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� ABSTRACT: In this paper, we discuss some aspects of fractional factorial designs 5k−(k−2), where 

k is the number of factors, with only 25 treatments involving two to six quantitative factors, with 

the purpose of using them on experiments on poor soil areas like those of “cerrado”. They are 

specially developed in order to assess the nutritional response to fertilizer soil addition in new 

areas. We also evaluate the performance of the design using simulations considering previous 

information. 
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1 Introduction 

In Brazil, approximately 2 million km2 is occupied by “cerrado” areas, its second 
largest biome. In those areas, the soil is an essential factor for the growth and 
development of vegetation and has a low concentration of nutrients nitrogen (N), 
phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg), and high aluminum 
saturation, what is a characteristic of a poor soil which tend to be acidic.  As a 
consequence, the low nutrient concentration and high concentration of aluminum in the 
soil contribute to low production of biomass of plants, causing the scleromorphism of 
native vegetation and also influence the low production throughout the year. This means 
that a minimum necessary to improve production is to use fertilizers containing the 
macronutrients N, P, K and correct the soil acidicity by addition of some Ca source (lime). 
It is also important to account for the difference in production caused by different number 
of plants by unit of area. 

With the increasing establishment of agriculture in the “cerrado”, planning fertilizer 
experiments is of major importance. In this type of experiment, in general, at least five 
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quantitative factors, with three to five levels each, are used with the aim of determining 
the optimal economical design and studying the response surface shape.  

In general there is a great deal of redundancy in a factorial experiment in that high-
order interactions are likely to be negligible and some variables may not affect the 
response at all (Box, Hunter and Hunter, 2005, Brien, 2010a, b, Montgomery, 2012). 
Solutions to overcome those problems are the use of incomplete block designs and 
fractional factorials. Conagin and Jorge (1977, 1982a) proposed a 53-1 fractional factorial 
to be used in fertilizer experiments and an application of it is illustrated in Caetano et al 
(2013). Andrade and Noletto (1986) presented (1/2)43 and (1/4)44 fractional factorials to 
be used in experiments to study the fertility of “cerrado” soils. Primavesi et al (2004) uses 
the (1/2)43 fractional factorial to design an experiment to measure the response of oats to 
fertilization on red yellow latosol in two planting systems. 

In this paper, we discuss some aspects of fractional factorial designs 5k−(k−2) , where k 
is the number of factors, with only 25 treatments involving two to six quantitative factors, 
with the purpose of using them on experiments on poor soil areas like those of “cerrado”. 
They are specially developed in order to assess the nutritional response to fertilizer soil 
addition in new areas. We also evaluate the performance of the design using simulations 
considering previous information. 

2 Some basics 

The concept of factorial experiments was introduced by Fisher (1935). While single-
treatment-factor experiments involve just a single treatment factor, others involve two or 
more factors and are often performed as factorial experiments (Brien, 2010a, b). In those 
experiments the treatments are all combinations of the levels of all the factors and, 
generally, the number of treatments is equal to the product of the numbers of levels of the 
factors in the experiment. The major advantage of factorial experiments is that they allow 
the detection of interaction but the main disadvantage is that the total number of 
treatments becomes large as the number of levels and/or number of factors increases. 
Also, in most situations there are more factors to be investigated than can be conveniently 
accommodated with the time and budget available or there is an upper limit on the number 
of experimental units due to economical reasons or in order to have homogeneous 
conditions. 

Full factorial experiments were, initially, proposed for two and three factors with 
two levels of each factor (Fisher, 1935) and extended to k factors, particularly useful in 
the early stages of experimental work when there are likely to be many factors to be 
investigated (Mongomery, 2012). Designs with 3 or more levels as, for example, 3×3, 
3×4, 4×4 and 3×3×3 were proposed to study the shape of response surfaces and to 
estimate linear and quadratic effects and interactions. Yates (1937) presented a 
comprehensive survey of the simpler factorial designs and a description of the appropriate 
methods of analysis.  

When there are four or more factors and if the experimenter can assume that certain 
high-order interactions are negligible, the number of treatments can be reduced by running 
a fraction of the complete factorial experiment. These designs are called fractional 
factorial designs and are among the most widely used types of designs for product and 
process design and for process trouble shooting (Montgomery, 2012). In the case of two-
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level factors, those designs are mainly used as screening experiments with the purpose of 
identifying those factors that have large effects. On the other hand, if the factors have 
three or more levels the fractional factorial designs can be used to fit response surface 
models (Box and Draper, 1987; Khuri and Cornell, 1996; Myers, Montgomery, Anderson-
Cook, 2009).  

