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Abstract 

We consider the isomorphism problem for partial group rings Rr,arG 
and show that, in the modular case, if char(R) = p and R,,arG1 ~ 
R,,arG2 then the corresponding group rings of the Sylow p-subgroups 
are isomorphic. We use this to prove that finite abelian groups having 
isomorphic modular partial group algebras are isomorphic. Moreover, 
in the integral case, we show that the isomorphism of partial group 
rings of finite groups G1 and G2 implies 71,Gi ~ 71,G2. 

1 Introduction 

Partial representations of groups were introduced independently by R. Exel 
[4] and J.C. Quigg and I. Raeburn [6] in the context of c•algebras, motivated 
by the desire to study algebras generated by partial isometries on a Hilbert 
Space. The partial group ring of a group G over a ring R was defined in [3] 
and plays a role in the theory of partial representations similar to that of 
the group ring in representation theory. 
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Definition 1.1 Given a group G and a ring R with unity we consider the 
semigroup Sa generated by the set of symbols {[g] I g E G} with relations: 

(1) [e] = l; 
(2) [s-1][s][t] = [s-1][st]; 

(9) [s][t][t-1] = [st][t-1]; 

for all s,t E G. 
The partial group ring Rp,,.rG of G over R is the semigroup ring of Sa 

over R. 

If R is a commutative ring, then an alternative definition can be given 
by the universal property which puts the representations of Rr,a.rG into one­
to-one correspondence with the partial representations of G (see [3, p. 512]). 
Given two R-algebras A and B, an isomorphism A f:!! B will mean an R­
isomorphism of algebras. 

It is well known that for group rings, if K is a field, in general KG does 
not determine G up to isomorphisms. Indeed, E.C. Dade [l] gave an example 
of two non-isomorphic groups G and H such that KG f:!! KH for all fields 
K. Even in the stronger hypothesis that 'll,G e! 'll,H 1 a. counterexample 
has been given recently by M. Hertweck [5]. It is then natural to consider 
the isomorphism problem of partial group rings to see if these carry more 
information about the group than group rings in the usual sense1 • 

The structure of partial group rings Wil8 described in [3] where it Wi18 also 
shown that if G and H are finite a.belia.n groups and R is an integral domain 
whose characteristic does not divide the order of G then Rr,a.rG e! Rr,a.rH 
if and only if G !:!! H. An example was given to show that there do exist 
non-isomorphic finite groups such that their partial group rings over an 
algebraically closed field of characteristic O are actually isomorphic. 

In this paper we correct an overview in formula (14) of [3] and prove 
a similar result on isomorphisms in the modular case; i.e., when the char­
acteristic of R divides the order of G. We also show that if R is of char­
acteristic p > 0 and G and H are arbitrary finite groups such that their 
partial group rings over R a.re isomorphic, then the group rings of the cor­
responding Sylow p-subgroups a.re also isomorphic. Furthermore, we prove 
that if 'll,pa.rG ~ 'll,pa.rH for finite groups G and H, then also 'll,G !:!! 'll,H 

1for more information on the isomorphism problem of group rings, the reader may see 
[7], (8) or (9) 
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showing that the hypothesis of having isomorphic partial group rings over 
the integers is even stronger than having isomorphic integral group rings. 

2 The structure of partial group rings 

Throughout this paper, G will always denote a. finite group. In this section, 
we shall describe the structure of R.,,r1rG, correcting a. gap in the proof of 
the recursive formula. (14) of [3, Theorem 3.2]. 

We shall consider the Brandt groupoid associated with G, denoted r = 
f(G), whose elements a.re pairs (A,g), where g is a.n element of G and A 
is a. subset of G containing its identity e and the element y-1. Note that 
e, g E gA. The multiplication of pairs (A, g)(B, h) in r is defined only in 
the case when A = hB where we set: 

(hB,g) · (B, h) = (B,gh). 

Notice that the set of units of r, denoted by r(o), is the set of all elements 
of the form (A, e). 

