








showing that the hypothesis of having isomorphic partial group rings over
the integers is even stronger than having isomorphic integral group rings.

2 The structure of partial group rings

Throughout this paper, G will always denote a finite group. In this section,
we shall describe the structure of R,,,.G, correcting a gap in the proof of
the recursive formula (14) of [3, Theorem 3.2].

We shall consider the Brandt groupoid associated with G, denoted T =
['(G), whose elements are pairs (4, g), where g is an element of G and A
is a subset of G' containing its identity e and the element g~—!. Note that
e,9 € gA. The multiplication of pairs (A, g)(B,A) in T is defined only in
the case when A = hB where we set:

(hB,g) - (B1h) = (B,gh)-

Notice that the set of units of T, denoted by 9, is the set of all elements
of the form (4, e).

Let R be a commutative ring. We recall that if I' is any groupoid, then
the groupoid algebra RI is the free R-module freely generated over R by the
elements of I', with multiplication given by:

oo _ } m72, if the product is defined
T =, otherwise,

and extended linearly on RI.

Let RT'(G) denote the R-algebra of the groupoid I'(G). The dimension
of this algebra is equal to the cardinality of I'(G), which is the number of
pairs (A, g) as described above. We remind that if |G| = n, it was shown in
[3] that:

dim(RI'(G)) = 2"%(n+1). (1

Observe that, since the right-hand side of (1) is a strictly increasing
function on n, it follows that if G and H are finite groups such that RI'(G)
is isomorphic to RT'(H), then |G| = |H]|.

Notice that the units of T, of the form (A, €}, are idempotents in RT'(G),
they are mutually orthogonal and their sum is the identity of RI'(G).

It was shown in [3, Corollary 2.7] that the groupoid algebra RT(G) is
tsomorphic to the partial group algebra Rp,,G.



It is sometimes useful to represent a groupoid I as an oriented graph Er,
whose vertices are the units of the groupoid. To each element (A,g) € T
we assign an oriented edge of Er from (4,€) to (gA, ) corresponding to
the map A 3 a + ga € gA. Each connected component of Er represents a
subgroupoid of I'.

Let A be any subset of G containing the identity. In what follows, we
will identify A with the vertex (A,e) of the graph Ep(g). We denote by H
the stabilizer of A in G;i.e.:

H={geG|gA= A}

In the graph Er(g), H corresponds to the set of edges starting and ending
at the vertex (A, e). Notice that, since e € A, then H C A.

Since H acts on the left on A, then the orbits of this action are the right
cosets of H, and A is a union of them, say:

m
A= U Ht;, t) =e,
=1
where
m =14l
|H|

Let T'4 denote the subgroupoid of I'(G) corresponding to the connected
component of the vertex A of the graph Epg). It was shown in [3, Proposi-
tion 3.1] that the groupoid algebra KT 4 is isomorphic to My, (K H). Clearly,
KT(G) is the direct sum of the algebras arising from all the connected com-
ponents. We wish to compute the number of these direct summands.

Let C denote a full set of representatives of the conjugacy classes of sub-
groups of G. Given a subgroup H € C and a positive integer m, we need to
count the number of subsets A of G, of order {A| = m x |H| whose stabilizer
is precisely H. We denote by b, (H) the number of all such subsets and
by em(H) the number of distinct direct summands of the form M,,(KH’)
where H’ is any subgroup of G conjugate to H.

Notice that, since conjugation is an automorphism of G, if H and H'
are conjugate in G, it follows by symmetry that b, (H) = by (H"), for all m.
Thus, the total number of sets of order m x |H| whose stabilizer is either
H or one of its conjugates is by, (H)(G : Ng(H)), where Ng(H) denotes the
normalizer of H in G. In each connected component we have m of these sets
(whose stabilizers are pairwise conjugate), whence:



Cm(H) — bm(HM?n:Ngan. (1)

A recursive formula for the coefficients b, (H) can be obtained as in [3].
The number of subsets of G which is a union of m cosets of H, one of which
is always H itself, is clearly ((an-); !). Some of these may have a stabilizer
B which is actually bigger that H, and their number is given by:

> bwmyem(B).

