

Nº 63

A note on affine quotients

Walter Ricardo Ferrer Santos

Março 1984

A NOTE ON AFFINE QUOTIENTS.

Walter Ricardo Ferrer Santos

Abstract. The purpose of this note is to present an elementary and self-contained proof of the following result (see [2]): If G is an affine algebraic group and K a closed subgroup, then if K is exact in G , the quotient variety G/K is affine.

Introduction: Let G be an affine algebraic group and K a closed subgroup. In [2] the induction representation functor from K -modules to G -modules was defined, as well as the concept of exact subgroup. The subgroup K is said to be exact in G , if the induction representation functor from K to G , is exact. In the mentioned paper the authors prove that K is exact in G if and only if the quotient variety G/K is affine. The proof that G/K affine implies that K is exact in G is based on the fact that if G/K is affine, the algebra of polynomial functions on G is faithfully flat when considered as a module over the algebra of the K -invariant polynomials on G . Here we present a proof of the other implication, (Theorem 2.1), that goes as follows. First we use a criterion developed in [1] in order to prove that if K is exact in G , then the quotient variety G/K is quasi-affine. Second we observe that if G/K is quasi-affine it can be covered by a finite number of principal affine open sets $(G/K)_f$, with f in $K_{P(G)}$. Here $P(G)$ represents the algebra of polynomial functions on G and $K_{P(G)}$ the algebra of K -fixed elements of $P(G)$. Then, we use the exactness again to guarantee that the ideal generated by the f 's is all of $K_{P(G)}$. The rest is an easy exercise in algebraic geometry.

SECTION 1. We start by fixing some notations. All algebraic groups will be affine and defined over an algebraically closed field F . If G is such a group we indicate by $\underline{M}(G)$ the category of all rational G -modules. If M is a G -module we denote by $M^G = \{m \in M \mid x \cdot m = m \ \forall x \in G\}$. If G is an affine group and K a closed subgroup we think of K acting on G on the right by multiplication. The orbit space of this action will be denoted by G/K . It is well known that G/K has a natural structure of quasi-projective variety. The action of K on G , induces an action of K on $P(G)$ on the left as follows: if $x \in K$ and $f \in P(G)$, $x.f$ is the element of $P(G)$ that takes at an element y of G the value $(x.f)(y) = f(yx)$. The algebra of regular functions on G/K can be identified with $K_{P(G)}$ where the K -fixed part is taken with respect to the natural action defined above. The restriction map from $P(G)$ to $P(K)$ will be denoted by Π .

If M is an arbitrary object of $\underline{M}(K)$ we endow $P(G) \otimes M$ with the diagonal K -action and define $M|_G^G$ as $M|_G^G = K_{(P(G) \otimes M)}$. Note that $P(G) \otimes M$ has a natural structure of G -module as follows: if $x \in G, f \in P(G)$ and $m \in M$, $x.(f \otimes m) = f \cdot x^{-1} \otimes m$, where $f \cdot x^{-1}$ is the element of $P(G)$ that at the point y of G takes the value $f(x^{-1}y)$. With the G -module structure defined above $M|_G^G$ is a G -submodule of $P(G) \otimes M$. Moreover if: $\alpha: M \rightarrow N$ is a K -module homomorphism, $\text{id} \otimes \alpha$ from $P(G) \otimes M$ into $P(G) \otimes N$, is a G -map and sends $M|_G^G$ into $N|_G^G$.

Defn. 1.1. The induction representation functor, that we denote as $\text{Ind}_{K,G}$, or simply as Ind , from $\underline{M}(K)$ to $\underline{M}(G)$, is the functor that sends M into $M|_G^G$, and α into the restriction of $\text{id} \otimes \alpha$ to $M|_G^G$, for any K -module M and for any K -homomorphism α .

Defn. 1.2. In the situation above, we say that K is exact in G if the functor $\text{Ind}_{K,G}$ is exact.

