

South-American Symposium on Isotope Geology

Brazil

# Extended Abstracts

June 15-18, 1997 Campos do Jordão São Paulo

# The double stage Sm-Nd model age and aplications to Brazilian platform rocks

Sato, K.1

Geoscience Institute - USP.
R. do Lago 562, S. Paulo, Brasil - CEP 01498-970

### Single stage Sm-Nd model age

The time corresponding to the point where the evolution curve of the sample  $^{143}Nd/^{144}Nd(T)$  intersects the CHUR and DM curves are termed  $T_{CHUR}$  and  $T_{DM}$  (CHUR = Chondritic Uniform Reservoir; DM=depleted mantle).

The model ages can be calculated from equation:

$$T_{x} = \lambda^{-1} \ln\{1 + \left[ \frac{(1^{43}\text{Nd}/1^{44}\text{Nd})_{s}(t_{0}) - (1^{43}\text{Nd}/1^{44}\text{Nd})_{x}(t_{0})}{(1^{47}\text{Sm}/1^{44}\text{Nd})_{s}(t_{0}) - \frac{1^{47}\text{Sm}/1^{44}\text{Nd}_{x}(t_{0})}{(1^{43}\text{Nd}/1^{44}\text{Nd})_{s}(t_{0})} \right]$$
 (eq. 1)

where x=CHUR or DM; s=sample and  $t_{\circ}$ = today ratio value;

 $\lambda = 6.54 \times 10^{-12} a^{-1}$ ;  $(^{143} Nd/^{144} Nd)_{CHUR} = 0.512638$  and  $(^{147} Sm/^{144} Nd)_{CHUR} = 0.1967$ 

The  $^{143}Nd/^{144}Nd$  ratio also expressed here as  $E_{Nd}(t)$  , the deviation from the value expected in a chrondritic reservoir (CHUR), and is (DePaolo 1981):

$$\epsilon_{Nd}(T) = 10^4 \{ [^{143}Nd/^{144}Nd_s(T) / ^{143}Nd/^{144}Nd_{CHUR}(T) ] - 1 \}$$
 (eq. 2) where  $(^{143}Nd/^{144}Nd)_x(T) = (^{143}Nd/^{144}Nd)_x(t_o) - (^{147}Sm/^{144}Nd)_x[(exp\lambda T) - 1]$ 

The magnitude of the  $\epsilon_{_{Nd}}$  value for crustal rocks depends on the product of time and chemical fractionation parameter  $f_{_{Sm/Nd}}$ :

$$f_{\text{Sm/Nd}} = [(^{147}\text{Sm}/^{144}\text{Nd})_{\text{s}} - (^{147}\text{Sm}/^{144}\text{Nd})_{\text{CHUR}}] / [(^{147}\text{Sm}/^{144}\text{Nd})_{\text{CHUR}}]$$
 (eq. 3)

The  $\epsilon_{\rm Nd}$  of the model depleted mantle and crustal rock sample are given accurately by (DePaolo 1981):

```
\begin{array}{l} \epsilon_{_{Nd}} \ (T) = 0.25 T^2 - 3T \, + \, 8.5 \ (DM \, - \, deplete \, mantle \, evolution) \, . \quad (eq. \, 4) \\ \epsilon_{_{Nd}} \ (T) = \, \epsilon_{_{Nd}} (t_{_{o}}) \, - \, 25.09 f_{_{Sm/Nd}} T \, \, (rock \, sample \, \, at \, \, a \, \, time \, \, T) \, . \end{array} \quad (eq. \, 5) \end{array}
```

The  $T_{DM}$  model age is otained by equating  $E_{Nd}(T)$  mantle and  $E_{Nd}(T)$  rock ( $E_{Nd}(T)$ ) rock =  $E_{Nd}(T)_{DM}$ .

## Double stage Sm-Nd model age

In some cases if the <sup>147</sup>Sm/<sup>144</sup>Nd ratio is very different from 0.09 - 0,125 mainly for granitic rocks, then Sm-Nd model age can be unrealiste. When the Sm/Nd ratios of a crustal rock are fractioned very late (>0.4Ga) after the mantle-continental differention the single stage model cannot be used.

A simple two stage history for magma source is ilustrated in Fig. 1, where  $T_{DM2}$  represents a model age of the magma source and  $T_{fe}$  represents a fractionation events.

In many cases such an age  $(T_{fa})$  can be estimated from other geochronological relationships especially in the particular case of large crustal provinces of known age.

