

On Two Problems Related to Associators of Moufang Loops

I. B. Gorshkov^{1*}, A. N. Grishkov^{2,3**}, and A. V. Zavarnitsine^{1***}

¹Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

²Universidade de São Paulo, Instituto de Matemática e Estatística, Brasil

³Dostoevskii Omsk State University, Omsk, Russia

Received April 17, 2015; in final form, March 3, 2016

Abstract—A Moufang loop M of order 3^{19} is constructed, together with a pair a, b of elements of M , such that the set of all elements of M associating with a and b is not a subloop. This also gives an example of a nonassociative Moufang loop with a generating set in which every three elements have trivial associator.

DOI: 10.1134/S0001434617010278

Keywords: *Moufang loop, associator, subloop.*

1. INTRODUCTION

A loop in which the identity $(xy)(zx) = (x(yz))x$ holds is said to be a *Moufang loop*. As is well known, the Moufang loops are *diassociative*, i.e., every subloop generated by a pair of elements is a group. In particular, this implies that every left inverse to an element is its right inverse and the usual definition of powers and orders of elements holds. A finite Moufang loop is called a *p-loop* for a prime p if the order of every element of the loop is a power of p . As in the case of groups, this is equivalent to the condition that the order of the loop is a power of p . For the other main properties of Moufang loops, see [1] and [2]. For elements x, y, z of Moufang loops, denote by $[x, y]$ a unique element c , which is called the *commutator* of x and y , such that $xy = (yx)c$ and by (x, y, z) a unique element a , which is called the *associator* of x, y , and z , such that $(xy)z = (x(yz))a$.

The following two interrelated problems arise naturally in the study of Moufang loops.

Problem 1. Let L be a Moufang loop and let $a, b \in L$. Consider the set

$$l(a, b) = \{x \in L \mid (x, a, b) = 1\}.$$

Is $l(a, b)$ a subloop of L ?

Problem 2. Let L be a Moufang loop generated by a set X . Suppose that $(x, y, z) = 1$ for all $x, y, z \in X$. Does this imply that L is associative?

Recall that Moufang's theorem [1, Theorem IV.2.1] claims that, if $(x, y, z) = 1$ for three elements x, y, z of a Moufang loop, then the subloop generated by x, y , and z is a group. This obviously implies a relationship of Problem 2 to Moufang's theorem and the validity of the statement of the problem for $|X| \leq 3$. Note the short proof of Moufang's theorem recently obtained in [3].

As far as Problem 1 is concerned, it is a special case of the following general problem. Let F be a free Moufang loop with base $x, x_1, \dots, x_m, y_1, \dots, y_n$. It is of interest to describe the words $w \in F$ for which the set

$$l_w(a_1, \dots, a_m) = \{t \in F \mid w(t, a_1, \dots, a_m, b_1, \dots, b_n) = 1 \text{ for all } b_1, \dots, b_n \in F\}$$

*E-mail: ilygor8@gmail.com

**E-mail: shuragri@gmail.com

***E-mail: zav@math.nsc.ru

is a subloop of F for every $a_1, \dots, a_m \in F$. For example, as is well known, the word $w = (x, y_1, y_2)$ has this property, because the corresponding subset $l_w(\emptyset)$ is the *nucleus* of the loop F , and it is an (associative) subloop.

Problems 1 and 2 are solved in the affirmative for all known Moufang loops, which we have tested. However, we found a new example of a 4-generated loop of order 3^{19} , which disproves both assertions. This loop is constructed in the next subsection. In connection with Problem 2, we also note that the existence of 3-torsion in the given example is essential. We formulate the following conjecture.

Conjecture. *The answer to the question in Problem 2 is in the affirmative if L is a finite Moufang p -loop and $p \neq 3$.*

Some evidence in favor of this conjecture is given by the following simple fact of the theory of Mal'tsev algebras.

Proposition. *Let M be a Mal'tsev algebra with a set of generators X over a field whose characteristic differs from 2 and 3. If $J(x, y, z) = 0$ for all $x, y, z \in X$, then M is a Lie algebra.*

Indeed, every counterexample to this assertion would be a step to a counterexample to the Hypothesis, which one would be able to construct using the Campbell–Hausdorff formula, by analogy with [4].

Our example belongs to the class of “polynomial” Moufang loops, i.e., their underlying set is a vector space \mathbb{F}_p^n over the field of p elements, and the multiplication is defined by polynomials over \mathbb{F}_p . We treated a free, in a sense, 4-generated polynomial 3-group G of nilpotency class 4 and then evaluated a general central one-dimensional polynomial extension of G in the variety of Moufang loops. The correctness of the last step was also tested using a computer. The parameters obtained in this way were specialized to obtain the desired counterexample. The loop presented below is the factorization by a maximal normal subgroup which does not contain some nonidentity associator.