Note that Ind , is automatically left exact. Thus, K is exact

in G if and only if for every morphism of K -modules $\alpha: N \rightarrow M$ such that $\alpha(N) = M$, we have that $(\text{id} \otimes \alpha)(N|_G^G) = M|_G^G$.

Defn. 1.3. If G is an affine algebraic group and K a closed subgroup, a rational multiplicative character γ of K is said to be extendible to G , if there is a non zero polynomial $f \in P(G)$ such that for every $x \in K$, $x.f = \gamma(x)f$. Such an f is called an extension of γ .

It is easy to show that if γ is extendible to G , there is an extension f of γ such that $\Pi(f) = \gamma$, or equivalently such that $f(1) = 1$.

If γ is a rational character of K we denote by γ^* the character $\gamma^*(x) = \gamma(x)^{-1}$.

It was proved in [1] that if for every character γ that is extendible to G , the character γ^* is also extendible to G , then the quotient G/K is quasi-affine.

Theorem 1.4. Let G be an affine algebraic group and K a closed subgroup. If K is exact in G then G/K is quasi-affine.

Proof. It is easy to reduce the theorem to the case where G is irreducible. In that case we prove that if γ is an extendible character, then γ^* is also extendible. Take g an extension of γ such that $g(1) = 1$, and define \tilde{g} in $P(G)$ as $\tilde{g}(x) = g(x^{-1})$. Note that $\Pi(\tilde{g}) = \gamma^*$. Call $\langle K\tilde{g} \rangle$ the K -submodule of $P(G)$ generated by \tilde{g} . Consider the map α from $Fg \otimes \langle K\tilde{g} \rangle$ into F , defined as the composition $\alpha = j(\Pi \otimes \Pi)$, where j is the multiplication map from $F\gamma \otimes F\gamma^*$ into F that sends $\gamma \otimes \gamma^*$ into 1. It is clear that if we endow $Fg \otimes \langle K\tilde{g} \rangle$ with the diagonal K -module structure, and if we endow F with the trivial K -module structure, α is a surjective K -module homomorphism. By exactness we deduce that

$\text{id} \otimes \alpha: (Fg \otimes \langle K\tilde{g} \rangle)|_G^G \rightarrow F|_G^G = K_P(G)$ is also surjective.

Consequently there is a $t \in {}^K(P(G) \otimes Fg \otimes \langle K \tilde{g} \rangle)$ such that $(id \otimes \alpha)(t) = 1$.

Write $t = \sum f_j \otimes g \otimes h_i$, and define f as $f = \sum f_i h_i$. From the fact that t is K -fixed, we deduce that gf is also K -fixed. Thus, for any $\lambda \in K$ we have, $x.(gf) = gf$, and then, as $x.g = \gamma(x)g$, we deduce that $x.f = \gamma^*(x)f$.

Now, if we define $\lambda_i \in F$ by the equality $\gamma(h_i) = \lambda_i \gamma^*$, the equality $(id \otimes \alpha)(t) = 1$ gives us that $\sum \lambda_i f_i = 1$. But $\lambda_i = h_i(1)$, thus, $f(1) = \sum f_i(1)h_i(1) = \sum \lambda_i f_i(1) = 1$. Consequently, f is an extension of γ^* to G .

Q.E.D.

SECTION 2. In this section we complete the proof of the main result by proving that if G/K is quasi-affine and K is exact in G , then the quotient variety G/K is affine.

Theorem 2.1. (Cline, Parshall and Scott). If K is an exact closed subgroup of the affine algebraic group G , then the quotient variety G/K is affine.

