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Abstract: Lying and truth-telling are conicting behavioral strategies that pervade much of the lives
of social animals and, as such, have always been topics of interest to both biology and philosophy.
This age-old conict is linked to one of the most serious threats facing society today, viz., the collapse
of trustworthy sources of information. Here, we revisit this problem in the context of the two-choice
sender–receiver game: the sender tosses a coin and reports the supposed outcome to the receiver,
who must guess the true outcome of the toss. For the sender, the options are to lie or tell the truth,
while for the receiver, the options are to believe or disbelieve the sender’s account. We assume that
social learning determines the strategy used by players and, in particular, that players tend to imitate
successful individuals and thus change their strategies. Using the replicator equation formulation for
innite populations and stochastic simulations for nite populations, we nd that when the sender
benets from the receiver’s failure, the outcome of the game dynamics depends strongly on the choice
of initial strategies. This sensitivity to the initial conditions may reect the unpredictability of social
systems whose members have antagonistic interests.
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1. Introduction

The conict between lying and telling the truth is a topic of widespread interest
that has laid the foundation for well-established elds of research in both biology and
philosophy. In fact, a major theme of signaling theory, which is devoted to the study of
communication between animals, is the evolution of tness signals and their selection
for “honesty” [1,2]. In philosophy, this conict appears in ethics and was made famous
by Kant’s discussion of keeping promises [3], which concluded in the impossibility of a
world in which everyone lies, and for the possibility of a world in which everyone tells
the truth (see also [4,5]). The challenge to policymakers posed by today’s epidemics of
disinformation (i.e., misinformation with the explicit intent to mislead [6]) and its threat to
epistemic security or knowledge safety [7–9] can also be traced back to the age-old conict
between lying and truth-telling. Indeed, without shared interests and beliefs, it will be very
difcult to deal effectively with issues that threaten our world, such as climate change, a
failure that will likely make our world literally impossible, not just in a philosophical sense.
Game theory models can help guide and predict climate change negotiations and aid in
determining the incentives for truth-telling and cooperation [10–13].

Not surprisingly, behavioral economists have proposed several theories and conducted
several experiments to assess people’s honesty [14]. In this paper, we consider the two-
player sender–receiver game [15], where the players have two roles—sender and receiver—
and each role has two strategies. For the sender, the options are to lie or tell the truth, while
for the receiver, the options are to believe or disbelieve the sender’s account. In total, there
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are four strategies for each player. In a classic version of this game [16] (see [17,18] for a
quantitative analysis), the sender rolls a die with six faces and informs the receiver about
the result of the dice roll. At this point, the sender has the option of telling the truth or lying
in her account. The receiver’s goal is to guess the true result, so they have the option of
believing or disbelieving the sender’s report. Each player is informed of both her own and
her opponent’s possible payoffs if the receiver fails or succeeds in guessing the outcome of
the dice roll. This introduces an emotional dimension to the game, as the sender may be
selsh in the sense of maximizing her own payoff, but sensitive to the cost her lie imposes
on the other side [15]. Unfortunately, this subjective dimension, which contributes to the
player’s reputation, is not easily incorporated into the mathematical formulation of the
sender–receiver game (see, e.g., [19]).

Here, we analytically study a simplied version of the sender–receiver game in which
the sender ips a coin instead of rolling a die, so that the receiver’s success depends only on
her ability to detect whether the sender is lying or not. We nd that when the sender’s and
receiver’s interests are opposed (i.e., when the sender benets from the receiver’s failure),
the asymptotic solutions of the replicator equation [20] depend strongly on the choice of
initial strategies. This dependence requires that we solve the full game dynamics to obtain
the asymptotic solutions, which makes its study somewhat challenging. Nevertheless,
we present analytical expressions for the phase space of the game and for the period of
the periodic solutions. The sensitivity to initial conditions, and thus to perturbations in
the dynamics, may reect the unpredictability of social systems whose members have
antagonistic interests. In this sense, we recall that the replicator equation describes the
innite population limit of the stochastic imitation game, where a player has a non-zero
probability of switching to a strategy of a better-off opponent [21]. Hence, our results are
relevant for the study of social systems [22,23].