Let R be a. commutative ring. We recall that if r is any groupoid, then 
the groupoid algebra Rf is the free R-module freely generated over R by the 
elements of r, with multiplication given by: 

. _ { 'Y1'Y2, if the product is defined 
'Yl 'Y2 - O, otherwise, 

a.nd extended linearly on Rf. 
Let Rf(G) denote the R-algebra. of the groupoid f(G). The dimension 

of this algebra. is equal to the cardinality of r(G), which is the number of 
pairs (A,g) as described a.hove. We remind that if IGI = n, it was shown in 
[3] that: 

dim(Rf(G)) = 2"-2 (n + 1). 

Observe that, since the right-hand side of (1) is a. strictly increasing 
function on n, it follows that if G and H a.re finite groups such that Rf(G) 
is isomorphic to Rf(H), then IGI = IHI-

Notice that the units of r, of the form (A, e), are idempotents in Rf(G), 
they a.re mutually orthogonal and their sum is the identity of Rf(G). 

It was shown in [3, Corollary 2.7] that the groupoid algebra Rf(G) is 
isomorphic to the partial group algebra ~rG. 
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It is sometimes useful to represent a groupoid r as a.n oriented graph Er, 
whose vertices a.re the units of the groupoid. To each element (A,g) E f 
we assign an oriented edge of Er from (A, e) to (gA, e) corresponding to 

the map A 3 a H ga E gA. Each connected component of Er represents a 

subgroupoid of r. 
Let A be a.ny subset of G containing the identity. In what follows, we 

will identify A with the vertex (A, e) of the graph Er(G)· We denote by H 

the stabilizer of A in G; i.e.: 

H = {g E GI gA = A}. 

In the graph Er(G), H corresponds to the set of edges starting a.nd ending 

at the vertex (A, e). Notice tha.t, since e E A, then H ~ A. 
Since H acts on the left on A, then the orbits of this action are the right 

cosets of H, and A is a. union of them, say: 

where 

m 

A= LJHt;, 
i=l 

IAI 
m=1n1· 

Let r A denote the subgroupoid of r(G) corresponding to the connected 

component of the vertex A of the graph Er(G)• It was shown in [3, Proposi­

tion 3.1] that the groupoid algebra Kr A is isomorphic to Mm ( K H). Clearly, 

Kf(G) is the direct sum of the algebras arising from all the connected com­

ponents. We wish to compute the number of these direct summands. 
· Let C denote a. full set of representatives of the conjugacy classes of sub­

groups of G. Given a subgroup H EC a.nd a. positive integer m, we need to 
count the number of subsets A of G, of order IAI = m x IHI whose stabilizer 
is precisely H. We denote by bm(H) the number of all such subsets and 
by c,,.(H) the number of distinct direct summands of the form Mm(KH') 
where H' is any subgroup of G conjugate to H. 

Notice that, since conjugation is a.n automorphism of G, if H and H' 
are conjugate in G, it follows by symmetry that bm(H) = bm(H'), for all m. 
Thus, the total number of sets of order m x IHI whose stabilizer is either 

Hor one of its conjugates is bm(H)(G: Na(H)), where Na(H) denotes the 

normalizer of Hin G. In each connected component we have m of these sets 
(whose stabilizers are pairwise conjugate), whence: 
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{1) 

A recursive formula for the coefficients bm (H) can be obtained as in [3]. 
The number of subsets of G which is a union of m cosets of H, one of which 
is a.lways H itself, is clearly (<0,;.~t). Some of these may have a stabilizer 
B which is actua.lly bigger that H, and their number is given by: 

L bm/(B:H)(B). 
H<B<G 
(B:HjTm 

So we have: 

(
(G: H) -1) 

bm(H) = _ l - L bm/(B:H)(B). 
m H<B<G 

(B:H)lm 

From formula (1), we have that 

hence 

mcm(H) 
bm(H) = (G: Na(H))' 

c.,,(H) = 2-(c: Na(H)) (((G: H) - 1) _ L m/(B : H)cm/(B:H)(B)) . (2) 
m m - 1 H<B<a (G: Na(B)) 

(B:HjTm 

Thus, we come to the following reformulation of Theorem 3.2 of (3]. 

