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Abstract

The travelling modes of single-photon-added coherent states (SPACS) are characterized by
using optical homodyne tomography. Given a set of experimentally measured quadrature
distributions, we estimate parameters of the state and also extract information about the
detector efficiency. The method used is minimal distance estimation between theoretical and
experimental quantities, which additionally allows to evaluate the precision of the estimated
parameters. Given the experimental data, we also estimate the lower and upper bounds on
fidelity. The results are believed to encourage a more precise engineering and detection of

SPACS.

PACS numbers: 03.65.Ta, 03.65.Wj, 42.50.Xa, 42.50.Dv

(Some figures may appear in colour only in the online journal)

1. Introduction

Optical homodyne tomography is a powerful technique to
infer continuous-variable quantum states of a specific mode
of electromagnetic radiation. Its history saw a dramatic
boom in the last two decades, when both theoretical
and experimental methods evolved significantly from the
first proof-of-principle studies [1-3] to the state-of-the-art
detection of arbitrarily shaped ultrashort quantum light
states [4] and the experimental analysis of decoherence in
continuous-variable bipartite systems [5]. Different stages of
the research in this area can be seen in the monographs
and reviews [6—11], where different approaches to the state
reconstruction are outlined and corresponding experimental
realizations are discussed.

The goal of this paper is to consider both theoretically and
experimentally the detection of single-photon-added coherent
states (SPACS). These states are defined by the formula
a’la)/+/1+ |a|?, where |&) is a conventional coherent state

0031-8949/13/014025+05$33.00 1

(e € C) and a' is a photon creation operator. Photon-added
states of light and their non-classical properties were
considered originally in the papers [12, 13] and then realized
in practice [14, 15]. The techniques of photon addition and
subtraction allowed to check experimentally the commutation
relation between the corresponding operators [16—18]. The
process tomography of photon creation and annihilation
operators was recently reported [19]. The nonclassical
behaviour of photon-added states was demonstrated in the
papers [20-22] and noiseless amplification was discussed
in [23].

The practical homodyne detection of some signals results
in experimental quadrature distributions wex(X,60) to be
compared with the theoretically predicted ones w, (X, 6). An
adequate theoretical model should take losses into account,
which are usually modelled by fictitious beamsplitters with
transmittivity n placed in front of ideal detectors. In the
paper [15], the explicit form of such theoretical quadrature
distributions wy, (X, 8) for SPACS is found for any 1. We can

© 2013 The Royal Swedish Academy of Sciences Printed in the UK


http://dx.doi.org/10.1088/0031-8949/2013/T153/014025
mailto:sergey.filippov@phystech.edu
http://stacks.iop.org/PhysScr/T153/014025

Phys. Scr. T153 (2013) 014025

S N Filippov et al

associate density operators p.x and py with distributions
wex (X, 0) and wy (X, 0), respectively. Note that these states
are mixed in general and depend on the parameters « and 7.

We can naturally define the fidelity of detection as
the fidelity between pex and pg, i.e. F =Tr|/pexr/Ptnl =

A/ PthPex/Pn- It is tempting to express F directly through
the measured distributions wex (X, #) avoiding reconstruction
of the state pex and dealing with complicated formulae. The
easiest way is to find the Bhattacharyya coefficient [24] for
distributions wey (X, ) and wy, (X, 0), which turns out to be
the upper bound for F [25]. Alternatively, one can use the
upper and lower bounds for F? that were developed in the
paper [26] and are also known as super- and sub-fidelity,
respectively. In this paper, we present operational ways to
calculate these quantities.