The remainder of this paper is organized as follows. In Section 2, we describe the
symmetric two-choice sender–receiver game and write the replicator equation for the
frequencies of the four strategies in a well-mixed innite population of players. In Section 3,
we briey describe the xed-point solutions to the replicator equation. In Section 4, we
study the periodic solutions of the replicator equation for a particular setting of parameters
dening the deception game, where the sender is rewarded only if they deceive the receiver.
As always, the receiver is rewarded if they guess the true outcome of the coin toss. We obtain
analytical expressions for the phase-space trajectories and the period of the oscillations. In
Section 5, we present nite population simulations of the stochastic imitation game, whose
innite population limit is described by the replicator equation formulation. In Section 6,
we review our main results and discuss the trajectories in the phase space of truth tellers
and believers. Finally, in Section 7 we present some concluding remarks.

2. The Two-Choice Sender–Receiver Game

The sender–receiver game is a game with two roles and two strategies for each role.
The game is symmetric because a fair coin is tossed each round to decide which role—
sender or receiver—is assigned to which player. The game is as follows. The sender tosses
a coin and observes the result, which is then reported to the receiver. The twist here is
that the sender has the option of lying (L) or telling the truth (T) about the outcome of the
coin toss, and the receiver has the option of believing (B) or disbelieving (D) the sender’s
report. The payoff for both players depends on whether the receiver succeeds in guessing
the correct outcome of the coin toss and on the intention of the sender. Table 1 shows the
receiver’s payoff matrix: they win b1 > 0 if they succeed and lose c1 > 0 if they fail to guess
the true outcome of the coin toss, regardless of the sender’s intentions. We note that the
receiver can have success through the belief of a true report or the disbelief of a false report.
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Table 1. Payoff matrix for the receiver player using the believe or disbelieve strategies to respond to
the sender’s report.

Strategy/Report True False

Believe b1 −c1
Disbelieve −c1 b1

The sender’s payoff depends on the receiver’s strategy, as shown in Table 2, where b2
and c2 are not necessarily positive. The sender’s payoff is more complex than the receiver’s,
because while for the latter the question is whether the report received is true or not, for
the former the question is whether the sender’s intention was realized or not. Suppose the
sender’s intention is to deceive the receiver, so b2 > 0 and c2 > 0. Then, the sender succeeds
whenever the receiver fails to guess the true outcome of the coin toss. This happens when
the sender lies and the receiver believes the lie, or when the sender tells the truth and the
receiver does not believe the truth. In both cases, the sender’s intention (i.e., to have the
receiver misjudge the coin toss) is realized, and so it is natural that the sender’s reward is
the same (i.e., b2) in both cases. Of course, one may wonder why the sender would tell the
truth if her intention was to deceive the receiver. This can be justied if the sender suspects
that the receiver will not believe her report, so her intention is more likely to be fullled
if she tells the truth. A similar reasoning follows if the sender’s intention is to help the
receiver guess the true outcome of the coin toss, so b2 < 0 and c2 < 0.

Table 2. Payoff matrix for the sender player using the lie or tell the truth strategies to inform the
receiver about the coin toss outcome.

Strategy/Receiver Believe Disbelieve

Lie b2 −c2
Tell the truth −c2 b2

The two-choice sender–receiver game is a simplied version of the sender–receiver
game introduced by Erat and Gneezy [16] (see also [17,18]), in which the sender rolls a six-
faced die and reports the result to the receiver. The main difference with our scheme is that
the receiver is not guaranteed to guess the correct outcome of the dice by disbelieving the
sender if her report is false. Interestingly, an asymmetric version of the two-choice sender–
receiver game describes a Batesian mimicry scenario involving the poisonous monarch
butteries, the non-poisonous viceroy butteries that mimic the monarch butteries, and
the blue jay predators [4]: the butteries always play the sender role, while the blue jays
always play the receiver role (the sender and receiver payoffs must be properly chosen to
describe this ecological scenario).

There are four possible strategies for each player, namely, (T, B), (T,D), (L, B), and
(L,D), which we will refer to as strategies 1, 2, 3, and 4, respectively. The rst component of
the ordered pair refers to the strategy in the sender role: telling the truth (T) or lying (L). The
second component refers to the strategy in the receiver role: believing (B) or disbelieving
(D) the sender’s report. Thus, the payoff for a player using strategy i against a player using
strategy j is given, up to a factor 1/2 which we will omit in this paper, by the entry Mij of
the matrix (see, e.g., [24])