The depleted mantle model age in double stage is defined as:

$$T_{DM2} = \lambda^{-1} Ln \{1 + [(^{143}Nd/^{144}Nd)_{DM} - [(^{143}Nd/^{144}Nd)_{s} - (e^{\lambda T(fe)} - 1) [(^{147}Sm/^{144}Nd)_{s} - (^{147}Sm/^{144}Nd)_{s} - (^{147}Sm/^{144}Nd)_{s} - (^{147}Sm/^{144}Nd)_{s}]\}$$
 (eq. 6)

where  $(^{147}\text{Sm}/^{144}\text{Nd})_{DM} = 0.2188$ ;  $(^{143}\text{Nd}/^{144}\text{Nd})_{DM} = 0.513151$  (Millisenda et. al. 1994) and  $(^{147}Sm/^{144}Nd)_{f1}$  = the average value for the crustal rock source (in general ~= 0.11 for TTG and granitic rock).

The equation  $T_{DM2}$  (double stage) can be applied if  $T_{DM1}$  (single stage) > Tfe and

 $(^{147}\text{Sm}/^{144}\text{Nd})_{s} < 0.2188$  or if  $T_{\text{DM1}} < T_{\text{fe}}$  and  $(^{147}\text{Sm}/^{144}\text{Nd})_{s} > 0.2188$ . The model age,  $T_{\text{CHUR2}}$ , in two stages can be calculated by DePaolo (1988) 3-14

$$T_{CHUR2} \approx T_{fe} + \varepsilon_{Nd(fe)} / 25.09 f_{Sm/Nd(f1)}$$
 (eq. 7)

where the  $\varepsilon_{Md(fe)}$  value is calculated for the fracionation event  $(T_{fe})$ ;  $f_{Sa/Nd(fe)}$ can be estimated using source average values. As an example, a typical crustal rock such as TTG and granite might have  $f_{sa/Nd(t1)} \approx -0.44 \pm 0.06$ . If the  $f_{sa/Nd}$  value measured today is very different from -0,44 ± 0.06, mainly for granitic rocks with  $\varepsilon_{\text{Md(fe)}} < 0$ , then the equation above can be applied with success.

Applications of two stage Sm-Nd model ages in mineral:

| mineral | identi | $T_{\text{DM2}}$ | 143Nd/  | 14/Sm/ | Sm   | Nd   | f <sub>Sm/Nd</sub> | $\varepsilon_{Nd}(t)$ | t    | rf |
|---------|--------|------------------|---------|--------|------|------|--------------------|-----------------------|------|----|
| /rock   | cation | (Ga)             | 144Nd   | 144Nd  | ppm  | ppm  |                    | -110                  | (Ga) |    |
| plag.   | ЈВ 7В  | 2.70             | .511578 | .1386  | 22.4 | 97.7 | 30                 | -16                   | .61  | 5  |
| pyrox.  | ЈВ 7В  | 2.71             | .511409 | .0976  | 4.6  | 28.5 | 50                 | -16                   | .61  | 5  |
| biotite | ЈВ 7В  | 2.73             | .511540 | .1341  | 4.9  | 22.1 | 32                 | -17                   | .61  | 5  |
| wr/gnl  | ЈВ 7В  | 2.71             | .511523 | .1279  | 1.1  | 5.2  | 35                 | -16                   | .61  | 5  |
| plag.   | JP 48  | 1.54             | .512350 | .1693  | 2.1  | 7.5  | 14                 | -3.6                  | .58  | 5  |
| biotite | JP 48  | 1.52             | .512248 | .1395  | 0.6  | 2.6  | 29                 | -3.4                  | .58  | 5  |
| garnet  | JP 48  | 1.56             | .513124 | .3721  | 2.4  | 3.9  | +.89               | -3.5                  | .58  | 5  |
| wr/gns  | JP 48  | 1.54             | .512162 | .1223  | 5.4  | 26.7 | 38                 | -3.8                  | .58  | 5  |

Table 1: Sm-Nd data for mineral of the Itatins Complex. The model ages, Tmg are based on equation 6 using  $(^{147}Sm/^{144}Nd)_{fl} = .1279$  and .1223 (wr = wall rock);  $T_{fe} =$ 0.61Ga and .58Ga (Sm-Nd mineral isochron) for samples JB 7B (wr = granulite) and JP 48 (wr=gneiss) respectively. Isotopic data reference: 5 = Picanço (1995).

