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RESUMO

Objetivo: O presente trabalho teve como objetivo a realização de todas as etapas da síntese 
do fármaco Pioglitazona em batelada e a transposição de uma das etapas para fluxo con-
tínuo em microrreatores. Métodos: A síntese foi feita em batelada e ao final de cada etapa 
foram coletadas amostras que posteriormente foram analisadas em HPLC-MS. A síntese 
do intermediário 2P foi realizada em fluxo contínuo com o uso de microrreator capilar, as 
amostras foram analisadas em HPLC-UV. Resultados: As análises comprovaram a iden-
tidade dos produtos com m/z 229,95 (M+) para o intermediário 2P, m/z 256,00 (M+) para o 
intermediário 3P, m/z 357,03 (M+) para a intermediário 4P e m/z 357,12 (M+) para o produto 
Pioglitazona. Conclusão: Verificou-se que a síntese do fármaco em batelada é possível 
para a metodologia testada e o uso de microrreatores se mostrou vantojoso ao processo 
em batelada na síntese do intermediário 2P.
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INTRODUÇÃO

Microrreatores de fluxo contínuo são dispositivos tubulares que possibilitam a reação 
química, bem como os reatores convencionais, mas com dimensões menores. Apresentam 
dimensões micrométricas, ou seja, volumes de microlitros e diâmetros de micrometros. Suas 
pequenas dimensões internas possibilitam um grande controle das condições reacionais, as 
quais são difíceis de obter em reatores batelada, devido à segurança do processo como, den-
tre outras, condições extremas de temperatura e pressão. Podem ser fabricados de diversos 
materiais que tenham características de resistência química e mecânica adequadas, como, 
por exemplo, vidro, cerâmica, polímeros, metais, etc. Os microrreatores são utilizados na 
intensificação de processos e vêm sendo aplicados em laboratórios de pesquisa em todo o 
mundo devido às melhorias que proporcionam às transformações químicas. Estes dispositivos 
podem operar de forma contínua e têm potencial para elevar a produtividade nas indústrias 
químico-farmacêuticas. O aumento de escala ou “scale-up” não afeta significativamente 
a mistura do fluido e, consequentemente, o rendimento das reações. Suas vantagens em 
relação aos reatores batelada são: excelente controle de troca térmica devido à alta relação 
superfície/volume; homogeneização mais eficiente em razão das pequenas distâncias para 
difusão dos reagentes, aumento da velocidade da reação química, conversão, rendimento, 
seletividade, segurança, redução da geração de resíduos e aumento da pureza do produto 
(BAXENDALE et al., 2017; HAMIDOVIC et al., 2020; SILVA JR. et al., 2022; TONHAUSER 
et al. 2012; WIRTH, 2013; PORTA et al., 2016).

As glitazonas, particularmente a Pioglitazona, é usada no tratamento de diabetes mel-
litus tipo 2. A diabetes mellitus tipo 2, que é um distúrbio metabólico crônico caracterizado 
pelo excesso de glicose no sangue devido à falta de secreção de insulina, hormônio que 
atua como transportador da glicose do sangue para a célula (MISHRA et al. 2015; ROY 
et al. 2013). As complicações a longo prazo da diabetes mellitus tipo 2 incluem retinopatia, 
nefropatia e neuropatia. Além disso, ela está associada ao aumento do risco de doenças 
cardiovasculares (RICHTER et al. 2007).

A Pioglitazona, cuja estrutura molecular está esquematizada na Figura 1, atua como 
agente antihiperglicêmico de uso oral que combate a diabetes mellitus tipo 2. Sua função 
é reduzir os níveis de glicose no sangue, a partir da interação com o Receptor Ativado por 
Proliferadores de Peroxissoma gama (PPARγ), receptor presente dentro do núcleo da cé-
lula que atua na resistência da insulina (PABLOS-VELASCO, 2010; LI, et al. 2017). Este 
fármaco foi aprovado pela Food and Drug Administration (FDA) na década de 1990 e hoje 
é comercializado com o nome de ACTOS® (MALIK; PRASAD, 2012).
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Figura 1. Estrutura molecular da Pioglitazona (ACTOS®).
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Fonte: Khanduri et al (2007).