M =




b1 − c2 b1 + b2 −c1 − c2 b2 − c1
−c1 − c2 b2 − c1 b1 − c2 b1 + b2
b1 + b2 b1 − c2 b2 − c1 −c1 − c2
b2 − c1 −c1 − c2 b1 + b2 b1 − c2


. (1)

In the traditional evolutionary game theory approach [25], the payoffs of players using
a particular strategy determine the number of offspring they produce, so that the proportion
of players using different strategies varies from generation to generation. Instead, we
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assume that social learning determines the strategy used by players. In particular, we
assume that players tend to imitate successful individuals and thus change their strategies.
Explicitly, a randomly chosen player compares her average payoff with that of another
randomly chosen player and adopts the strategy of the other player with a probability
proportional to the payoff difference if it is positive. Otherwise, she keeps her strategy. In a
remarkable contribution, Traulsen et al. [21] have shown that, for an innite well-mixed
population, the frequencies Πi of the different strategies obey the replicator equation [20]

Π̇i = Πi


∑
j
MijΠj − M̄


, (2)

for i = 1, . . . , 4 with
4

∑
i=1

Πi = 1. (3)

Here, the average payoff in the population M̄ = ∑i ΠiFi, where

Fi =
4

∑
j=1

MijΠj (4)

is the expected payoff for strategy i, ensures that ∑4
i=1 Π̇i = 0. Using Equation (1), we can

write explicitly the expected payoffs for the four strategies,

F1 = (b1 − c2)Π1 + (b2 + b1)Π2 − (c1 + c2)Π3 + (b2 − c1)Π4 (5)

F2 = −(c1 + c2)Π1 + (b2 − c1)Π2 + (b1 − c2)Π3 + (b1 + b2)Π4 (6)

F3 = (b1 + b2)Π1 + (b1 − c2)Π2 + (b2 − c1)Π3 − (c1 + c2)Π4 (7)

F4 = (b2 − c1)Π1 − (c1 + c2)Π2 + (b2 + b1)Π3 + (b1 − c2)Π4, (8)

from where we obtain an explicit expression for the average payoff in the population,

M̄ = 2[b1 + c1 − b2 − c2]

Π2Π3 −Π1Π4 −

1
2
(Π2 +Π3)


+ b1 − c2. (9)

Next, we briey discuss the xed-point solutions of Equation (2) for the sake of
completeness only, since our focus is on the parameter settings for which the solutions
exhibit oscillatory behavior.

3. The Fixed-Point Solutions

The xed-point solutions Π∗
i of Equation (2) are obtained by setting Π̇i = 0 for

i = 1, . . . , 4. These conditions are satised if either Πi = 0 or Fi = M̄. The local stability
of these solutions is determined by the linearization of Equation (2) in the neighborhood
of the xed points when one of the frequencies is eliminated using the constraint (3), so
that the partial derivatives ∂(Fi − M̄)/∂Πj can be dened [20]. Since these calculations are
rather straightforward, we will only summarize the relevant results here.

• The two xed points Π∗
1 = 1, Π∗

i ̸=1 = 0 and Π∗
4 = 1, Π∗

i ̸=4 = 0 are locally stable
provided that b2 + c2 < 0, i.e., in the case where the sender benets from the receiver
correctly guessing the outcome of the coin toss.

• The xed points Π∗
2 = 1, Π∗

i ̸=2 = 0 and Π∗
3 = 1, Π∗

i ̸=3 = 0 are always unstable.
• If b2 + c2 ̸= b1 + c1, there exists a xed point corresponding to the coexistence of two

opposite strategies, namely, Π∗
1 = Π∗

4 = 1/2, Π∗
2 = Π∗

3 = 0 and Π∗
2 = Π∗

3 = 1/2,
Π∗

1 = Π∗
4 = 0, but they are unstable.

• If b2 + c2 = b1 + c1, the xed points corresponding to the coexistence of two opposite
strategies, namely, Π∗

4 = 1−Π∗
1 < 1, Π∗

2 = Π∗
3 = 0 and Π∗

3 = 1−Π∗
2 < 1, Π∗

1 =
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Π∗
4 = 0, are neutral with the values ofΠ∗

1 andΠ∗
2 determined by the initial frequencies

of the strategies.
• There is no xed point corresponding to the coexistence of the pairs of non-opposing

strategies (e.g., Π∗
1 ̸= 0, Π∗

2 ̸= 0, Π∗
3 = Π∗

4 = 0).
• There is no xed point corresponding to the coexistence of any three strategies (e.g.,