Fractional factorial designs are expressed using the notations 
pk

l
−

 or  
�

�� �� or  

(1/�	)��, where 
pk

l
−

 is the number of treatments used per fraction, l  is the number of 
levels of each factor investigated, k  is the number of the factors and p  describes the 

size of the fraction of the full factorial used. Formally, p  is the number of generators, 

assignments as to which effects or interactions are confounded, i.e., cannot be estimated 

independently of each other. A design with p  such generators is a 
p

l/1  fraction of the 

full factorial design (Box, Hunter and Hunter, 2005). However, in these designs the 
interactions do not go away, they just become confounded with other effects. This is not 
necessarily a bad thing, but it is a good idea to be aware of it so one can make an informed 
decision about the design one wants. 

When selecting a fractional factorial design it is important to consider: 

i) how many experimental units are required,  

ii) which effects are aliased with effects of interest,   

iii) how many effects are aliased with the effects of interest.  

The best fractional factorial design is the most economical one while enabling 
satisfactory estimation of the effects of interest. 

3 Methodology 

3.1 Generating a fractional factorial design 

A 
pk

l
−

 design can be generated superimposing orthogonal Latin squares or from a 
full factorial structure by choosing an alias structure (Wu and Hamada, 2000). The use of 
latin squares to produce fractional factorial designs has been suggested by Cochran and 
Cox (1957), Davies (1950) and John (1971). This methodology was used to obtain 53-1 
design (Conagin and Jorge, 1977), (1/2)43 design in four blocks (Conagin and Jorge, 
1982b) and (1/2)43 design in two blocks (Andrade and Noleto, 1986). 

A 55-3 design, for example, is 1/125 of a five level, five factor factorial design. 
Rather than 3125 treatments that would be required for the full factorial experiment, this 
experiment requires only 25 treatments. The 25 treatments can be generated 
superimposing three of the four orthogonal latin squares 5×5, with the addition of two 
columns of treatments that produces treatments with the levels of one factor balanced for 
the levels of the remaining factors.  

An alternative method is to generate a fractional factorial design from a full factorial 
structure by choosing an alias structure that determines which effects are confounded 
with each other. Wu and Hamada (2000) discuss how to obtain 25-run fractional factorial 
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designs at five levels and 49-run fractional factorial designs at seven levels, showing the 
results in their Tables 6C and 6D of Appendix, and generalize for lk-p.  

Following Wu & Hamada (2000), the 25 runs of a 56-4 design are generated 
considering, initially, the 5×5 combinations of the levels of the first two factors, as given 
by the first two numbers (in bold) of the cells, presented in Table 1. The remaining four 
numbers of the cells are generated from the first two by using the following method. Let 
�� and �� denote the first two numbers, respectively. Then the third through sixth 
numbers, having as central point (3,3,3,3,3,3), are obtained by setting: 

�� = (�� + 1. �� + 1)(��� 5) + 1, 

�� = (�� + 2. �� + 3)(��� 5) + 1, 

�� = (�� + 3. �� + 0)(��� 5) + 1  

�� = (�� + 4. �� + 2)(��� 5) + 1. 

Table 1 - A 56−4 fractional factorial design with six quantitative factors and five 
equidistant levels (1, 2, 3, 4 e 5), giving 25 treatments, denoted by the sequence 
(��, ��, ��, ��, ��, ��) 

131111 232222 333333 434444 535555 

142345 243451 344512 445123 541234 

153524 254135 355241 451352 552413 

114253 215314 311425 412531 513142 

125432 221543 322154 423215 524321 
 
This is equivalent to use a centered version of the � = 4 defining relations � =  !, 

" =  !�, # =  !� and $ =  !� or the four generators of the design % =  !�� =
 !�"� =  !�#� =  !�$� (design of resolution III) with their generalized interactions 
that are automatically confounded. The alias of any main effect or component of 
interaction is produced by the multiplication modulus 5 of the effect by %,  %�,  %�, and  %� 
and using the convention that the first letter have unitary power. 

Finally, to have a 5k−p fractional factorial with k factors and 25 treatments, we fix   
p = & − 2 and using any k numbers that are in the same position in all the cells in Table 1 
we have a 5k−(k−2) design. Note that, for & = 3, … ,6, we get 53-1, 54-2, 55-3 and 56-4 designs. 
Once generated the randomized level sequence, for example, (��, ��, ��, ��, ��), we obtain 
the 55-3 fractional factorial design.  