Neste trabalho, foram estudadas todas as etapas da síntese da Pioglitazona em ba-
telada e uma etapa em microrreator capilar. O trabalho visa a futura transposição de todas 
as etapas do processo em batelada para o processo em fluxo contínuo com o uso de mi-
crorreatores capilares.

A rota de síntese proposta para obtenção do fármaco foi adaptada de Silva et al. 
(2019); Madivada et al. (2009); Gowda e Gowda, (2000). A Figura 2 mostra a rota de síntese 
da Pioglitazona.

Figura 2. Rota de síntese da Pioglitazona.

Fonte: Adaptado de Silva et al. (2019); Madivada et al. (2009); Gowda e Gowda, (2000).

MÉTODOS

Os experimentos foram realizados no Laboratório de Tecnologia de Microrreatores (MRT-
Lab), localizado no Departamento de Tecnologia BioquímicoFarmacêutica da Faculdade de 
Ciências Farmacêuticas da Universidade de São Paulo (FBT/FCF/USP). As reações em pro-
cesso batelada e posteriores purificações foram realizadas com o uso de equipamentos tais 
como manta aquecedora, rotoevaporador, banho termostatizado, bomba de vácuo, etc. Além 
de vidrarias comuns de laboratório como balões de fundo redondo, funis de separação, etc.
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As amostras coletadas foram analisadas por HPLC-MS (HPLC UFLC Prominence 
20AD, Shimadzu, Tokio, JP; MS Bruker Amazon Speed, fonte eletrospray, analisador ion 
trap, Massachussets, EUA) para identificar os produtos intermediários.

Para as sínteses do intermediário 2P, em batelada e em fluxo contínuo, foram realizadas 
análises em HPLC-UV. Foram coletadas amostras ao longo do tempo reacional e diluídas 
em uma solução inibidora da reação para a determinação da conversão do reagente 1P e 
rendimento do produto 2P.

Os procedimentos descritos a seguir foram adaptados de Silva et al. (2019) e 
Madivada et al. (2009).

Síntese em batelada dos intermediários 2P, 3P, 4P e do produto Pioglitazona.

Síntese do intermediário 2P: 2-(5-etilpiridina-2-il)etanol (1P) (1 mmol) foi agitado com 
trietilamina (1,25 mmol) em tolueno (1,8 mL) à temperatura ambiente. Em seguida adicionou-
-se cloreto de metanosulfonil (1,12 mmol). O tempo de reação foi de 3h. Para a purificação 
do produto, foi realizada uma filtração a vácuo para retirar o sólido formado, seguida por 
lavagem com tolueno e solução de 4% de bicarbonato de sódio. A solução bifásica formada 
foi separada, sendo a fase aquosa lavada com tolueno e água. A fase orgânica contendo o 
intermediário 2P foi reservada.

Síntese do intermediário 3P: Na fase orgânica contendo 1 mmol do intermediário 2P 
foi adicionado p-hidroxibenzaldeído (1,06 mmol) e carbonato de potássio (1,74 mmol), em 
2 ml de tolueno. Em seguida, a temperatura do meio reacional foi levada a 90°C e mantida 
sob agitação por 24h. Após o término da reação, a mistura reacional foi levada a 50°C e 
adicionou-se 20 mL de água destilada sob agitação. A solução bifásica formada foi separada, 
sendo a fase aquosa extraída com tolueno e a fase orgânica lavada com uma solução de 
hidróxido de sódio 5%. A fase orgânica contendo o intermediário 3P foi reservada.

Síntese do intermediário 4P: Adicionou-se tiazolidina-2,4-diona (1,50 mmol) a mistura 
do intermediário 3P em 20 mL de tolueno. A mistura reacional foi aquecida a 100°C e em 
seguida, foi adicionado pirrolidina (0,83 mmol) que atua como base promotora da reação. 
Foi mantida agitação por 4 h. Ao final da reação, o meio reacional foi levado ao freezer para 
a formação de sólido e, em seguida, foi filtrado a vácuo obtendo o produto bruto.