Π∗
i ̸=4 ̸= 0, Π∗

4 = 0).
• Finally, if b2 + c2 > 0 and b2 + c2 ̸= b1 + c1, there is a xed point corresponding to the

coexistence of all four strategies, namely, Π∗
2 = Π∗

3 = 1/2−Π∗
1 and Π∗

4 = Π∗
1, where

Π∗
1 is determined by the frequency values of the strategies at t = 0. Because of this

strong dependence on the initial population, the coexistence xed point is neutral,
i.e., any perturbation to it will lead to a different xed point. We will return to this
scenario when we discuss the stochastic imitation dynamics in Section 5.

In the following, we consider the periodic solutions of Equation (2).

4. The Deceiving Game

Here, we consider a particular setting of the parameters of the payoff matrix M that
allows an analytical solution of Equation (2) in a non-trivial scenario. More explicitly, we
set b1 + c1 = b2 + c2 so that the average payoff in the population, given by Equation (9),
becomes M̄ = b1− c2, and thus does not depend on the frequencies of the players’ strategies.
If all four strategies are present in the initial population, all xed points are unstable or
neutral. An interesting realization of this scenario is the deceiving game where b1 = b2 and
c1 = c2. In this scenario, the reward occurs when the player guesses the true outcome of
the coin toss or prevents the other player from guessing. The cost occurs when the player
guesses the toss wrong or the other player guesses the toss right. The following calculations
apply to the general scenario b1 + c1 = b2 + c2, but since the results do not depend on the
particular choices of b1, b2, c1, and c2, except for a trivial rescaling of time t, we will refer to
this general scenario as the deceiving game.

Accordingly, Equation (2) is restated as

d lnΠ1

dτ
= Π2 −Π3 (10)

d lnΠ2

dτ
= Π4 −Π1 (11)

d lnΠ3

dτ
= Π1 −Π4 (12)

d lnΠ4

dτ
= Π3 −Π2 (13)

where τ = (b1 + c1)t. Adding the Equations (11) and (12) results in

Π2(τ)Π3(τ) = Π2(0)Π3(0) ≡ A, (14)

while adding the Equations (10) and (13) yields

Π1(τ)Π4(τ) = Π1(0)Π4(0) ≡ B. (15)

Finally, using the constraint (3) we obtain an equation relating Π1 and Π2,

Π1(τ) +Π2(τ) +
A

Π2(τ)
+

B
Π1(τ)

= 1. (16)

Note that since Π2(0) +Π3(0) < 1 and Π1(0) +Π4(0) < 1, we have A < 1/4 and
B < 1/4. Equations (14)–(16) determine the closed trajectories in a four-dimensional phase
space [26], as illustrated in Figure 1.
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Figure 1. Projections of the trajectories of the phase space in the planes of the strategy frequencies.
(Left) Π1 vs. Π2. (Middle) Π1 vs. Π4. (Right) Π2 vs. Π3. The trajectory in the left panel is
counterclockwise. The parameters are A = 3/25 and B = 1/50. The domains of Π1 and Π4 are
the interval [0.0937, 0.213], while the domains of Π2 and Π3 are the interval [0.266, 0.451]. The thin
horizontal and vertical blue lines are Π2 =

√
A ≈ 0.346 and Π1 =

√
B ≈ 0.141, respectively.

Using Equation (16) (see also the left panel of Figure 1), we can derive the domain
of Π1 by looking at the values of the strategy frequencies for which dΠ2/dΠ1 → ∞. This
divergence happens at Π2 =

√
A, and by inserting this value in Equation (16), we obtain a

quadratic equation for the extreme values of Π1,

Π2
1 −Π1(1− 2

√
A) + B = 0. (17)

Denoting the two roots of this equation by Π+
1 and Π−

1 , we have Π+
1 Π

−
1 = B, and so

these roots yield the extremes values of Π4 as well (see Equation (15) and middle panel of
Figure 1). Explicitly,

Π+
1 =

1
2
−
√
A+


(
1
2
−
√
A)2 − B

 1
2
, (18)

Π−
1 =

1
2
−
√
A−


(
1
2
−
√
A)2 − B

 1
2
, (19)

so that the domain of Π1 is the interval

Π−

1 ,Π
+
1

since A < 1/4.

