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On Two Problems Related to Associators of Moufang Loops
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Abstract—A Moufang loop M of order 319 is constructed, together with a pair a, b of elements of M,
such that the set of all elements of M associating with a and b is not a subloop. This also gives an
example of a nonassociative Moufang loop with a generating set in which every three elements have
trivial associator.
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1. INTRODUCTION

A loop in which the identity (zy)(zx) = (2(yz))x holds is said to be a Moufang loop. As is well
known, the Moufang loops are diassociative, i.e., every subloop generated by a pair of elements is a
group. In particular, this implies that every left inverse to an element is its right inverse and the usual
definition of powers and orders of elements holds. A finite Moufang loop is called a p-loop for a prime p
is the order of every element of the loop is a power of p. As in the case of groups, this is equivalent to
the condition that the order of the loop is a power of p. For the other main properties of Moufang loops,
see[1]and[2]. For elements x, y, z of Moufang loops, denote by [z, y| a unique element ¢, which is called
the commutator of x and y, such that xy = (yz)c and by (z,y, z) a unique element a, which is called
the associator of x, y, and z, such that (zy)z = (z(yz))a.

The following two interrelated problems arise naturally in the study of Moufang loops.

Problem 1. Let L be a Moufang loop and let a,b € L. Consider the set
l(a,b) ={z € L | (z,a,b) = 1}.
Is l(a,b) a subloop of L?

Problem 2. Let L be a Moufang loop generated by a set X. Suppose that (x,y,z) =1 for all
x,y,z € X. Does this imply that L is associative?

Recall that Moufang’s theorem [1, Theorem IV.2.1] claims that, if (z,y,z) =1 for three ele-
ments z, y, z of a Moufang loop, then the subloop generated by z, y, and z is a group. This obviously
implies a relationship of Problem 2 to Moufang’s theorem and the validity of the statement of the problem
for | X| < 3. Note the short proof of Moufang’s theorem recently obtained in [3].

As far as Problem 1 is concerned, it is a special case of the following general problem. Let F' be a free

Moufang loop with base z, 1, ..., Tm, Y1, - - -, Yn. [t is of interest to describe the words w € F for which
the set

ly(ar,...,am) ={t € Flw(t,a1,...,am,b1,...,b,) =1 forallby,... b, € F}
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is a subloop of F for every aq,...,a, € F. For example, as is well known, the word w = (x, y1, y2)
has this property, because the corresponding subset [,,(2) is the nucleus of the loop F, and it is an
(associative) subloop.

Problems | and 2 are solved in the affirmative for all known Moufang loops, which we have tested.
However, we found a new example of a 4-generated loop of order 3!, which disproves both assertions.
This loop is constructed in the next subsection. In connection with Problem 2, we also note that the
existence of 3-torsion in the given example is essential. We formulate the following conjecture.

Conjecture. The answer to the question in Problem 2 is in the affirmative if L is a finite Moufang
p-loop and p # 3.

Some evidence in favor of this conjecture is given by the following simple fact of the theory of Mal’tsev
algebras.

Proposition. Let M be a Mal'tsev algebra with a set of generators X over a field whose
characteristic differs from 2 and 3. If J(z,y,2) = 0 forall x,y,z € X, then M is a Lie algebra.

Indeed, every counterexample to this assertion would be a step to a counterexample to the Hypoth-
esis, which one would be able to construct using the Campbell-Hausdorff formula, by analogy with
[4].

Our example belongs to the class of “polynomial” Moufang loops, i.e., their underlying set is a vector
space I over the field of p elements, and the multiplication is defined by polynomials over IF,. We treated
a free, in a sense, 4-generated polynomial 3-group G of nilpotency class 4 and then evaluated a general
central one-dimensional polynomial extension of GG in the variety of Moufang loops. The correctness of
the last step was also tested using a computer. The parameters obtained in this way were specialized to
obtain the desired counterexample. The loop presented below is the factorization by a maximal normal
subgroup which does not contain some nonidentity associator.

2. A LOOP
Let M be the 19-dimensional vector space over the field F3. We represent elements of M as vectors
x = (z1,22,...,219) € M. We introduce a new operation o on M defined for z,y € M by the formula
zoy=x+y+f, (2.1)
where f = (fi,..., fi9) and fj, are polynomials in z; and y; written out explicitly as follows:
i=fh=f=f=0, [fs=-my, fe=—x301,
fr = —xa1, fs = —x3y2,  fo=—Tay2,  fro = —74ys,
f11 = —Tax3y1 — T2y1Y3 + T5Y3 — TsYi, fi2 = —ToTay1 — T2Y1Y4 + T5Y4 — Toy1,
f13 = —x3y192 + Y2 + T8Y1, J14a = —T3T4y1 — T3Y1Y4 + T6Ya — T10Y1,
f15 = —T4y192 + T7Y2 + Ty, fi6 = —Tay1y3 + T7Y3 + T10Y1,
J17 = —T3%4Y2 — T3Y2Ys + TeYs — T10Y2,  f18 = —TaYays + Toys + T10Y2,
J19 = —x1T2w4Y3 + T1T2Y3Y4 + T1T3Y2Y4 + T1T4Y2Y3 — T1Y2Y3Y4