Síntese do produto Pioglitazona: Adicionou-se a um reator batelada: 4P (1,00 eq., 1,36 
mmol, 483,3 mg), paládio sobre carbono (Pd/C) (0,20 eq., 0,272 mmol, 578 mg, 5% em 
massa) e 25 mL de ácido fórmico. O meio reacional foi purgado com hidrogênio, mantido 
sob temperatura ambiente, agitação constante por 24 h sob atmosfera de hidrogênio (apro-
ximadamente 5 atm). Ao final da reação o meio reacional foi filtrado a vácuo para retirada 



96
Farmacologia Integrada: pesquisas emergentes em casos, efeitos e usos clínicos - ISBN 978-65-5360-110-9 - Editora Científica Digital - www.editoracientifica.org - Vol. 1 - Ano 2022

do Pd/C e o líquido contendo o produto de interesse foi rotaevaporado para obtenção do 
produto Pioglitazona.

Estudo de solventes da síntese do intermediário 2P em batelada.

A síntese do intermediário 2P foi feita conforme descrito no item anterior. Além do 
solvente descrito, foram testados os solventes metanol, etanol, THF e acetonitrila.

Síntese do intermediário 2P em acetonitrila.

Conforme esquema mostrado na Figura 3, 2-(5-etilpiridina-2-il)etanol (1P) (75,6 mg, 
0,5 mmol, 1,00 eq.,) foi agitado com trietilamina (41,3 µL, 0,56 mmol, 1,12 mmol) em 5 mL 
de acetonitrila (99,32%) à temperatura ambiente. Foi retirado 30 µL do meio reacional e 
diluído 1 mL de solução inibidora da reação para preparação do padrão para a curva de ca-
libração. Em seguida adicionou-se cloreto de metanosulfonila (MsCl) (87,1 µL, 0,625 mmol, 
1,25 eq.) e manteve-se a reação por 1 h sob atmosfera de N2. Após o término da reação, 
foi realizada uma lavagem com 10 mL de solução de 4% de bicarbonato de sódio, extraído 
com acetato de etila (2 x 15 mL), lavado com solução aquosa de 50% de NaCl (2 x 20 mL) 
e seca com Na2SO4. A fase orgânica foi rotaevaporada e o produto bruto foi purificado em 
coluna cromatográfica (acetato de etila/hexano 2:1; Rf = 0,47).

Figura 3. Esquema de síntese do produto intermediário 2P em acetonitrila no processo batelada.
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Fonte: Adaptado de Madivada et al. (2009).

Síntese do intermediário 2P em fluxo contínuo no microrreator capilar.

A Figura 4 mostra o esquema de síntese do intermediário 2P em fluxo contínuo em 
microrreator capilar. Para a síntese do intermediário 2P, foram preparadas duas soluções: 
(A) 2-(5-etilpiridina-2-il)etanol (1P) (302,4 mg, 2,00 mmol, 1,00 eq.,) e trietilamina (165,2 
µL, 2,24 mmol, 1,12 eq.) em 10 mL de acetonitrila; (B) cloreto de metanosulfonila (MsCl) 
(350,8 µL, 2,5 mmol, 1,25 eq.) em 10 mL de acetonitrila. As duas soluções foram alimen-
tadas separadamente ao microrreator, em temperatura ambiente. A concentração total do 
meio reacional dentro do microrreator foi de 0,1 M. Foram estudados os tempos médios de 
residência 1, 2, 4, 8, 12, 16 e 20 min. À saída do microrreator foram coletadas amostras e 
diluídas na solução inibidora da reação para posterior análise em HPLC-UV para determi-
nação da conversão do reagente 1P e rendimento do produto intermediário 2P.
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Figura 4. Esquema de síntese do produto intermediário 2P no processo em fluxo contínuo no microrreator capilar.
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Fonte: Adaptado de Madivada et al. (2009).

RESULTADOS

Síntese em batelada dos intermediários 2P, 3P e 4P e do produto Pioglitazona.

A identidade dos intermediários 2P, 3P , 4P e do produto Pioglitazona foi confirmada 
via HPLC-MS. A Tabela 1 mostra a relação massa/carga (m/z) para cada intermediário 
e para o produto.

Tabela 1.Identidade dos produtos intermediários 2P, 3P, 4P e do produto Pioglitazona.

Produto m/z

2P 229,95 (M+)

3P 256,00 (M+)

4P 357,03 (M+)

Pioglitazona 357,12 (M+)

Fonte: Própria (2019).

Estudo de solventes do intermediário 2P.