In principle, maximizing the sub-fidelity with respect to
o and n would enable us to estimate both these parameters.
As will be shown by an example in section 4, such a
method can be applied to extremely precise data only. If this
is not the case, parameters o and 1 can be estimated by
minimizing another distance between the states pex and oy
(not the Bures distance related to the fidelity). Fortunately, the
Hilbert—Schmidt distance is easy to compute via tomograms
and its minimization is performed in section 3. As a result, an
operational estimation of state and measurement parameters
is achieved. Finally, errors of the estimated parameters are
evaluated by using the symmetry condition w(X,6+m) =
w(—X, 0) met by fair optical tomograms. This approach was
suggested and demonstrated in the papers [27] and [28],
respectively. The improved precision of homodyne detection
is of vital importance to check different uncertainty relations
(see [28] and references therein) as well as to probe
commutation relations between position and momentum of
massive particles, which may be modified by gravity and
feasibly detected with the help of quantum optics [29].

The paper is organized as follows. In section 2, we recall
the explicit formula of homodyne quadrature distributions
of SPACS modified by the losses. In section 3, we present
theoretical basics and demonstrate particular results of the
minimal distance estimation of the state and apparatus
parameters. In section 4, the fidelity of detection is discussed.
In section 5, we briefly summarize the results obtained and
outline the prospects.

2. Quadrature distributions of SPACS

Generation of SPACS is due to injection of a coherent state
|a) into the signal mode of an optical parametric amplifier.
The stimulated emission of a single down-converted photon
into the signal mode results in SPACS generation, which is
triggered by the detection of a single photon in the idler
mode of the amplifier. A time-domain balanced homodyne
detector is then used to acquire quadrature data (see, e.g., the
review [8]).

The balanced homodyne detection is known to give
access to quadratures 5(9 = Q cos 6 + P sin 6, where
[Q, f’] =i and 6 €[0,27] is a phase of an intense
coherent light (the local oscillator). Once 6 is fixed, the
distribution of quadratures is given by the optical tomogram

wm(X, 0) = (Xolp|Xg), where p is the density operator of
the quantum state and 5{9 | Xo) = X|Xp).

Let p be a density operator of SPACS; then the tomogram
wn(X, 0) = (Xg|p|Xy) is easy to compute. However, it
turns out that the experimentally measured quadrature
distributions are smoother than the predicted ones and can
differ significantly from them. This takes place due to losses
and overall efficiency of detection n < 1. One can make
allowance for losses by introducing a fictitious beamsplitter
with transmittivity 7 in front of the ideal photodetectors (with
a sensitivity of 100%). Such an attenuation of the signal
results in the following convolution relation between the
quadrature distributions [30]:

wn(X, 0; 1) = W (Y, 6)

1
V(1 —77)/
X eXp [—% (Y — ﬁX)z] ay. 1)

In the Schrodinger picture, the distribution wy, (X, 6; n)
is nothing else but the optical tomogram (Xg|&E,[p]IXe) of
the transformed state &,[p], where &,[e] = Z/ix;o Ar(n) e
AZ(n) is a completely positive trace preserving map
with the following operator-sum representation: Ay(n) =
30 o) L (1 — )k Im) (m +k| (see, e.g., [6, 31]).

Using formula (1), one can calculate in an explicit form
the optical homodyne tomogram of a SPACS. Some algebra

yields
wn (X, 0; @, =t (1) (14410 sin’0—9)
JRHIaP)

2n—1 |a|)2+X2 sin?(6 — @)
V21 ¢
2
X exp [— (X — /21 |ae| cos(6 — (/))) } : )

+2n |:<X cos(@ — @) —

An analogue of tomogram (2) was first derived in the
paper [15], where the authors used a slightly different
commutation relation [Q, 13] = % The deduced tomogram (2)
comprises two parameters: o = |« |e'? determines the coherent
state o) to which a single photon is added, and »n is the
overall efficiency of homodyne detection and characterizes
the imperfection of the measurement device. The overall
efficiency includes transmission losses, mode matching and
the intrinsic quantum efficiency of detectors.