Proof. A standard argument reduces the proof to the case where G is irreducible. From Theorem 1.4, we deduce that G/K is quasi-affine. Then, there is a non zero element f in ${}^K P(G)$ such that the principal open set $(G/K)_f = \{xK \in G/K \mid f(x) \neq 0\}$, is affine. Consider the ideal I of ${}^K P(G)$ generated by the set $\{f.y \mid y \in G\}$. It is clear that the ideal $IP(G)$ cannot have any zero in G , so that $IP(G) = P(G)$. Then, we can find a finite number of elements f_1, f_2, \dots, f_n in ${}^K P(G)$, and g_1, \dots, g_n in $P(G)$ such that $\sum f_i g_i = 1$. Consider the K -module homomorphism α , from $\bigoplus_{i=1}^n P(G)$ into $P(G)$, defined as $\alpha(a_1, \dots, a_n) = \sum f_i a_i$. As α sends (g_1, \dots, g_n) into 1, we deduce that α is surjective. Using the exactness we deduce that the map $id \otimes \alpha: {}^K(P(G) \otimes \bigoplus_{i=1}^n P(G)) \rightarrow {}^K(P(G) \otimes P(G))$ is also surjective. The multi-

as a G -map. Thus, the map $\hat{\mu}$ defined as the restriction of μ to $K(P(G) \otimes P(G))$, is also surjective. Consider now the map $\hat{\alpha}: \bigoplus_1^n K_P(G) \rightarrow K_P(G)$ defined as $\hat{\alpha}(b_1, \dots, b_n) = \sum f_i b_i$. It is easy to see from the definitions above that: $\hat{\mu}(id \otimes \alpha) = \hat{\alpha}(\oplus \hat{\mu})$ and consequently that $\hat{\alpha}$ is surjective. That implies that there exist functions h_1, \dots, h_n in $K_P(G)$ such that $\sum f_i h_i = 1$. Thus, $I = K_P(G)$. Using [3], exercise 2.17, page 81, we deduce that G/K is affine.

Q.E.D.

The result used at the very end of the proof above, reads as follows. Let X be an algebraic variety defined over F with structure sheaf \mathcal{O} . Suppose there are elements $f_1, \dots, f_n \in \mathcal{O}(X)$ such that: a) For every i the principal open set X_{f_i} is affine. b) The ideal generated in $\mathcal{O}(X)$ by the set $\{f_i : i=1, \dots, n\}$ is the unit ideal. Then the variety X is affine.

REFERENCES

- [1] Bialynicki-Birula, A., Hochschild, G. Mostow, G. "Extensions of representations of algebraic linear groups". Amer. J. Math. 85, pp 131-144 (1963).
- [2] Cline, E., Parshall, B., Scott, L. "Induced modules and affine quotients". Math. Ann. 230 (1977), pp 1-14.
- [3] Hartshorne, R. "Algebraic Geometry". Springer-Verlag. GTM n°52, 1977. New York, Heidelberg, Berlin.

TRABALHOS

DO

DEPARTAMENTO DE MATEMATICA

TITULOS PUBLICADOS

8001 - PLETCH, A. Local freeness of profinite groups. São Paulo, IME-USP, 1980. 10p.

8002 - PLETCH, A. Strong completeness in profinite groups. São Paulo, IME-USP, 1980. 8p.

8003 - CARNIELLI, W.A. & ALCANTARA, L.P. de. Transfinite induction on ordinal configurations. São Paulo, IME-USP, 1980. 22p.

8004 - JONES RODRIGUES, A.R. Integral representations of cyclic p-groups. São Paulo, IME-USP, 1980. 13p.

8005 - CORRADA, M. & ALCANTARA, L.P. de. Notes on many-sorted systems. São Paulo, IME-USP, 1980. /25/p.

8006 - POLCINO MILIES, F.C. & SEHGAL, S.K. FC-elements in a group ring. São Paulo, IME-USP, 1980. /10/p.

8007 - CHEN, C.C. On the Ricci condition and minimal surfaces with constantly curved Gauss map. São Paulo, IME-USP, 1980. 10p.

8008 - CHEN, C.C. Total curvature and topological structure of complete minimal surfaces. São Paulo, IME-USP, 1980. 21p.

8009 - CHEN, C.C. On the image of the generalized Gauss map of a complete minimal surface in R^4 . São Paulo, IME-USP, 1980. 8p.

8110 - JONES RODRIGUES, A.R. Units of Zp^n . São Paulo, IME-USP, 1981. 7p.