2. A LOOP

Let M be the 19-dimensional vector space over the field \mathbb{F}_3 . We represent elements of M as vectors $x = (x_1, x_2, \dots, x_{19}) \in M$. We introduce a new operation \circ on M defined for $x, y \in M$ by the formula

$$x \circ y = x + y + f, \quad (2.1)$$

where $f = (f_1, \dots, f_{19})$ and f_k are polynomials in x_i and y_j written out explicitly as follows:

$$\begin{aligned} f_1 &= f_2 = f_3 = f_4 = 0, & f_5 &= -x_2y_1, & f_6 &= -x_3y_1, \\ f_7 &= -x_4y_1, & f_8 &= -x_3y_2, & f_9 &= -x_4y_2, & f_{10} &= -x_4y_3, \\ f_{11} &= -x_2x_3y_1 - x_2y_1y_3 + x_5y_3 - x_8y_1, & f_{12} &= -x_2x_4y_1 - x_2y_1y_4 + x_5y_4 - x_9y_1, \\ f_{13} &= -x_3y_1y_2 + x_6y_2 + x_8y_1, & f_{14} &= -x_3x_4y_1 - x_3y_1y_4 + x_6y_4 - x_{10}y_1, \\ f_{15} &= -x_4y_1y_2 + x_7y_2 + x_9y_1, & f_{16} &= -x_4y_1y_3 + x_7y_3 + x_{10}y_1, \\ f_{17} &= -x_3x_4y_2 - x_3y_2y_4 + x_8y_4 - x_{10}y_2, & f_{18} &= -x_4y_2y_3 + x_9y_3 + x_{10}y_2, \\ f_{19} &= -x_1x_2x_4y_3 + x_1x_2y_3y_4 + x_1x_3y_2y_4 + x_1x_4y_2y_3 - x_1y_2y_3y_4 \\ &\quad - x_2x_3x_4y_1 + x_2x_3y_1y_4 + x_2x_4y_1y_3 + x_3x_4y_1y_2 - x_3y_1y_2y_4 + x_1x_8y_4 \\ &\quad - x_1x_9y_3 + x_1x_{10}y_2 - x_1y_2y_{10} + x_1y_3y_9 - x_1y_4y_8 - x_2x_6y_4 + x_2x_7y_3 - x_2x_{10}y_1 \\ &\quad + x_2y_1y_{10} - x_2y_3y_7 + x_2y_4y_6 + x_3x_5y_4 - x_3x_7y_2 + x_3x_9y_1 - x_3y_1y_9 + x_3y_2y_7 \\ &\quad - x_3y_4y_5 - x_4x_5y_3 + x_4x_6y_2 - x_4x_8y_1 + x_4y_1y_8 - x_4y_2y_6 + x_4y_3y_5. \end{aligned}$$

One can verify that (M, \circ) is a Moufang loop. The identity element is the zero vector in M , and, for $x \in (M, \circ)$, the relation

$$x^{-1} = -x + h \quad (2.2)$$

holds, where $h = (h_1, \dots, h_{19})$ and the polynomials h_k are

$$h_1 = h_2 = h_3 = h_4 = 0, \quad h_5 = -x_1x_2, \quad h_6 = -x_1x_3, \quad h_7 = -x_1x_4,$$

$$\begin{aligned}
h_8 &= -x_2x_3, & h_9 &= -x_2x_4, & h_{10} &= -x_3x_4, & h_{11} &= -x_1x_8 + x_3x_5, \\
h_{12} &= -x_1x_9 + x_4x_5, & h_{13} &= x_1x_2x_3 + x_1x_8 + x_2x_6, \\
h_{14} &= -x_1x_{10} + x_4x_6, & h_{15} &= x_1x_2x_4 + x_1x_9 + x_2x_7, \\
h_{16} &= x_1x_3x_4 + x_1x_{10} + x_3x_7, & h_{17} &= -x_2x_{10} + x_4x_8, \\
h_{18} &= x_2x_3x_4 + x_2x_{10} + x_3x_9, & h_{19} &= -x_1x_2x_3x_4.
\end{aligned}$$