A similar analysis of the values of the strategy frequencies for which dΠ2/dΠ1 = 0
allows us to show that the domain of Π2 is the interval


Π−

2 ,Π
+
2

, where

Π±
2 =

1
2
−
√
B±


(
1
2
−
√
B)2 − A

 1
2

(20)

since B < 1/4.
Finally, note that the roots Π±

1 and Π±
2 are always real (and positive), since

√
A +√

B < 1/2, which is easy to prove bymaximizing
√
A+

√
Bwith the constraint∑4

i Πi(0) = 1.
A closed trajectory in the four-dimensional space of strategy frequencies implies

periodic solutions in τ forΠi in Equations (10)–(13). The initial conditions,Πi(0), determine
the constants A and B in Equations (14)–(16) and thus the phase trajectory in Figure 1. The
corresponding periodic solutions are shown in Figure 2.
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Figure 2. Periodic solutions for the strategy frequencies Πi(τ) for the initial conditions Π1(0) = 0.1,
Π2(0) = 0.3, Π3(0) = 0.4 and Π4(0) = 0.2, corresponding to A = 3/25 and B = 1/50. The thin
horizontal blue and red lines are

√
A ≈ 0.346 and

√
B ≈ 0.141, respectively.

We now focus on estimating the period T of the periodic solutions of Equations (10)–(13).
These equations can be reduced to a single differential equation for Π1 using the
Equations (14)–(16),

dΠ1

dτ
= ±


(B+Π2

1 −Π1)2 − 4AΠ2
1

= ±

(Π1 −Πl

1)(Π1 −Π−
1 )(Π1 −Π+

1 )(Π1 −Πu
1 ) (21)

where

Πu
1 =

1
2
+
√
A+


(
1
2
+
√
A)2 − B

 1
2
, (22)

Πl
1 =

1
2
+
√
A−


(
1
2
+
√
A)2 − B

 1
2
, (23)

andΠ+
1 and Π−

1 are given by Equations (18) and (19), respectively. Note that Πu
1 > Π+

1 and
Πl

1 < Π−
1 so that the expression under the square root in Equation (21) is always positive

in the domain of Π1, i.e., for Π1 ∈

Π−

1 ,Π
+
1

. In Equation (21), the + sign is selected when

Π1 increases from Π−
1 to Π+

1 and the − sign when Π1 decreases from Π+
1 to Π−

1 . Thus, the
period is given by

T = 2
 Π+

1

Π−
1

dΠ1
(Π1 −Π+

1 )(Π1 −Π−
1 )(Π1 −Πu

1 )(Π1 −Πl
1)
. (24)

Although the integrand diverges at both integration limits, the improper integral can
be easily evaluated numerically [27]. Figure 3 summarizes the results of the numerical
solution of the elliptic integral that appears in Equation (24) in the case where B is xed
and A increases from 0 to (1/2−

√
B)2.
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Figure 3. Period T of the solutions of the Equations (10)–(13) as function of A ≡ Π2(0)Π3(0) for
B ≡ Π1(0)Π4(0) = 0.1, 0.01, 0.001, and 0.0001 as indicated. The lled circles indicate the analytical
estimate (30) for the period of small-amplitude oscillations.

The period T diverges for both extremes A → 0 or B → 0, since in these cases the
dynamics are attracted by xed points, as we will see later. Now, we offer an analytical
estimate for the period of the periodic solutions of very small amplitude. These solutions
occur when Π+

1 → Π−
1 , i.e., for

√
A +

√
B ≈ 1/2, which gives Π1 ≈ 1/2−

√
A =

√
B

(see Equations (18) and (19)). In phase space, the small-amplitude periodic solutions are
represented by closed trajectories in the neighborhood of the neutral xed point Π∗

1 =

Π∗
4 =

√
B, Π∗

2 = Π∗
3 =

√
A (see left panel of Figure 1). In fact, setting Π1 = Π∗

1 + ϵ1,
Π2 = Π∗

2 + ϵ2, Π3 = Π∗
3 + ϵ3 and Π4 = Π∗

4 + ϵ4, and keeping only the linear terms in ϵi,
we rewrite Equations (10)–(13) as

dϵ1
dτ

= (ϵ2 − ϵ3)
√
B (25)

dϵ2
dτ

= (ϵ4 − ϵ1)
√
A (26)

dϵ3
dτ

= (ϵ1 − ϵ4)
√
A (27)

dϵ4
dτ

= (ϵ3 − ϵ2)
√
B, (28)

which implies ϵ1 + ϵ4 = K14 and ϵ2 + ϵ3 = K23 where K14 and K23 are constants such
that K14 + K23 = 0. Eliminating all variables in favor of ϵ1 yields the nonhomogeneous
harmonic oscillator equation

d2ϵ1
dτ2

+ 4
√
ABϵ1 = 2

√
ABK14 (29)

from where we obtain the period

T = π(AB)−
1
4 . (30)