8111 - KOTAS, J. & COSTA, N.C.A. da. Problems of modal and discussive logics. São Paulo, IME-USP, 1981. 35p.

8112 - BRITO, F.B. & GONÇALVES, D.L. Algebras não associativas, sistemas diferenciais polinomiais homogeneos e classes características. São Paulo, IMP-USP, 1981. 7p.

8113 - POLCINO MILIES, F.C. Group rings whose torsion units form a subgroup II. São Paulo, IME-USP, 1981. 1v. (não paginado)

8114 - CHEN, C.C. An elementary proof of Calabi's theorems on holomorphic curves. São Paulo, IMP-USP, 1981. 5p.

8115 - COSTA, N.C.A. da & ALVES, E.H. Relations between para-consistent logic and many-valued logic. São Paulo, IMP-USP, 1981. 8p.

8116 - CASTILLA, M.S.A.C. On Przymusinski's theorem. São Paulo, IME-USP, 1981. 6p.

8117 - CHEN, C.C. & GOES, C.C. Decenerate minimal surfaces in \mathbb{R}^4 . São Paulo, IME-USP, 1981. 21p.

8118 - CASTILLA, M.S.A.C. Imagers inverses de algumas aplicações fechadas. São Paulo, IME-USP, 1981. 11p.

8119 - ARAGONA VALEJO, A.J. & EXEL FILHO, P. An infinite dimensional version of Hartogs' extension theorem. São Paulo, IMP-USP, 1981. 9p.

8120 - GONÇALVES, J.Z. Groups rings with solvable unit groups. São Paulo, IME-USP, 1981. 15p.

8121 - CARNIELLI, W.A. & ALCANTARA, L.P. de. Paraconsistent algebras. São Paulo, IME-USP, 1981. 16p.

8122 - GONÇALVES, D.L. Nilpotent actions. São Paulo, IME-USP, 1981. 10p.

8123 - COELHO, S.P. Group rings with units of bounded exponent over the center. São Paulo, IME-USP, 1981. 25p.

.8124 - PARMENTER, M.M. & POLCINO MILIES, F.C. A note on isomorphic group rings. São Paulo, IME-USP, 1981. 4p.

.8125 - MERKLEN, H.A. Hereditary algebras with maximum spectra are of finite type. São Paulo, IME-USP, 1981. 10p.

.8126 - POLCINO MILIES, F.C. Units of group rings: a short survey. São Paulo, IME-USP, 1981. 32p.

.8127 - CHEN, C.C. & GACKSTATTER, F. Elliptic and hyperelliptic functions and complete minimal surfaces with handles. São Paulo, IME-USP, 1981. 14p.

.8128 - POLCINO MILIES, F.C. A glance at the early history of group rings. São Paulo, IME-USP, 1981. 22p.

.8129 - FERRER SANTOS, W.R. Reductive actions of algebraic groups on affine varieties. São Paulo, IME-USP, 1981. 52p.

.8130 - COSTA, N.C.A. da. The philosophical import of paraconsistent logic. São Paulo, IME-USP, 1981. 26p.

.8131 - GONÇALVES, D.L. Generalized classes of groups, spaces c-nilpotent and "the Hurewicz theorem". São Paulo, IME-USP, 1981. 30p.

.8132 - COSTA, N.C.A. da & MORTENSEN, Chris. Notes on the theory of variable binding term operators. São Paulo, IME-USP, 1981. 18p.

.8133 - MERKLEN, H.A. Homogeneous ℓ -hereditary algebras with maximum spectra. São Paulo, IME-USP, 1981. 32p.

.8134 - PERESI, L.A. A note on semiprime generalized alternative algebras. São Paulo, IME-USP, 1981. 10p.

.8135 - MIRAGLIA NETO, F. On the preservation of elementary equivalence and embedding by filtered powers and structures of stable continuous functions. São Paulo, IME-USP, 1981. 9p.

8136 - FIGUEIREDO, G.V.R. Catastrophe theory: some global theory a full proof. São Paulo, IME-USP, 1981. 91p.