H<BLG
(B:H)|m

So we have:

m—1

b (H) = ((G:H)_l> = 2 bwysa(B)-

B
From formula (1), we have that
mem (H)
bm(H) = v
=G No(m)

hence

m—1 T (G : Ng(B))
(B:H}|m

em(H) = (G s No(H) (((G:H)’l)— > ™ (B‘H)°"‘"B‘”’(B)).(2)

Thus, we come to the following reformulation of Theorem 3.2 of [3].

Theorem 2.1 Let R be a commutative ring, G a finite group and let C
denote a full set of representatives of the conjugacy classes of subgroups of
G. Then the partial group ring of G over R is of the form

RparG = @  em(H) Mu(RH),
HeC
1<m<(G:H)
where ¢ (H) M(RH) means the direct sum of ¢, (H) copies of M (RH)
and the coefficients ¢, (H) are given by the recursive formula (2) above.

In the light of this fact, Corollary 3.3 of [3] should now be stated as
follows.



Corollary 2.2 Let G; and G2 be two finite groups. Assume that there
ezists an isomorphism between the lattices of subgroups of G\ and of G that
preserves conjugacy and such that corresponding subgroups have isomorphic
group rings over R. Then RparG1 = RpoarGa.

One should notice that the counterexample given in [3, Remark 4.6] to
show that there exist noncommutative groups G, and G which are not iso-
morphic and such that Kp. Gy = KparGs, where K denotes an algebraically
closed field of characteristic 0, remains valid since the lattices of subgroups
of these groups also fulfill the conditions of Corollary 2.2.

3 Isomorphisms of modular partial group algebras

In this section we shall consider partial group algebras over a field K of
characteristic p > 0 which divides the order of the given groups.

The next easy fact is probably known, but we include a proof for the
sake of completeness.

Lemma 3.1 Let R be a ring with unity and let 1 = €1 + -+ € and
1= fi+---+f, be two decompositions of the identity into a sum of minimal
central idempotents. Then r = s and there ezists a permulation o € S, such
that e; = fy(, 1< <.

Proof. Notice that e; = (e; — &; fj) + eif; is a decomposition of ¢; as a
sum of central idempotents. It follows from the minimality of e; that either
eifi = 0 or e;f; = e;. A similar argument shows that if e;f; # 0 then
eif; = fj.

Now, ¢; = e;f1 + - -+ + ¢; f, 80, for some index j we must have ¢; f; # 0,
consequently e; = ¢;f; = f; and the result follows. u]

It follows that if a ring R possesses a decomposition into a finite product
of indecomposable rings then such decomposition is unique up to a permu-
tation of direct factors.

Remark 3.2

Let R be a commutative ring and let G be a group. Write
RpeyG 2 D  en(H)Mu(KH),

HeC
1<m<(G:H)



the decomposition of Rpy,,G given by Theorem 2.1. If we write each group
ring K H as a direct sum of indecomposable two-sided ideals, K H = @;;(H)
then the ideals of the form M,,(I;(H)) are the indecomposable direct sum-
mands of Ry, G.

Theorem 3.3 Let R be an integral domain of characteristic p > 0 and let
G1,G2 be two finite groups such that Rp.rGy = RperGz. Let S; denote a
Sylow p-subgroup of G;, i =1,2. Then RS; = RS,.

Proof. Since S; is a p-group and char(R) = p, it follows directly from
Theorem 2.1 that K S is an indecomposable direct summand of RyerG1. By
the remark above, there exists a subgroup H of G and an indecomposable
direct summand I of K H such that RS, & M, (), for some positive integer
m. Notice that RS contains no idempotent elements, so neither does M, (1)
and hence we must have m = 1.

Since [ is a direct summand of RH, there exists an idempotent e, which
is central in RH, such that I = RHe,

Claim 1. The p'-elements of H act as scalars on e (i.e., ifh € H isa
?'-element, then there exists an element B € R such that he = Be).