Let e_1, \dots, e_{19} be the standard basis of the original vector space M , i.e., $e_i = (\dots, 0, 1, 0, \dots)$, where 1 stands at the i th place. Write

$$a = e_1, \quad b = e_2, \quad c = e_3, \quad d = e_4.$$

Then, using the product formula (2.1), one can prove that the following relations hold in (M, \circ) :

$$\begin{aligned}
e_5 &= [a, b], & e_6 &= [a, c], & e_7 &= [a, d], & e_8 &= [b, c], \\
e_9 &= [b, d], & e_{10} &= [c, d], & e_{11} &= [[a, b], c], & e_{12} &= [[a, b], d], \\
e_{13} &= [[a, c], b], & e_{14} &= [[a, c], d], & e_{15} &= [[a, d], b], & e_{16} &= [[a, d], c], \\
e_{17} &= [[b, c], d], & e_{18} &= [[b, d], c], & e_{19} &= ([a, b], c, d).
\end{aligned} \tag{2.3}$$

Note that the equation

$$(\dots ((e_1^{n_1} \circ e_2^{n_2}) \circ e_3^{n_3}) \circ \dots \circ e_{19}^{n_{19}}) = (\bar{n}_1, \dots, \bar{n}_{19}) \tag{2.4}$$

holds for all $n_1, \dots, n_{19} \in \mathbb{Z}$, where $[n \mapsto \bar{n}]$ stands for the natural epimorphism $\mathbb{Z} \rightarrow \mathbb{F}_3$. Indeed, using (2.1) and (2.2), one can readily show by induction on $n \in \mathbb{Z}$ that the loop element e_i^n coincides with the element $\bar{n}e_i$ of the space M , where $i = 1, \dots, 19$, and then verify the equation (2.4) parametrically, using (2.1).

This, together with equations (2.3), implies, in particular, that $(M, \circ) = \langle a, b, c, d \rangle$. In this loop, the following equations hold:

$$(a, b, c) = (a, b, d) = (a, c, d) = (b, c, d) = 1, \quad ([a, b], c, d) = e_{19} \neq 1.$$

Hence, the loop is not associative (since the associativity of an arbitrary loop is obviously equivalent to the fact that all associators are equal to the identity), which gives a negative answer to Problem 2. Moreover, we have $a, b \in l(c, d)$ and $[a, b] \notin l(c, d)$, and this means that $l(c, d)$ is not a subloop, and thus the answer to Problem 1 is negative as well.

3. MAL'TSEV ALGEBRAS

For the definitions and main properties of Mal'tsev algebras, see, e.g., [5]. Recall that, for elements a, b, c of a Mal'tsev algebra, one can define their Jacobian $J(a, b, c) = (ab)c + (bc)a + (ca)b$. Let us now prove the Proposition.

Proof of the Proposition. Let $J(M)$ be the ideal of the algebra M generated by $J(a, b, c)$ for all $a, b, c \in M$. It suffices to show that $J(M) = 0$. Since the Jacobian $J(a, b, c)$ is linear with respect to every argument, we may assume without loss of generality that a, b , and c are (nonassociative) words in X . Let us use further the induction by $n = |a| + |b| + |c|$, where $|w|$ stands for the length of the word $w \in M$. If $n = 3$, then $J(a, b, c) = 0$ by assumption. If $n > 3$, then we may assume that $|a| > 1$, $a = a_1a_2$, and $|a| = |a_1| + |a_2|$. Using the identity [5, (2.15)]

$$3J(wx, y, z) = J(x, y, z)w - J(y, z, w)x - 2J(z, w, x)y + 2J(w, x, y)z,$$

which holds in the Mal'tsev algebras over the fields whose characteristic differs from 2 and 3, we obtain $J(a, b, c) = 0$ by induction. This completes the proof of the proposition. \square

The authors are indebted to the anonymous referee for remarks which helped to improve the original version of the paper.

ACKNOWLEDGMENTS

The research of the first author was supported by the FAPESP Foundation (grant no. 2014/08964-1). The research of the second author was supported by the FAPESP and CNPq Foundations and by the Russian Foundation for Basic Research (under grant 16-01-00577a). The research of the third author was supported by the FAPESP Foundation and by the Russian Foundation for Basic Research (under grant 13-01-00505).

REFERENCES

1. H. O. Pflugfelder, in *Quasigroups and Loops: Introduction, Sigma Ser. in Pure Math.* (Heldermann Verlag, Berlin, 1990), Vol. 7.
2. V. D. Belousov, *Foundations of the Theory of Quasigroups and Loops* (Nauka, Moscow, 1967) [in Russian].
3. A. Drápal, “A simplified proof of Moufang’s theorem,” *Proc. Amer. Math. Soc.* **139** (1), 93–98 (2011).
4. E. N. Kuz’min, “The connection between Malcev algebras and analytic Moufang loops,” *Algebra Logika* **10**, 3–22 (1971).
5. A. A. Sagle, “Malcev algebras,” *Trans. Amer. Math. Soc.* **101**, 426–458 (1961).