8237 - COSTA, R.C.F. On the derivations of gametic algebras. São Paulo, IME-USP, 1982. 17p.

8238 - FIGUEIREDO, G.V.R. de. A shorter proof of the Thom-Zeeman global theorem for catastrophes of cod < 5. São Paulo, IME-USP, 1982. 7p.

8239 - VELOSO, J.M.M. Lie equations and Lie algebras: the intransitive case. São Paulo, IME-USP, 1982. 27p.

8240 - GOES, C.C. Some results about minimal immersions having flat normal bundle. São Paulo, IME-USP, 1982. 37p.

8241 - FERRER SANTOS, W.R. Cohomology of comodules II. São Paulo, IME-USP, 1982. 15p.

8242 - SOUZA, V.H.G. Classification of closed sets and diffeos of one-dimensional manifolds. São Paulo, IME-USP, 1982. 15p..

8243 - GOES, C.C. The stability of minimal cones of codimension greater than one in R^n . São Paulo, IME-USP, 1982. 27p.

8244 - PERESI, L.A. On automorphisms of gametic algebras. São Paulo, IME-USP, 1982. 27p.

8245 - POLCINO MILIES, F.C. & SEHGAL, S.K. Torsion units in integral group rings of metacyclic groups. São Paulo, IME-USP, 1982. 18p.

8246 - GONÇALVES, J.Z. Free subgroups of units in group rings. São Paulo, IME-USP, 1982. 8p.

8247 - VELOSO, J.M.M. New classes of intransitive simple Lie pseudo-groups. São Paulo, IME-USP, 1982. 8p.

8248 - CHEN, C.C. The generalized curvature ellipses and minimal surfaces. São Paulo, IME-USP, 1982. 10p.

8249 - COSTA, R.C.F. On the derivation algebra of zygotic algebras for polyploidy with multiple alleles. São Paulo, IME-USP, 1982. 24p.

8350 - GONÇALVES, J.Z. Free subgroups in the group of units of group rings over algebraic integers. São Paulo, IME-USP, 1983. 8p.

8351 - MANDEL, A. & GONÇALVES, J.Z. Free k-triples in linear groups. São Paulo, IME-USP, 1983. 7p.

8352 - BRITO, F.G.B. A remark on closed minimal hypersurfaces of S^4 with second fundamental form of constant length. São Paulo, IME-USP, 1983. 12p.

8353 - KIIHL, J.C.S. U-structures and sphere bundles. São Paulo, IME-USP, 1983. 8p.

8354 - COSTA, R.C.F. On genetic algebras with prescribed derivations. São Paulo, IME-USP, 1983. 23p.

8355 - SALVITTI, R. Integrabilidade das distribuições dadas por subalgebras de Lie de codimensão finita no $gh(n, C)$. São Paulo, IME-USP, 1983. 4p.

8356 - MANDEL, A. & GONÇALVES, J.Z. Construction of open sets of free k-Tuples of matrices. São Paulo, IME-USP, 1983. 18p.

8357 - BRITO, F.G.B. A remark on minimal foliations of codimension two. São Paulo, IME-USP, 1983. 24p.

8358 - GONÇALVES, J.Z. Free groups in subnormal subgroups and the residual nilpotence of the group of units of group rings. São Paulo, IME-USP, 1983. 9p.

8359 - BELOQUI, J.A. Modulus of stability for vector fields on 3-manifolds. São Paulo, IME-USP, 1983. 40p.

8360 - GONÇALVES, J.Z. Some groups not subnormal in the group of units of its integral group ring. São Paulo, IME-USP, 1983. 8p.

8361 - GOES, C.C. & SIMÕES, P.A.Q. Imersões minimas nos espaços hiperbólicos. São Paulo, IME-USP, 1983. 15p.

8362 - GIAM BRUNO, A.; MISSO, P. & POLCINO MILIES, F.C. Derivations with invertible values in rings with involution. São Paulo, IME-USP, 1984. 12p.