We emphasize that this equation holds only for
√
A+

√
B = 1/2, and Figure 3 shows

that its estimate of T is in perfect agreement with the numerical evaluation of the elliptic
integral that appears in Equation (24).

As noted, the above results hold for the case where all four strategies are present in the
initial population, i.e., Πi(0) ̸= 0 for i = 1, . . . , 4. Now, we consider the case where some
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strategies are missing at t = 0 and thus at all times t > 0. If Π2(0) = Π3(0) = 0, then the
Equations (10) and (13) give Π1(τ) = Π1(0) and Π4(τ) = Π4(0), respectively. Similarly,
Π1(0) = Π4(0) = 0 implies that Π2(τ) = Π2(0) and Π3(τ) = Π3(0). In other words, the
replicator dynamics freezes at the initial frequencies.

A more interesting situation is when only one of the strategies is missing from the
initial population, say Π3(0) = 0. Setting A = 0 in Equation (16) we restate Equation (10)
as

dΠ1

dτ
= Π1 −Π2

1 − B =
1
4
− B−


Π1 −

1
2

2
. (31)

Although we can easily solve this equation for any τ, we will consider only the
asymptotic solution Π∗

1 = limτ→∞ Π1(τ) obtained by setting dΠ1/dτ = 0 in Equation (31).
Recalling that Π∗

4 = B/Π∗
1 and B < 1/4 we nd

Π∗
1 =

1
2
+


1
4
− B (32)

Π∗
4 =

1
2
−


1
4
− B. (33)

Moreover, since Π∗
1 +Π∗

4 = 1, we have Π∗
2 = 0. In this scenario (i.e., for Π3(0) = 0),

Equations (10) and (13) indicate that Π1 increases and Π4 decreases with τ. In fact, the
short-lived presence of strategy 2, i.e., (T,D) telling the truth and not believing, increases
the payoff of strategy 1, i.e., (T, B) telling the truth and believing, but decreases the payoff
of strategy 4, i.e., (L,D), which always fails to predict the true outcome of the coin toss
announced by the players using the other strategies. Figure 4 illustrates the time evolution
of the non-zero strategy frequencies in this scenario. Note that the xed point is neutral:
an arbitrary perturbation to Π∗

1, Π
∗
2, and Π∗

4 leads to different value of B and thus to a
different xed point.
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Figure 4. Time evolution of the strategy frequencies Πi(τ) for the initial conditions Π1(0) = 0.1,
Π2(0) = 0.3, Π3(0) = 0 and Π4(0) = 0.6, corresponding to A = 0 and B = 0.06. The xed points are
Π∗

1 ≈ 0.936, Π∗
2 = 0, and Π∗

4 ≈ 0.064.

A similar analysis can be performed by considering different missing strategies. For
example, if strategy 2 is missing, i.e., Π2(0) = Π2(τ) = 0, then the above results hold if we
exchange the labels of strategies 1 and 4.
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5. Finite Population Simulations

As noted above, the formulation of the replicator equation corresponds to the innite
population size limit of a (nite) population of individuals who change their strategies
by comparing their payoff performance with that of their peers [21]. This social learning
process is of utmost importance as it has been claimed that imitation is the fabric of
human society [28], a point nicely summarized by the phrase “Imitative learning acts like
a synapse, allowing information to leap the gap from one creature to another” [29]. In
addition, imitation of more successful individuals has inspired search algorithms [30,31]
where social learning replaces the biological processes of selection and recombination of
traditional evolutionary algorithms [32]. In this sense, the replicator equation formalism
becomes an essential tool for modeling the dynamics of social systems [33]. To highlight
the surprising link between social learning and the replicator equation [21], we present
here nite population simulations of the two-choice sender–receiver game where social
learning is explicitly considered in the interactions of the players.