Indeed, it is well known that A(S;) = (z— 1| z € 81) is a nilpotent ideal
of RS, and RS; = R® A(S;) as R-modules. Since I & RS, for an element
h € H we have that he can be written in the form he = ae+ n where a € R
and % is nilpotent. So, there exists a positive integer n such that 7*" = 0
and we have (he)?" = (0e)?". As h is a p™-element, there exists a positive
integer s such that h*?" = h, thus he = e, where = a®?".

Claim 2. I = KSe, where S is a Sylow p-subgroup of H.

In fact, since e is central, He is a group and if S is a Sylow p-subgroup
of H, then Se is a Sylow p-subgroup of He. By the claim above, the set N
of p'-elements of He is central, so He = Se x N. Every element z € RHe
can be written in the form z = 3=, ; ri;y;hje where each y;e € Se and each
h;je € N so, using again the previous claim, we obtain

= Z rijyiBie = Z"ijﬂjyie € RSe.
W 5]

Conclusion.
As Se is a set of generators of the R-module RSe and the image of S)
under the isomorphism is a linearly independent set in RSe we have that
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[$1] < |S] < |Sa|. As |G1] = |G| it follows immediately that S is a Sylow
p-subgroup of Gz and clearly RS, & I & RS,. o

Corollary 3.4 Let R be an integral domain of characteristic p > 0 and let
G1, G2 be two finite p-groups such that RparG1 = RparGa. Then RGy =
RG,. Moreover, if Gy is abelian then G1 2 Gj.

Proof. The first part of our statement follows directly from the theo-
rem above. If G, is abelian then, by a result of Deskins [2], it follows that
G1 2 Gs. [m]

In order to prove our next theorem we shall need some technical results.

For a finite abelian group G, we shall denote by ym(G) the number of sub-
groups of G of order m. We shall say that a divisor k > 0 of |G| is small if
every prime that divides |G| divides also 1%—[
Proposition 8.5 Let K be an algebraically closed field of characteristic p >
0 and G a finite abelian group. Let k be a small divisor of |G| with |G| # 2k.
Then, the multiplicity of M L‘;’-l—l (K) in the decomposition of KpsrG a8 a
direct sum of indecomposable two-sided ideals is

—— 5 (L% i} 1) ©)
— k G - m7m .
Il m|lolpdm L"i 2

1'5"'<r:3'|c__;‘;'

Proof. Notice that Kpe,G is a direct sum of two-sided ideals of the form
M,, (K H), where H is a subgroup of G. Writing H = P x N where Pis a
p-group and p } |N|, if P # 1, we have that M, (KH) = M, ((KN)P) =
M, (K& ®K)P) 2 Mp(KP)® -+ ® My (KP). Thus, the indecom-
posable two sided direct summands of K,,,G are either of the form M., (X)
or M, (KP) where P is a psubgroup of G, m > 1. Notice that sum-
mands of the form M,,(K) come only from the decompositions of summands
Mn (K H) where H is a p'-subgroup.

Let H be a p-subgroup of G with (l—f-l - 1) |H| < |G| and let A be a
subset of G such that 1 € A and |A] = (& - 1) [H]. We claim that if the
stabilizer S(A) of A contains H then S(A) = H. In fact, if ¢ is a prime
dividing {S(A)|/|H| then g divides (Lgl - 1;. As ¢} |G|, it follows from the
hypothesis that ¢ | |G|/k, a contradiction. Thus S(A) = H and it follows
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that any set which is a union of (J-f—l - I) distinct cosets of H has stabilizer
equal to H so the mult1phcnty of Mic is1_ ,(KH) in the decomposition given

in Theorem 2.11is
k (G:H)-1
IGI-k\ L_o )

Since Ml%l (K H) is a direct sum of [H| copies of Ml_l ,(K) we have

that in the decomposition of K,.G into a direct sum of mdecomposable
two-sided ideals the total number of summands isomorphic to Mg L,‘.l_l K)

coming from subgroups of a fixed order m with p fm is

k ((G:H)-1

The result follows. ]

Next we adapt Corollary 4.2 of [3] to the modular case.

