

HIGH-TEMPERATURE OXIDATION OF Fe-45%Ta ALLOY – DISTRIBUTION OF SCALES FORMED UNDER DIFFERENT OXYGEN PARTIAL PRESSURES

Rebello, M. C.⁽¹⁾; Sayeg, I. J.⁽²⁾; Garcia F^o, J.⁽³⁾ and Wolynec, S.⁽¹⁾

⁽¹⁾Departamento de Engenharia Metalúrgica e de Materiais
Escola Politécnica da Universidade de São Paulo

Av. Prof. Mello Moraes, 2.463 / CEP 05508-900 / São Paulo - SP / Brasil
(011)3818.5241, Fax 3818.5421, E-mail: marc@usp.br

⁽²⁾Instituto de Geociências da USP / ⁽³⁾Instituto de Física da USP

The Fe-Ta alloys (15, 30 and 45wt%) were studied in an attempt to develop materials able to resist high-temperature sulfidation¹. These alloys were obtained from arc melting under argon atmosphere 99.8% tantalum rods (refined in an electron-beam equipment) and 99.98% iron (purchased from Aldrich Chemical). The alloys were heat treated at 1000 °C for 24 hours, followed by another period of 24 hours at 900 °C. The Fe-Ta phase diagram² shows that a two-phase microstructure (α -Fe and the intermetallic Fe₂Ta) was expected for all alloys.

The alloy ingots were cut into slices using a diamond saw. After polishing with SiC emery paper (220 – 400 – 600 mesh), samples for oxidation experiments were ready. These samples were oxidized in air and in CO₂ – H₂ mixtures (providing oxygen partial pressure of 10⁻²⁴ atm for 600 °C and 10⁻²⁰ atm for 700 °C and 800 °C) in a thermogravimetric analyser (TGA), for periods of 18 (air) and 24 hours (low oxygen partial pressure). The Fe-45%Ta alloy showed important distinctions if one compares the samples oxidized in air with those oxidized under low p(O₂). Kinetic results are summarized in Tables 1 and 2.

After TGA, oxidized samples were submitted to XRD which revealed that the main oxides formed during air oxidation were iron oxides (Fe₂O₃ and Fe₃O₄). For samples oxidized under low oxygen partial pressures no iron oxides were detected but tantalum oxides (mainly Ta₂O₅) and the double oxide FeTa₂O₆. Transversal sections of samples were examined at a SEM. The equipment used was a LEICA STEREOSCAN 440, having a tungsten filament, operating with an accelerating voltage of 20 kV, in the BSE mode and a working distance of 25 mm. This examination showed the presence of an internal and an external layer in samples oxidized in air, the latter composed of hematite, in some cases mixed with magnetite (Figure 1). Under low oxygen partial pressures only internal layers were observed (Figure 2). It was concluded that under low p(O₂) the external scales of Fe₂O₃ and/or Fe₃O₄ are not formed due to thermodynamic reasons, while FeO (which is stable at least for 600 and 700 °C) does not form at all. The EDS microprobe was used to analyse chemical composition of selected areas. This analysis together with stoichiometric comparisons confirmed the formation of iron oxides in the external scales after air oxidation (Fe₂O₃ and Fe₃O₄) and showed the presence of double oxides in the internally oxidized zones. For alloys oxidized in air the double oxide analyzed was FeTaO₄, while under low p(O₂) the FeTa₂O₆ was detected, in agreement with XRD results.

ACKNOWLEDGEMENTS

FAPESP (94/2249-3, 95/0086-2 and 98/15742-0), LCT/PMI and DEMAR/FAENQUIL

REFERENCES:

1. Castro-Rebello, M.; PhD Thesis, Universidade de São Paulo, 1999
2. Massalski, T. B.(ed.); Binary Alloy Phase Diagrams, vol. 2, pg. 1777

Table 1. parabolic constants for air oxidation of Fe-45%Ta

T (°C)	k _p (mg ² .cm ⁻⁴ .h ⁻¹)	r ²
600	0,1419	0,9831
700	0,6435	0,9732
800	Non-parabolic*	0,9968

* average slope = 0,847

Table 2. parabolic constants for low p(O₂) oxidation of Fe-45%Ta

T (°C)	k _p (mg ² .cm ⁻⁴ .h ⁻¹)	r ²
600	0,0598	0,9809
700	0,2052	0,9856
800	1,2111	0,9971