Theorem 2.1 Let R be a commutative ring, G a finite group and let C 
denote a full set of representatives of the conjugacy classes of subgroups of 
G. Then the partial group ring of G over R is of the fonn 

EB Cm(H) Mm(RH), 
Hee 

1$m$(G:H) 

where c.,,(H) Mm(RH) means the direct sum of c.,,(H) copies of Mm(RH) 
and the coefficients cm(H) are given by the recursive fonnula (2) above. 

In the light of this fact, Corollary 3.3 of (3) should now be stated as 
follows. 
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Corollary 2.2 Let G1 and G2 be two finite groups. Assume that there 

exists an isomorphism between the lattices of subgroups of G1 and of G2 that 

preserves conjugacy and such that corresponding subgroups have isomorphic 

group rings over R. Then Rpa.rG1 ~ llpa,rG2, 

One should notice that the counterexample given in [3, Remark 4.6] to 

show that there exist noncommutative groups G1 and G2 which are not iso­

morphic and such that KP4rG1 ~ KparG2, where K denotes an algebraically 

closed field of characteristic 0, remains valid since the lattices of subgroups 

of these groups also fulfill the conditions of Corollary 2.2. 

3 Isomorphisms of modular partial group algebras 

In this section we shall consider partial group algebras over a field K of 

characteristic p > 0 which divides the order of the given groups. 
The next easy fact is probably known, but we include a proof for the 

sake of completeness. 

Lemma 3.1 Let R be a ring with unity and let 1 = e1 + · · · + er and 

1 = /i + · • · + f. be two decompositions of the identity into a sum of minimal 

centrol idempotents. Then r = s and there exists a permutation u E Sr such 

that e; = f,,.(i), 1 ~ i ~ r. 

Proof. Notice that e; = (e, - e;/j) + e;fi is a decomposition of e; as a 

sum of central idempotents. It follows from the minimality of e; that either 

e;/; = 0 or ed; = e;. A similar argument shows that if e;f; -:/:- 0 then 
e;f; = f;. 

Now, e; = e;/1 + · · · + e;f. so, for some index j we must have e;/; '# O, 

consequently e; = e;f; = f; and the result follows. D 

It follows that if a ring R possesses a decomposition into a finite product 

of indecomposable rings then such decomposition is unique up to a permu­
tation of direct factors. 

Remark 3,2 

Let R be a commutative ring and let G be a group. Write 

E9 c,,.(H) Mm(KH), 
sec 

l:!,mS(G:H) 
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the decomposition of Jl,,a,G given by Theorem 2.1. If we write ea.ch group 
ring K Has a direct sum ofindecomposa.ble two-sided ideals, K H = G);l;(H) 
then the ideals of the form Mm(I;(H)) are the indecomposable direct sum­
mands of Rr,arG, 

Theorem 3.3 Let R be an integral domain of characteristic p > 0 and let 
G1, G2 be two finite groups such that Rpa,.G1 ~ Rr,arG2 • Let S; denote a 
Sylow p-subgroup of G;, i = 1, 2. Then RS1 ~ RS2, 

Proof. Since S1 is a p-group and char(R) = p, it follows directly from 
Theorem 2.1 that KS1 is an indecomposable direct summand of Rp4 ,.G1 . By 
the remark a.hove, there exists a. subgroup Hof G2 and an indecomposable 
direct summand I of K H such that RS1 ~ Mm(I), for some positive integer 
m. Notice that RS1 contains no idempotent elements, so neither does Mm (I) 
and hence we must have m = 1. 

"Since I is a direct summand of RH, there exists an idempotent e, which 
is central in RH, such that I= RHe. 

Claim 1. The p' -elements of H act as scalars on e (i.e., if h E H is a 
p'-element, then there exists an element /3 ER such that he= {3e). 

Indeed, it is well known that A.(Si) == (x -1 I x E S1} is a nilpotent ideal 
of RS1 and RS1 = REBtt.(Si) as R-modules. Since I~ RS1 , for a.n element 
h EH we have that he can be written in the form he= ae+ 1/ where o ER 
and T/ is nilpotent. So, there exists a positive integer n such that ,t" = 0 
and we have (he)P" == (oe)P". As h is a p'-element, there exists a positive 
integer s such that hap" = h, thus he = f3e, where f3 = o•P". 