The method suggested by Cochran and Cox (1957), Davies (1956) and John (1971), 
based on superimposing three of the four orthogonal latin squares with the addition of two 
adequate columns of treatments would use the sequences (��, ��, ��, ��, ��), 
(��, ��, ��, ��, ��), (��, ��, ��, ��, ��) and (��, ��, ��, ��, ��) as presented in Table 2. Note 
that the level sequence (��, ��, ��, ��, ��) gives the same treatments presented in III of 
Table 2.  

Once chosen one of the fractional factorial design, a proper randomization is needed 
before using it. 
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Table 2 - Four 55-3 fractional factorial design obtained by the generated level      
sequences (��, ��, ��, ��, ��), (��, ��, ��, ��, ��), (��, ��, ��, ��, ��) and 
(��, ��, ��, ��, ��) from Table 1 

I 

11113 22223 33333 44443 55553 

23414 34524 45134 51244 12354 

35215 41325 52435 13545 24155 

42511 53121 14231 25341 31451 

54312 15422 21532 32142 43252 

II 

11113 22223 33333 44443 55553 

23511 34121 45231 51341 12451 

35412 41522 52132 13242 24352 

42314 53424 14534 25144 31254 

54215 15325 21435 32545 43155 

III 

11113 22223 33333 44443 55553 

24514 35124 41234 52344 13454 

32415 43525 54135 15245 21355 

45311 51421 12531 23141 34251 

53212 14322 25432 31542 42152 

IV 

11113 22223 33333 44443 55553 

34515 45125 51235 12345 23455 

52414 13524 24134 35244 41354 

25312 31422 42532 53142 14252 

43211 54321 15431 21541 32151 

3.2 Data analysis 

To analyze the data from a fractional factorial design we consider the classical linear 
model  

* = +, + -, 

where * is the vector of observations, + is the design matrix, , is the parameter vector 
and - is the error vector, normally distributed with mean . and variance-covariance 
matrix /�0, -~N(., /�0). The vector of estimated parameters is given by 

,3 = (+′+)5�+′* 
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with E7, 3 8 = . and Var7, 3 8 =  /�0. The analysis of variance can be done in the usual 
way (Steel and Torrie, 1981, Draper and Smith, 1966, Montgomery, 2012) using 
statistical packages as R and SAS, for example.  

For a quantitative factor, X, in a five-level design, its linear and quadratic effects can 

be represented by the orthogonal contrast vectors <� = �

√�>
(−2, −1, 0, 1, 2) and <� =

�

√��
(2, −1, −2, −1, 2). Then, for example, the quadratic regression model without 

interaction for the fractional factorial 
355 −

 can be expressed as 

#(?@) = A> + A��<��@ + ⋯ + A��<��@ + A��<��@
� + ⋯ + A��<��@

�    (C = 1, … ,25), 

where A> is the intercept, A��  and A��, & = 1, … ,5, are, respectively, the linear and 
quadratic parameters for the kth factor, <��@  and <��@  are, respectively, the values of the 
linear and quadratic polynomials. Then the sums of squares for a linear and quadratic 
regressions can be obtained, respectively, by   

DDEF� = 7∑ HIJKLK
MN
KOI 8

M

∑ HIJK
MMN

KOI
  and  DDPF� = 7∑ HMJKLK

MN
KOI 8

M

∑ HMJK
MMN

KOI
, (& = 1, … ,5). 

This means that only 2 degrees of freedom (df) out of 4 df of any main effect are 
used, giving a total of (2 ∗ &) df for the model and leaving 2 ∗ (12 − &) df for the error 
under the assumption of no interaction. 

3.3 Simulation study 

In order to evaluate the performance of fractional factorial 55-3 designs, a Monte 
Carlo simulation study of size equal to 10,000 was performed. Using information from 
previous corn experiments, the common factor levels for this type of experiments are: 
dosages for N (30, 45, 60, 75, 90) kg.ha-1, P2O5 (30, 45, 60, 75, 90) kg.ha-1, K2O (30, 40, 
50, 60, 70) kg.ha-1, lime (1;1,5; 2,0; 2,5; 3) t.ha-1 and population density (50, 55, 60, 65, 
70) ×103 plantas.ha-1 with the vector of parameters equal to 

A = [5952,0000  975,8074  763,6753  827,3149  763,6753  1081,8734 − 1003,9920 
− 896,4215 − 376,4970 − 322,7117 − 376,4970]W, 

and the error X@  ~ Y(0;  A> × CV) for C = 1, … ,25, that is, X@~Y(0; 5952 × �]) for the  
coefficients of variation, CV,  assuming the values 0,1%, 0,2%, ... ,15,0%. 