Corollary 3.8 Let K be an algebraically closed field of characteristic p > 0
and Gy and G, finite abelian groups with |G1| = |G2| = ¢"a where g # p
is a prime and q | a. If KporG1 X KporGy then 74, (G1) = v, (G3), for all
posttive integers j such that 2j < n.

Proof. If a = 1 the the result follows from [3, Corollary 4.2}, so one may
assume that ¢"a is not a power of a prime. We prove more in general that if
k is a small divisor of |Gy | with p k, and |G| > k2, then ¥ (G1) = Ym(G2)
for all m < k with p Jm. Under our hypotheses, the number k = g7 satisfies
these conditions.

We use induction on k, the case k = 1 being trivial. Let & > 1 be
fixed. One easily observes that the inequality m < V%—ILF holds if and only

if m < k. Moreover, |G| > 2k as |G1| > k2. Thus, using Proposition 3.5, we

have that the multiplicity of Mg, | _ 1(K ) in the decomposition of Kp.G,
k

into a direct sum of indecomposable two-sided ideals is:

G = & Gi| _ o | G-
G| m {161 p f m -2

1<m<k
By Lemma 3.1, this number is invariant under K-algebra isomorphisms.
Since the coefficient of 4x(G1) in the above formula is non-zero, to conclude
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the proof it suffices to show that Y (G1) = Tm(G2) for all m < k with m
dividing |Gy | = |G2| and p fm. One checks this similarly as in the proof of
[3, Corollary 4.2].

a

Theorem 3.7 Let R be an integral domain of characteristic p > 0 and
let Gy, G2 be two finite abelian groups such that Rpe,Gi = RparGa. Then
G] =3 Gz.

Proof. Since, for any field £ O R we have that
EparGI =) ®r R‘parGI 2F ®Rr R?arGZ = EparGZa

we may assume, without loss of generality, that Kp.,G1 & KporG2 for an
algebraically closed field K.

Let Gy = Py x--+x P, and G3 = Q1 X - -- X @; be the decompositions of
G; and G as a direct product of Sylow subgroups respectively and assume
that P; and @; are the subgroups corresponding to the prime p. Then, by
Theorem 3.3 we have that KP, = K@) and hence, by Deskins’ result [2],
P >Q,.

Let g; # p be the prime divisor of |G| corresponding to the Sylow sub-
groups P; and @Q; respectively. It follows from Corollary 3.6 that 7, 2 (G1) =

7,2 (G2) for all positive integers j such that g” divides |G;|. Now, [3, Lemma
4.3) shows directly that P; 20, 2<i <. o

4 Integral partial group rings

Let G; and G be finite groups. We will show that ZyerG1 & ZiparG2 is a
stronger restriction than having isomorphic integral group rings. Actually,
we have the following,

Theorem 4.1 Let G; and G be finite groups such that Zyor G1 & ZoparGa.
Then, for every subgroup H of Gy there ezists a subgroup N of G such that
ZH >27ZN. In particular, ZG, & ZZG4.

Proof. Write

Zpu.rGl = @ cm(H) Mm (ZH)1
15m}5!(egl:11)
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ZparGr = @ en(N) Ma(ZN),

Nec!
1<mL(Ga:N)

the decompositions of Z,,, G and Z,,G, given by Theorem 2.1.

Notice that, since integral group rings of finite groups contain no idem-
potent elements, the summands in the decompositions above are all inde-
composable.

Given a subgroup H of G;, we have that ZH appears as a summand
of Z,,+G1 so we obtain from Lemma 3.1 that there is a subgroup N of G;
and a positive integer m such that ZH = M,,(ZN). As ZH contains no
idempotent elements, it follows immediately that m = 1 and ZH = ZN. As
G1 and Gy are of maximal order, the last part of our statement is obvious.

G
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