Claim 2. I= KSe, where Sis a Sylow p-subgroup of H. 
In fa.ct, since e is central, He is a group and if S is a. Sylow p-subgroup 

of H, then Se is a. Sylow p-subgroup of He. By the claim above, the set N 
of p'-elements of He is central, so He== Sex N. Every element x E RHe 
can be written in the form x = Li,i r;1y;h1e where each y;e E Se and ea.ch 
h1e E N so, using again the previous claim, we obtain 

x = L r;1y;/35e = L r;;f3;y;e E RSe. 
i,j i,j 

Conclusion. 
As Se is a set of generators of the R-module RSe and the image of S1 

under the isomorphism is a. linearly independent set in RSe we have that 
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IS1I $ ISi $ IS2I- AB IG1I = IG2I it follows immediately that S is a Sylow 
p-subgroup of G2 and clearly RS1 ~ I£!! RS2. D 

Corollacy 3.4 Let R be an integral domain of characteristic p > 0 and let 
Gi, G2 be two finite p-groups such that RpllrG1 ~ Rp/lrG2. Then RG1 ~ 
RG2• Moreover, if G1 is abelian then G1 ~ G2. 

Proof. The first part of our statement follows directly from the theo­

rem above. If G1 is abelian then, by a result of Deskins [2], it follows that 

G1 ~ G2. D 

In order to prove our next theorem we shall need some technical results. 

For a. finite abelian group G, we shall denote by "Ym(G) the number of sub­

groups of G of order m. We shall say that a divisor k > 0 of IG I is small if 

every prime that divides IGI divides also ~-

Proposition 3.5 Let K be an algebraically closed field of characteristic p > 
0 and G a finite abelian group. Let k be a small di'!Jisor of IGI with !GI =f, 2k. 
Then, the multiplicity of Mip_

1 
(K) in the decomposition of KpllrG as a 

direct sum of indecomposable two-sided ideals is 

Proof. Notice that KfJ/l,.G is a direct sum of two-sided ideals of the form 
Mm(KH), where His a subgroup of G. Writing H =PX N where Pis a. 
p-group and pf INI, if P =f, 1, we have that Mm(KH) = Mm ((KN)P) = 
Mm ((K$ ·••$K)P) ~ Mm(KP) $ ···$ Mm(KP). Thus, the indecom­
posable two sided direct summands of KfJ4rG are either of the form Mm (K) 
or Mm(KP) where P is a p-subgroup of G, m ~ 1. Notice that sum­
mands of the form Mm(K) come only from the decompositions of summands 
Mm(KH) where His a.p'-subgroup. 

Let H be a p'-subgroup of G with (~ - l) IHI :S IGI and let A be a 

subset of G such that 1 E A and !Al = ( ~ - 1) IHI- We claim that if the 

stabilizer S(A) of A contains H then S(Ai = H. In fact, if q is a. prime 

dividing jS(A)I/IHI then q divides (f- 1). AB q I IGI, it follows from the 

hypothesis that q I IGl/k, a contra.diction. Thus S(A) = H and it follows 
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that any set which is a union of ( ~ - 1) distinct cosets of H has stabilizer 

equal to H so the multiplicity of M.IQI (KH) in the decomposition given 
. ,. -1 

in Theorem 2.1 is 
k ((G: H) -1) 

IGl-k ~ -2 . 

Since M ~-l (K H) is a direct sum of IHI copies of M ~-l (K) we have 

that in the decomposition of KparG into a direct sum of indecomposable 
two-sided ideals the total number of summands isomorphic to M J¥1--i (K) 

coming from subgroups of a fixed order m with p .rm is 

k ((G:H)-1) 
IGI - k 1il- 2 mim(G). 

The result follows. D 

Next we adapt Corollary 4.2 of [3] to the modular case. 