Applications of Sm-Nd model ages in two stage in wall rocks:

| rock    | identication          | T <sub>DM2</sub><br>(Ga) | 143Nd<br>144Nd | 147Sm<br>144Nd | Sm   | Nd   | f <sub>Sm/Nd</sub> | $\varepsilon_{Nd}(t)$ | t<br>(Ga)        | rf |
|---------|-----------------------|--------------------------|----------------|----------------|------|------|--------------------|-----------------------|------------------|----|
| vulc.   | MP64 <sup>A</sup>     | 0.97                     | .513204        | .2320          | 1.37 | 3.57 | .18                | +6.9                  | .93*             | 7  |
| granite | MP47B <sup>A</sup>    | 1.19                     | .512608        | .2050          | 8.0  | 23.6 | 04                 | -1.1                  | .49*             | 6  |
| granite | MP478D <sup>A</sup>   | 1.23                     | .512561        | .1904          | 7.4  | 23.5 | 03                 | -1.1                  | .55*             | 6  |
| granite | WW99D <sub>R</sub>    |                          | .511612        | .1651          | .86  | 3.15 | 16                 | -12.3                 | 1.9*             | 3  |
| granite | WW99H <sub>R</sub>    |                          | .512039        | .1910          | .48  | 1.52 | 03                 | -10.3                 | 1.9*             | 3  |
| granite | ABP63D <sup>C</sup>   |                          | .511765        | .1474          | 5.92 | 24.3 | 25                 | -13                   | .62*             | 8  |
| gneiss  | MJ137 <sup>D</sup>    |                          | .512573        | .1683          |      |      | 14                 | 0.9                   | .59"             | 9  |
| granite | BR-92.48 <sup>±</sup> | 2.60                     | .511156        | .0768          | 14.0 | 110. | 61                 | -20                   | .60 <sup>s</sup> | 10 |

**Table 2:** Sm-Nd data for wall rock of the Complexes and Province: A = Center Goiás; B = Cont. Mirante - S.Francisco Craton; C = Cunhaporanga - Paraná; D = Curitiba - Paraná; D = Borborema. The model ages,  $T_{\rm DM2}$  are basead by equation 6 using ( $^{147}$ Sm/ $^{144}$ Nd)f1 = 0.11 and  $T_{\rm fe}$  = t( \* =Rb-Sr isochron; B = Sm-Nd mineral isochron; U-Pb). Isotopic data reference: 7 = Pimenterl et. al. (1992); 6 = Pimnetel and Charnley (1991); 3 = Marinho (1991); 8 = Reis Neto (1994); 9 = Siga Jr. (1995); 10 = Van Schmuss et. al. (1995).

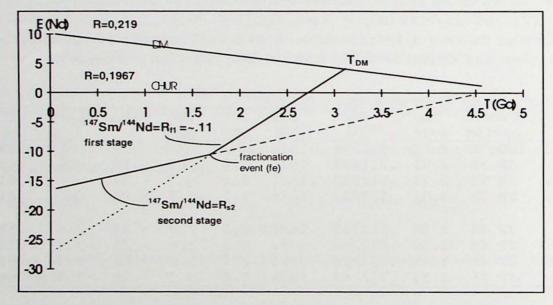



Fig. 1

### References

- DePaolo, D.J. 1981 Geoph. Res., v86, B11, 10470-10488.
- DePaolo, D.J. 1988 Neodymiun isotope geochemistry. An introduction. Springer Verlarg. 187pg.
- 3. Marinho, M.M PhD Thesis Clermont Ferrand University, France.
- 4. Millisenda, C.C.; Liew, T.C.; Hofmann, A.W. and Köhler, H.- 1994 Precambrian Research, V66 p95-110.
- 5. Picanço, J.L. -1995 Master thesis Geoscience Institute USP
- 6. Pimentel, M.M. and Charnley, N.- 1991 Chemical Geology V86, p123-238.
- 7. Pimentel, M.M. and Fuck, R.A. -1992 Geology, V20, p375-379.
- 8. Reis Neto, J.M. 1994 PhD Thesis. Geoscience Institute USP 254p.
- 9. Siga Jr., O. PhD Thesis Geoscience Institue USP. 216p.
- 10. Van Schmus, W.R.; Brito Neves, B.B.; Hackspacher, P. and Babinski, M. 1995 Jour. S. Am. E. Sci. V8, p267-288.