— T2T3T4Y1 + T2T3Y1Y4 + T2T4Y1Y3 + T3T4Y1Y2 — T3Y1Y2Y4 + T1T8Y4

— T1Z9Y3 + T1T10Y2 — T1Y2Y10 + T1Y3Y9 — T1Y4Ys — T2T6Y4 + T2T7Y3 — T2T10Y1
+ T2Y1Y10 — T2Y3Y7 + T2YaYe + T3T5Y4 — T3T7Y2 + T3T9Y1 — T3Y1Y9 + T3Y2Y7
— T3Y4Ys5 — T4T5Y3 + TaTeY2 — T4T8Y1 + TaY1Ys — TaY2Ye + TayY3Ys.

One can verify that (M, o) is a Moufang loop. The identity element is the zero vector in M, and, for
x € (M, o), the relation

rl=—z+h (2.2)
holds, where h = (hq, ..., hi9) and the polynomials hy, are

hi=hy =hs =hy =0, hs = —x129, he = —x123, h7 = —x124,
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hg = —xows, hg = —xamy, higp = —x31y, h11 = —x128 + 2375,
his = —x129 + T4T5, his = x1x973 + 2128 + ToX6,
hi4 = —x1710 + T4, his = T1w0my + X179 + T2,
hig = 172374 + T1710 + T3T7T, hi7 = —wow10 + T4,
hig = wowswy + w210 + 7379, hig = —w1w2w374.
Let eq,...,e19 be the standard basis of the original vector space M, i.e., e;=(...,0,1,0,...),

where 1 stands at the ith place. Write
a = ey, b= ey, c = eg, d=ey.

Then, using the product formula (2.1), one can prove that the following relations hold in (M, o):

es = [a,b], e = [a, ], er = [a,d], es = [b, ],

eg = [b,d], e1p = [e, d], e11 = [[a,b], ], e12 = [[a, b],d], 23)

e13 = [[a, ], b], e14 = [[a, ], d], e1s = [[a, d],b], e1 = [[a, d], c],

e1r = [[b, ], d], e1s = [[b,d], d], e19 = ([a,b], ¢, d).

Note that the equation
(- ((eftoep?)oes®)o---0eld®) = (ni,...,ni9) (2.4)

holds for all ny,...,n19 € Z, where [n +— n] stands for the natural epimorphism Z — F3. Indeed,
using (2.1)and (2.2), one can readily show by induction onn € Z that the loop element e}’ coincides with
the element ne; of the space M, where i = 1,...,19, and then verify the equation (2.4) parametrically,

using (2.1).
This, together with equations (2.3), implies, in particular, that (M, o) = (a,b, ¢, d). In this loop, the
following equations hold:

(a,b,c) = (a,b,d) = (a,c,d) = (b,e,d) =1, ([a,b],c,d) = e19 # 1.

Hence, the loop is not associative (since the associativity of an arbitrary loop is obviously equivalent
to the fact that all associators are equal to the identity), which gives a negative answer to Problem 2.
Moreover, we have a, b € I(c,d) and [a,b] & I(c,d), and this means that [(c, d) is not a subloop, and thus
the answer to Problem 1 is negative as well.

3. MAL'TSEV ALGEBRAS

For the definitions and main properties of Mal’tsev algebras, see, e.g., [5]. Recall that, for ele-
ments a, b, ¢ of a Mal’tsev algebra, one can define their Jacobian J(a, b, ¢) = (ab)c + (be)a + (ca)b. Let
us now prove the Proposition.

Proof of the Proposition. Let J(M) be the ideal of the algebra M generated by J(a,b,c) for all
a,b,c € M. It suffices to show that J(M) = 0. Since the Jacobian J(a, b, ¢) is linear with respect to
every argument, we may assume without loss of generality that a, b, and ¢ are (nonassociative) words
in X. Let us use further the induction by n = |a| + |b| 4 |¢|, where |w| stands for the length of the
word w € M. If n = 3, then J(a,b,c) = 0 by assumption. If n > 3, then we may assume that |a| > 1,
a = ajag, and |a| = |a;| + |az|. Using the identity [5, (2.15)]

3J(w$7 Y, Z) = J(I’, Y, Z)’UJ - J(y7 2, ’U))ZL‘ - 2J(z7 w, x)y + 2J(’UJ, xz, y)z,
which holds in the Mal’tsev algebras over the fields whose characteristic differs from 2 and 3, we obtain

J(a,b,c) = 0 by induction. This completes the proof of the proposition.

The authors are indebted to the anonymous referee for remarks which helped to improve the original
version of the paper.
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