3. Estimation of parameters

Our goal is to compare wy(X,0;,n) with the
experimentally measured distributions we(X,60) and
find parameters o = |a|e' and 7 resulting in the best fitting.
In this sense, we perform a minimal distance estimation of
the state parameter « and the detector parameter . In order
to give this procedure a more rigorous formulation with
clearer physical meaning, we need to choose such a distance
between distributions w, (X, 0; o, n) and wey (X, 0) that
is related to some fair distance between states pn = &,[p]
and pex (satisfying metric requirements). Moreover, we are
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Figure 1. Experimental histograms we, (X, 6) (blue discontinuous lines) and the closest theoretical quadrature distributions wy, (X, €) (red
solid lines) of a SPACS for different phases: § =0 (a), § = 1.36 (b) and 0 = 2.49 (c).
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Figure 2. Square of the Hilbert—Schmidt distance versus state and detector parameters in the vicinity of the global minimum:
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interested in such a distance between the states that could be
operationally calculated via optical tomograms. Some aspects
of appropriate distances are discussed in the paper [32].
The Hilbert—Schmidt distance D = /Tr(pg — pex)? turns
out to be suitable because it can be given by the following
expression in terms of tomograms:

1 +00 +00
D?*(a,n) = -~ / drr // dX dY cos[(X +Y)r]
0 —00

x f 46 [wex (X, 6) — win(X, 6: @, 0)]
0

X [wex(_Y’ 9) - wth(_Yv 97 a, n)]7 (3)

which can be readily deduced with the help of a formula for
Trp; 0, obtained in [33]. Similarly, the experimental error
is evaluated by a slight modification of the formulae in the
paper [28], namely

A(D*) = % fom drr /fm dX dY cos[(X +Y)r]

T
X / dO[wex (X, O)wex (=Y, 0) —wex (X, 0 +71)
0

X Wex (=Y, 0 +7) + 2w (X, 0)(wex (Y, 6 + 1)

—wex (=Y, 0))]. “

Formula (4) is based on the fact that the fair quadrature
distributions satisfy the symmetry relation w(X,0+m) =
w(—X, 0). Experimentally measured distributions do not
satisfy precisely this relation, and this gives rise to the error (4)
which includes both systematic and statistical components
(for details see the paper [28]).

3.1. Results

In this subsection, we estimate parameters |«|, ¢ and n
for a particular set of experimental quadrature distributions.
Phases of the local oscillator take discrete values {91-}31:1.
For each fixed phase, the quadrature distribution is a
histogram of 5321 values, with the bin width being chosen to
guarantee the statistical confidence and prevent the data from
undersampling [28]. Examples of experimental histograms are
depicted in figure 1. Thus, the data are presented in discrete
form so the integrals in formulae (3) and (4) are calculated
approximately by the trapezoid method [35]. The error of
calculation is estimated in the paper [28] and is usually less
than the experimental quantity (4).

In our particular case, the minimization of the square
of distance D?(|a|, ¢, n) results in D> =0.0436, which
is achieved at |afop = 0.81, @op =3.14, nop =0.58. On
substituting these parameters in formula (2), we can depict
the closest theoretical quadrature distributions (see figure 1).

In order to evaluate the errors of estimated parameters
|&|opt> Popt» and nopy We consider three cuts of the function
D?(|al, ¢, n) that cross at the point (letfopt> @opts Mopt)- The
values of the function and their errors are shown in
figure 2. Further, the error of an optimal parameter gop
can be evaluated as Ag/SNR, where Ag is the width
of the corresponding function cut and SNR = (max D? —
min D?)/ max A(D?) plays the role of the signal-to-noise
ratio. The errors evaluated in such a way give rise to the
following results: |ot|opy = 0.81 £0.03, @ope = 3.14£0.25,
Nopt = 0.58 £0.02. The least precise parameter is the phase ¢
and this can be attributed to the relatively small mean number
of photons (n) < 1 and imprecise fixing of the local oscillator
phase 6. Improving control of this parameter would result in
higher precision of parameters under estimation.
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4. Fidelity of detection

Sometimes, the Hilbert—Schmidt distance between the states
is not very representative because it can grow under the
action of quantum operations (not monotone metric). In
this case one exploits some other quantities, e.g. the Bures
distance Dg = /2(1 — F), where F =Tr,/\/pmpex/Pin 1S
Uhlmann’s fidelity (see, e.g., the book [36]). The fidelity is
difficult to express in an operational way through quadrature
distributions. Nevertheless, we can use recently found bounds
for fidelity: the sub-fidelity E and the super-fidelity G that
were satisfying E < F> < G and given by the formulae
[26, 37, 38]