In particular, we consider the two-choice sender–receiver game among N players who
interact pairwise in a well-mixed population, i.e., each player interacts with the other N− 1
players in the population. The strategies i = 1, . . . , 4 of the initial population are given by
the proportions Πi(0). Note that due to the strong dependence on the initial conditions,
we cannot randomly assign the strategies to the players in such a way as to obtain the
proportions Πi(0) on average: the proportion of strategy i among the N players must
perfectly match Πi(0) in order to reproduce the analytical results of the previous section. In
each round of the game, which comprises N(N − 1) interactions, we evaluate the average
payoff of each player a = 1, . . . ,N and denote it by wa. Then, we pick a player at random,
say player b, and compare her average payoff to the payoff of another randomly chosen
player, say player a. Player b switches to the strategy of player a with probability

p =
wa − wb
∆wmax

(34)

where ∆wmax is the maximum possible average payoff difference that guarantees p ≤ 1.
For example, for the deceiving game we have ∆wmax = b1 + b2 + c1 + c2 = 2(b1 + c1). If
wa < wb, then player b keeps her strategy. If player b changes strategy, the average payoffs
of all individuals in the population are recalculated. This completes the time step δt of the
imitation dynamics and so the time is updated to t = t+ δt, where δt = 1/(N∆wmax) [21].
In the seminal paper [21], the probability of switching strategies has an additional term
that does not depend on the average rewards of the players. If that term is omitted, we
obtain Equation (34). Our implementation of the stochastic simulations of the imitation
dynamics is standard in the evolutionary game literature (see, e.g., [34,35]). We note
that the replicator equation can be derived as the large population limit of a variety of
rules for individual learning [36]. This procedure can be rigorously justied and exact
estimates of the deviation of the replicator dynamics from a nite population dynamics are
available [37].

Randomness enters our simulations in two situations. The rst situation is when
the two players a and b are randomly chosen and their average payoffs wa and wb are
compared. The second situation occurs if wa > wb, where a uniformly distributed random
number in the unit interval u is generated and compared to the probability p given in
Equation (34): if u < p, player b switches to the strategy of player a.

Figure 5 shows the results of four runs of the stochastic imitation dynamics for the
case b2 + c2 > 0 and b2 + c2 ̸= b1 + c1 mentioned in Section 3, where the coexistence xed
point Π∗

1 = Π∗
4 and Π∗

2 = Π∗
3 depends on the initial frequencies of the strategies. There

is very good agreement between the deterministic predictions of the replicator equation
and the runs of the stochastic imitation dynamics. In this case, the average payoff in the
population, Equation (9), depends on the frequencies of the strategies and so there is no
way to obtain the coexistence xed point other than to solve Equation (2) numerically.
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Figure 5. Time evolution of the strategy frequency Π1 for N = 20,000 and different initial conditions.
(Left) Π1(0) = 0.1, Π2(0) = 0.3, Π3(0) = 0.4, and Π4(0) = 0.2, which leads to Π∗

1 = Π∗
4 ≈ 0.145 and

Π∗
2 = Π∗

3 ≈ 0.355. (Right) Π1(0) = 0.15, Π2(0) = 0.25, Π3(0) = 0.4, and Π4(0) = 0.2, which leads to
Π∗

1 = Π∗
4 ≈ 0.177 and Π∗

2 = Π∗
3 ≈ 0.323. The parameters of the payoff matrix are b1 = 1, b2 = 0.5,

and c1 = c2 = 0. The thick red curves are the solutions of the replicator equation, and the thin blue
curves are runs of the stochastic imitation dynamics.

Now, we return to the setting of parameters that characterize the deceiving game,
i.e., b1 + c1 = b2 + c2, but consider initial conditions that cause the frequencies of the pair
of completely opposite strategies Π1 and Π4 to take on values very close to zero. The
results are shown in Figure 6. The deterministic results of the replicator equation agree
very well with the four runs of the stochastic imitation dynamics until the number of
players using strategy 1 becomes less than 10, when each run begins to follow different
trajectories due to the strong effects of stochasticity on this population of players. In fact,
for one of the runs shown in Figure 6, strategy 4 becomes extinct at t = 27.3, leading to
the subsequent extinction of strategy 1 at t = 42.6. After the extinction of strategy 4, the
stochastic dynamics of the remaining strategies follow a pattern similar to that shown in
Figure 4. Of course, if we follow the stochastic dynamics further in time, all runs will lead
to the extinction of strategies 1 and 4. This extinction can be delayed by increasing the size
of the population N, and it can be avoided altogether in the innite population limit.
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Figure 6. Periodic solutions for the strategy frequencies of the deceiving game for N = 20,000. (Left)
Π1 vs. t. (Right) Π3 vs. t. The initial conditions are Π1(0) = 0.2, Π2(0) ≈ 0.731, Π3(0) ≈ 0.068 and
Π4(0) = 0.0005 which corresponds to A = 0.05 and B = 0.0001. The parameters of the payoff matrix
are b1 = b2 = 1, and c1 = c2 = 0. The thick red curves are the solutions of the replicator equation
and the thin blue curves are runs of the stochastic imitation dynamics.
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6. Discussion