Foram testados os solventes metanol, etanol, THF e acetonitrila. Todos os solventes 
promoveram a reação, entretanto, apenas a acetonitrila solubilizou o meio reacional. A Figura 
5 apresenta a comparação do rendimento do produto intermediário 2P nos solventes tolueno 
e acetonitrila no processo batelada.
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Figura 5. Comparação do rendimento do produto intermediário 2P nos solventes tolueno e acetonitrila no processo 
batelada (C = 0,1 M). C = concentração total do meio reacional.

Síntese do intermediário 2P em fluxo contínuo com microrreator capilar.

Após definidas as condições no processo batelada que permitiriam a transposição 
da reação para o processo em fluxo contínuo em microrreator capilar, foram realizados 
ensaios em duplicata variando o tempo médio de residência (τ) em temperatura ambiente 
(22°C). A Figura 6 mostra a comparação do rendimento do produto intermediário 2P nos 
processos batelada e em fluxo contínuo em microrreator capilar.

Figura 6. Comparação dos resultados da síntese do produto intermediário 2P em batelada e fluxo contínuo.
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DISCUSSÃO

Foi possível confirmar a identidade dos intermediários 2P, 3P e 4P e do produto 
Pioglitazona a partir dos cromatogramas segundo as relações m/z. Sendo assim, para as 
condições testadas, a síntese do fármaco Pioglitazona em batelada se mostrou possível.

Com objetivo de transpor a síntese para o processo contínuo em microrreator capilar, 
foi realizado um estudo de solventes para a síntese do intermediário 2P. A síntese do produto 
intermediário 2P é descrita na literatura (Madivada, et al., 2009) utilizando o tolueno como 
solvente reacional, entretanto foi verificada a presença de sólidos no meio reacional, o que 
impediria a transposição da síntese em batelada para o processo em fluxo contínuo, em 
microrreator capilar, pois haveria obstrução dos microcanais. Por esse motivo, buscou-se 
por um solvente que solubilizasse o meio reacional completamente e, principalmente, que 
promovesse a reação de formação do produto de interesse. Foram testados os solventes: 
metanol, etanol, THF e acetonitrila. Todos os solventes promoveram a reação, entretanto, 
apenas a acetonitrila solubilizou o meio reacional.

Conforme mostra a Figura 5, os rendimentos finais aos 6 min de reação são próximos, 
a vantagem da substituição do solvente tolueno, por acetonitrila está na maior velocidade 
inicial da reação. Em 20 min de reação o rendimento do produto intermediário 2P no solvente 
tolueno foi de 60%, enquanto em acetonitrila foi de 61%.

O rendimento no processo em fluxo contínuo é maior que em batelada, possivelmente 
por esta reação ser uma reação rápida (com tempo de meia vida 1s < t½ < 10min) (ROBERGE 
et al., 2005). O uso do microrreator capilar favorece o contato entre as moléculas, elevando o 
rendimento do produto. O rendimento do intermediário 2P em batelada foi de 61%, enquanto 
no microrreator capilar o rendimento foi de 66%.

CONCLUSÃO

Foram realizadas todas etapas da síntese em batelada do fármaco Pioglitazona. A ca-
racterização do produto foi feita a partir da análise com HPLC-MS, onde foi comprovada a 
identidade dos intermediários.

Além disso, foi realizado um estudo de solventes para a síntese do intermediário 2P, 
visando a transposição da síntese para fluxo contínuo com uso de microrreatores. O melhor 
solvente para as condições testadas, foi acetonitrila. o rendimento do produto intermediário 
2P no solvente acetonitrila foi de 61%.

Definidas tais condições, a síntese do intermediário 2P, foi transposta para fluxo con-
tínuo em microrreator capilar. O rendimento da síntese do intermediário 2P em fluxo con-
tínuo foi de 66%.
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Sendo assim, verificou-se que a síntese do fármaco é possível para a metodologia tes-
tada. A utilização do solvente acetonitrila, como alternativa ao tolueno, indicado na literatura, 
se mostrou vantajosa nas condicoes testadas, e a síntese de um intermediário do fármaco 
Pioglitazona, 2P, foi transposta para fluxo contínuo, apresentando rendimento superior ao 
processo em batelada.
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