Corollary 3.6 Let K be an algebraically closed field of characteristic p > 0 
and G1 and G2 finite abelian groups with IG1/ = IG2I = qna where q -/:- p 
is a prime and q ( a. If KparG1 ~ KparG2 then 1q,(G1) = 1q,(G2), for all 
positive integers j such that 2j ~ n. 

Proof. If a= 1 the the result follows from [3, Corollary 4.2), so one may 
assume that qna is not a power of a prime. We prove more in general that if 
k is a small divisor of IG1 I with p Jk, and IG1I > k2, then 1m(Gi) = 1m(G2) 
for all m :5 k with p Jm. Under our hypotheses, the number k = qi satisfies 
these conditions. 

We use induction on k, the case k = 1 being trivial. Let k > I be 
fixed. One easily observes that the inequality m < 

1
~j~\ holds if and only 

if m :5 k. Moreover, IG1/ > 2k as IGi/ > k2
• Thus, using Proposition 3.5, we 

have that the multiplicity of M~ (K) in the decomposition of KparG1 
,. -1 

into a direct sum of indecomposable two-sided ideals is: 

IG1~ _ k L (~ = :)m1m(G1)-
ml lG1l,pJ,n k 

1~m~k 

By Lemma 3.1, this number is invariant under K-algebra isomorphisms. 
Since the coefficient of 11c ( Gi) in the above formula is non-zero, to conclude 
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the proof it suffices to show that ,m(G1) = 1m(G2) for all m < k with m 
dividing IG1 I= IG2 I and p .rm. One checks this similarly as in the proof of 
[3, Corollary 4.2]. 

D 

Theorem 3.7 Let R be an integral domain of characteristic p > 0 and 

let G1, G2 be two finite abelian groups such that ~rG1 S:! R.p,,,rG2, Then 

G1 ~ G2, 

Proof. Since, for any field E :) R we have that 

we may assume, without loss of generality, that Kpa.rG1 ~ K,,a.rG2 for an 
algebraically closed field K. 

Let G1 = P1 X · · · x Pt and G 2 = Q1 x · · · x Qt be the decompositions of 
G1 and G2 as a direct product of Sylow subgroups respectively and assume 
that P1 and Q1 are the subgroups corresponding to the prime p. Then, by 
Theorem 3.3 we have that K P1 = KQ1 and hence, by Deskins' result [2], 
P1 !:!! Qi, 

Let qi-::/; p be the prime divisor of IG11 corresponding to the Sylow sub­
groups P; and Qi respectively. It follows from Corollary 3.6 that 7 rl ( Gi) = 
'Yqf (G2) for all positive integers j such that q;; divides IG1 I, Now, (3,

0

Lemma 

4.3] .shows directly that P; ~ Q., 2 $ i $ t. 0 

4 Integral partial group rings 

Let G1 and G2 be finite groups. We will show that 'llpa.rG1 ~ 'llpa.rG2 is a 
stronger restriction than having isomorphic integral group rings. Actually, 
we have the following. 

Theorem 4.1 Let G1 and G2 be finite groups such that 'llparG1 ~ '/lparG2, 
Then, for every subgroup H of G1 there exists a subgroup N of G2 such that 
'llH !:!! 'llN. In particular, 'llG1 ~ 'llG2. 

Proof. Write 

EB em(H) Mm('llH), 
Hee 

l~m~(G1,H) 
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EB Cm(N) Mm('ll,N), 
NEC' 

1:,m:,(G2:N) 

the decompositions of 'll,parG1 and 'D.,parG2 given by Theorem 2.1. 
Notice that, since integral group rings of finite groups contain no idem­

potent elements, the summands in the decompositions above are all inde­
com posable. 

Given a subgroup Hof G1, we have that 'l.lH appears as a summand 
of 'l/,pa.rG1 so we obtain from Lemma 3.1 that there is a subgroup N of G2 

and a positive integer m such that 'll,H ~ Mm ('l.lN). As '71,ll contains no 
idempotent elements, it follows immediately that m = 1 and 'll,H ~ 'll,N. As 
G1 and G2 are of maximal order, the last part of our statement is obvious. 

□ 
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