.P.: Representations of exceptional simple Jordan superalgebras of 
characteristic 3. Commun. Algebra 33(1), 331–337 (2005)

	 8.	 López-Díaz, M.C., Shestakov, I.P.: Representations of exceptional simple alternative superalgebras of 
characteristic 3. Trans. Am. Math. Soc. 354(7), 2745–2758 (2002)

	 9.	 Lopez Solis, V.H., Ivan, P.: On a problem by Nathan Jacobson. Rev. Mat. Iberoam. 38(4), 1219–1238 (2021)
	10.	 Martínez, C., Shestakov, I., Zelmanov, E.: Jordan bimodules over the superalgebras P(n) and Q(n) . 

Trans. Amer. Math. Soc. 362(4), 2037–2051 (2010)
	11.	 Martínez, C., Zelmanov, E.: A Kronecker factorization theorem for the exceptional Jordan superalge-

bra. J. Pure Appl. Algebra 177(1), 71–78 (2003)
	12.	 McCrimmon, K.: Structure and representations of noncommutative Jordan algebras. Trans. Am. 

Math. Soc. 121, 187–199 (1966)
	13.	 Mukai, S.: An Introduction to Invariants and Moduli. Cambridge University Press, Cambridge (2003)
	14.	 Pozhidaev, A.P., Shestakov, I.P.: Noncommutative Jordan superalgebras of degree n > 2 . Algebra 

Logika 49(1), 18–42 (2010)
	15.	 Schafer, R.D.: An Introduction to Nonassociative Algebras. Academic Press, New York (1966)
	16.	 Shafarevich, I.R.: Basic Algebraic Geometry. Springer-Verlag, Heidelberg (1994)
	17.	 Shestakov, I.P.: Prime alternative superalgebras of arbitrary characteristic. Algebra Logic 36(6), 389–

420 (1997)
	18.	 Zhevlakov, K., Shestakov, I., Slinko, A., Shirshov, A.: Rings that are Nearly Associative. Academic 

Press, New York (1982)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a 
publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript 
version of this article is solely governed by the terms of such publishing agreement and applicable law.

𝛤0 =F⟨t1,… , tm⟩ + S�
n
⊗ F[t̄1,… , t̄m],

𝛤1 =F[t̄1,… , t̄m]⊗
�
⊕

n
j=1

Bn,jVj

�
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