E(plha pex) =Tr Pth Pex t \/2[(TI' plhpex)z —Tr plhpexplhpex],
Q)]

G (P Pe) =T pupe ++/ (1= Trp2) (1 =Tr p2,). (6)

The overlap Trppwpex and purity Tr /oezX are readily
expressed through tomograms (see, e.g., [33]). It is worth
noting that the purity can also be estimated by exploiting
the covariant uncertainty relation [34]. As far as four-product
Tr o Pex Pth Pex 18 concerned, we can approximate it by Tr pgl.
In fact, we have |Tr ompOexOthOex — Tt /031| < |TT Pex Oth Pex —
Tr ,ot3h| < |Tr pezX —Tr ,ot2h| and can modify the sub-fidelity as
follows:

E,(Iotl'h pex) =Tr Pth Pex

+ /20Tt punpe)? = Tr p — [T p2, = Tr P11
@)
In order to be able to -calculate the modified

sub-fidelity (7) for SPACS, we find the following theoretical
values:

(1 =)
Trpi:l—ﬁ, ®)
sy And-m 2p’(A—n)
Troe=1= e P vt ©)

Returning to the example considered earlier, we substitute
the experimental data and the optimal theoretical values
|otfopt = 0.81, @opy = 3.14, nope = 0.58 into formula (6) and
obtain the upper bound G(pw, pex) =0.98 £0.02. In our
case, the direct calculation of sub-fidelity (7) turns out
to be problematic because the confidence interval of the
radicand is [—0.07; 0.05] (cf 2[(Tr ,otzh)2 —Tr pt‘L] =0.032).
Thus, the calculation of square root is worthless. Therefore,
the use of formula (7) is possible only with the data of very
high precision (errors should be substantially less than 1%).
Whenever this does not happen, one can use another lower
bound E” = Tr pppex < F? (see, e.g., [26]). This lower bound
is easy to calculate and in our case it equals E” = 0.81 £ 0.02.
Consequently, the fidelity of our interest is bounded by the
two-sided inequality 0.81 £0.02 < F?2<0.98+0.02.

5. Conclusions

In order to estimate parameters of some prepared SPACS,
we developed the operational method whose essence was the
comparison of experimental histograms with theoretically
predicted quadrature distributions. The explicit form
of theoretical distributions took into account the losses
presented, which allowed us to infer not only the state
parameter o but also the parameter n describing the overall
efficiency of homodyne detection. We discussed some
practical issues concerning the easiest way to calculate the
Hilbert-Schmidt distance and evaluate the errors of estimated
parameters. The phase of the state turned out to be the least
precise parameter, which could be ascribed to the small
intensity of the signal mode and the errors in control of the
local oscillator phase. Then we considered some operational
techniques to determine the lower and upper bounds for
fidelity of detection. We showed that, in practice, some of
these bounds can be calculated only with highly precise data.

The outlook for further research is to use the high
sensitivity of homodyne detection to trace all the stages
of the quantum state’s life: its preparation, transformation
via a quantum channel, and detection. Using appropriate
theoretical models of these processes, one can determine the
corresponding parameters. For instance, dark counts in the
trigger detector result in mixing of the SPACS with a residual
coherent state. In this case, the measured tomogram reads (1 —
P)WSPACS + P Weoherent, Where p is a fraction of dark counts.
The parameter p can be estimated by the same algorithm of
comparing wex and wy,.

In general, optical tomograms can be valuable
information sources on an equal footing with other state
descriptions [39]. Improving the accuracy of homodyne
detection, one can check the validity of more complicated
quantum theories and observe new phenomena (see,
e.g., [29]). The role of SPACS states for new experiments
can be also dramatic because of their ability to exhibit
properties ranging from classical to quantum ones for
different intensities [14].
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