Our study of the two-choice sender–receiver game offers some interesting caveats to
Kant’s conclusion that a world in which everyone lies simply cannot exist, while a world in
which everyone tells the truth is possible [3,4]. Of course, in the binary world considered
here, where disbelieving a lie is equivalent to believing a truth, there is complete symmetry
between the strategies (T, B), i.e., always tell the truth and believe the sender’s report, and
(L,D), i.e., always lie and disbelieve the sender’s report. In this sense, our results show
that a world consisting only of liars and unbelievers or only of truth tellers and believers is
possible, provided that the sender has no intention to deceive the receiver, which amounts
to satisfying the condition b2 + c2 < 0 for the parameters that determine the sender’s payoff
(see Table 2).

A less optimistic and perhaps more realistic scenario is characterized by the condition
b1 + c1 = b2 + c2 > 0 and is called the deceiving game. It describes the situation where
the sender’s intentions do not coincide with the receiver’s interests. In this case, our
results show a dynamic coexistence among the four possible strategies of the players. An
instructive way to visualize this conclusion is through the phase plane, which shows the
proportion of truth tellers ΠT = Π1 +Π2 and believers ΠB = Π1 +Π3 in the population
at a given time. In words, ΠT is the proportion of players using either strategy (T, B) or
strategy (T,D), whileΠB is the proportion of players using either strategy (T, B) or strategy
(L, B). Figure 7 shows the phase planes for the two different initial conditions we used to
generate Figures 2 and 6 in the innite population limit of the deceiving game. Essentially,
these results show that the increase in the proportion of believers ΠB is accompanied by an
increase in the proportion of liars (i.e., 1−ΠT) until it no longer makes sense to believe and
ΠB begins to decrease. Since in our binary world, the way to deceive a non-believer is to
tell the truth, the decrease in ΠB is accompanied by the increase in ΠT . Note that the closed
trajectories are centered on the neutral xed point Π∗

T = Π∗
1 +Π∗

2 =
√
B+

√
A = 1/2, and

Π∗
B = Π∗

1 +Π∗
3 =

√
B+

√
A = 1/2.
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Figure 7. Trajectories in the phase plane showing the frequency of truth tellers ΠT and the frequency
of believers ΠB for A = 3/25 and B = 1/50 (blue curve) and A = 0.05 and B = 0.0001 (red curve) in
an innite population. The parameters A and B are determined by the initial conditions according to
Equations (14) and (15), respectively. The trajectories are counterclockwise, as indicated.

7. Conclusions

A pervasive aspect of our study of the two-choice sender–receiver game when the
sender and receiver interests are antagonistic (i.e., b2 + c2 > 0) is the important role played
by the frequencies of the strategies in the initial population. This makes the analytical study
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of this game rather challenging, as only a thorough solution of the replicator Equation (2)
provides information about the time asymptotic behavior of the game. For the deceiving
game, where there is symmetry in the rewards and costs of the sender and receiver (i.e.,
b1 + c1 = b2 + c2 > 0), the solutions of the replicator equation are periodic and the
system is conservative, so that the dynamics always return to the initial setting of the
strategy frequencies. This means that the imitation dynamics are not powerful enough
to permanently alter the initial strategy frequencies. When this symmetry is broken (i.e.,
b1 + c1 ̸= b2 + c2 > 0), the dynamics converges to xed points determined by the initial
conditions. The robust inuence of player history on the outcome of the two-choice sender–
receiver game is a non-trivial result of our study and it may reect the unpredictability
of social systems whose members have antagonistic interests. It would be interesting to
see if this conclusion holds true in more realistic scenarios where the game takes place
within free-forming or casual groups so that the well-mixed population assumption is
relaxed [38,39].
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