For each combination of simulation factors, we calculated: 

i) the mean absolute bias,  

ii) the percentage of times that the signs of the parameter estimates for the quadratic 
terms, ββββ2, were negative,  
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iii) the percentages of rejection of the null hypothesis H0: ββββ1 = ββββ2 = 0, considering the 
significance levels 5%, 10% e 20%, of the estimates over the 10,000 samples. 

4 Results 

The results of the simulation study are summarized in Figure 1, showing that as the 
coefficient of variation increases: 

i) the mean absolute bias percentage of parameter estimates increases,  

ii) the percentage of times that the signs of the parameter estimates for the quadratic 
terms, A��, … , A��, were negative decreases, 

iii) the percentage of rejection of the null hypothesis H>: A�� = ⋯ = A�� = A�� =
⋯ = A�� = 0, considering 5%, 10% and 20% significance levels, decreases.  

 

 

Figure 1 - Mean absolute bias percentage of parameter estimates (---), percentage of times that the 
sign of the parameter estimates for the quadratic terms, A��, … , A��, were negative (---) 
and percentages of rejection of the null hypothesis H>: A�� = ⋯ = A�� = A�� = ⋯ =
A�� = 0, considering 5% (---), 10% (---) and 20% (---) significance levels, as a function 
of the coefficient of variation (CV). Each point of the graphics was based on a 10,000 
size simulation. 

Then, for example, for a 5% coefficient of variation we can have around 40% 
absolute bias percentage of parameter estimates and 70% of rejection of the null 
hypothesis H>: A�� = ⋯ = A�� = A�� = ⋯ = A�� = 0, for the 10% significance level. 

From these results it is important to note that when the coefficient of variation is 
small, although there is bias on the estimation of the linear and quadratic regression 
parameters, due to confounding with some two-factor and higher interactions, there is a 
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good chance of having  negative sign for the parameter estimates of the quadratic terms, 
A��, … , A�� what is an indication of a maximum for the surface. The biggest advantage of 
this type of experiment, in general used as a preliminary trial, is that it uses only 25 
treatments instead of 3125 treatments that would be required for the full factorial 
experiment.  

5 Concluding remarks 

The proposed design may be ideal to use to choose the dosages of fertilizers to be 
applied in poor soils like the “cerrado” ones where the poorness of the nutrients is a 
permanent situation. It could also be adopted for experiments in physiology, forestry and 
horticulture, or with perennial crops, as well as in physic-chemical complex ones, 
provided that interactions do not exist or have little influence on the responses. In 
experiments with fertilizers the main objective is to get the maximum production and the 
economical analysis. 

For a study of four factors like N, P, K and Ca, the 54-2 design is the appropriate 
choice. In the case of more factors, for example, to study additionally the importance of 
the population size of individuals the factors may be N, P, K, Ca and population density, 
the 55-3 must be chosen.  

The use of the 55-3 design with only 25 treatments, instead of 3125 for five factors 
with five levels each, is subject to have bias in the estimation of linear and quadratic 
regression coefficients due to confounding with two-factor and higher interactions, but 
has a good chance of having negative sign for the parameter estimates of the quadratic 
terms, what is an indication of a maximum, for a low coefficient of variation. 

If the levels of nutrients are chosen in a suitable range it is normally true that the 
crops will develop favorably with no or very small two factor interaction. In this favorable 
situation it is reasonable to suppose that there is no interaction in the model and the 
important points to consider are to estimate the value of the regressions to get a practical 
decision in the analysis viewing the maximum and the best economical dosage of the 
fertilizer utilized.  

To get designs with low coefficient of variation it is always important to care about 
time of planting, soil preparation, adequate choice of factor dosages and excellent 
management of the field experiments. In greenhouse experiments, for which the water 
supply is adequate, the experiments exhibit always, low coefficient of variation and then 
the results will produce more accurate regression estimates; if samples of soil are used, 
physiological responses to each soil will be of great value for a posterior choice of the 
places to be included in a set of field experiments with fertilizers. 

The performance of this type of experiment could be improved by the use of 
replicates of the central point (33333) and using different fractions of the full factorial in 
different experiments. 
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� RESUMO: Neste artigo, são discutidos alguns aspectos dos delineamentos fatoriais fracionados 
5k−(k−2), em que k é o número de fatores, com somente 25 tratamentos envolvendo de dois a seis 
fatores, com o propósito de usá-los em experimentos em solos pobres, como aqueles do cerrado. 
Eles são, especialmente, desenvolvidos a fim de acessar a resposta nutricional da adição de 
fertilizante no solo. É avaliada, também, a performance do delineamento, usando simulações, 
considerando informação prévia. 

� PALAVRAS-CHAVES: Fatoriais fracionados; interações de alta ordem, estrutura “alias”; 
confundimento, simulação; viés. 
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