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A great number of dose−response studies indicate that
hormesis is a common phenomenon, occurring in

numerous organisms exposed to singular or combined
environmental stressors, such as pharmaceuticals, heavy metals,
micro/nanoplastics, organic flame retardants, pesticides, and
rare earths.1−6 While biological responses to low exposure
levels are often beneficial, exposure to doses below the no-
observed-adverse-e$ect-level (NOAEL; hereafter subthreshold
doses) does not always translate to beneficial responses.2,4 For
example, subthreshold contaminant doses can enhance the
virulence of phytopathogenic microbes and promote the
resistance of crop pests with significant implications for crop

production.2,7,8 Subthreshold contaminant exposures can also

stimulate infectious animal/human pathogens and promote

their resistance to antibiotics and other drugs, threatening

long-term sustainability. Importantly, the hormetic function of
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common pathways that regulate cancer progress indicate that
current regulatory standards may not protect adequately
against cancer risks.9−11

Current risk assessment frameworks used around the world
to assess exposure and e$ects are largely based on scientific
developments from the mid to late 20th century, which
frequently included only very high (often environmentally
unrealistic) doses and the broad assumption of linearity in the
response in the absence of evidence of alternative dose−
response relationships (Figure 1).12−16 How representative
and realistic this approach is increasingly being challenged, in a
modern era of analytical advances enabling measurement of
low doses and hormetic responses. An expanding scientific
literature provides evidence of significant e$ects of subthres-
hold contaminant doses on numerous animals, plants, and
microbes.1−6 We opine that regulatory risk assessments on
exposure and e$ects should not be based upon outdated
science and biologically unsupported assumptions regarding
linearity. Instead, subthreshold e$ects and dose−response
behavior should be included in the regulatory risk assessment.
We urge for this approach to be adopted as part of a more real-
life risk simulation approach,17 especially in recognition of the
growing evidence of genotoxicity of chemicals such as fluoride
and arsenic.18,19

Currently, subthreshold responses/e$ects in regulatory
frameworks are largely not considered in worldwide risk
assessments, impeding their identification and evaluation
(Supporting Information). In the U.S.A., the U.S. Environ-
mental Protection Agency (EPA) does permit nonlinear
approaches where adequate evidence is provided to prove
divergence from the default linear assumption. However, a
recent proposal for the inclusion of subthreshold responses and
nondefault dose−response models in the risk assessment was
not implemented.20 In 2017 the National Institute for
Occupational Safety and Health (NIOSH) acknowledged the
dilemma regarding linear extrapolation and endorsed the
consideration of nonlinear responses for carcinogens in recent
new guidelines.21 The U.S. Food and Drug Administration
(FDA) also recognized nonlinear responses in 2018 in its
guidance document on the assessment and control of
mutagenic substances, and permits deviation from the linear-
no-threshold (LNT) dose−response model if protective
mechanisms exist.22

In Europe, the European Food Safety Authority (EFSA) has
made e$orts to evaluate the relevance of subthreshold e$ects
and nonlinear responses in recent years.23 For example, EFSA’s
scientific committees recently acknowledged subthreshold

e$ects and nonlinear responses for bisphenol A and bis(2-
ethylhexyl phthalate) and called for internationally coordinated
e$orts to identify and address such responses as part of the risk
assessment process.24 The European Chemicals Agency
(ECHA) also focuses on threshold and nonthreshold events,
but does not clearly acknowledge or consider subthreshold
e$ects in its guidelines. It does, however, allow the best-fit
dose−response model to be used instead of enforcing default
dose−response models.25 In 2019, China’s Ministry of Ecology
and Environment published its trial “Framework Guide to the
Technology Methods of Environmental Risk Assessment for
Chemical Substances”.20 The framework is based on either
threshold or linear no-threshold dose−response models, and
does not allow for subthreshold responses/e$ects or more
relevant dose−response modeling based on best fit to specific
data sets.20

We strongly advocate the consideration of potential
subthreshold e$ects in chemical risk assessment should no
longer be postponed. We opine there is an urgent need for
regulatory authorities around the world to be inclusive of the
most up-to-date science by (re)considering (i) potential
subthreshold responses, (ii) nonlinear dose−response models
able to detect subthreshold responses, and (iii) abandoning the
default use of linear dose−response models for all risk
assessments. The current lack of subthreshold responses
inclusion in the risk assessment of chemicals undermines the
accuracy of the risk assessment process, and consequent
remediation practices and actions applied. As a recent example,
the hormetic model can predict potential subthreshold e$ects
of disinfectants widely introduced into the environment during
the COVID-19 pandemic, unlike the linear-no-threshold and
threshold models.5

This article does not suggest that toxicity thresholds are
overly conservative and that risk necessarily exists below
current limits, but that subthreshold positive or negative e$ects
exist that are not captured by current threshold and LNT
models and need to be part of the evaluation and assessment
process. Hence, instead of assuming a specific dose−response
model a priori, the most suitable/e$ective model to fit or
describe the actual data would be selected ad hoc. Such a
policy would prevent enforcing the exclusion of subthreshold
doses and would allow identification of subthreshold e$ects, as
applicable. Furthermore, as lead regulatory agencies increas-
ingly acknowledge subthreshold responses/e$ects and non-
linear dose responses, scientific research should shift the focus
to the e$ects of lower and environmentally realistic doses to

Figure 1. Common dose−response relationships. Linear-no-threshold (LNT) excludes biological repair mechanisms, toxicological threshold, and
significant sub-NOAEL (no-observed-adverse-e$ect-level) responses. Threshold excludes significant sub-NOAEL responses, while after NOAEL
predicting e$ects similarly to LNT. Hormesis acknowledges significant sub- and super-NOAEL e$ects. The dashed line indicates the control
response. The relationship’s direction is end point-specific.
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facilitate the development of more accurate risk assessments in
the future.
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