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' s A NOTE ON -AFFI~E Q~OTIENTS. 

1 Walter Ricardo Ferrer Santos 

Abstract. The purpose of this note is to pre-
. . 

sent an elementary and self-contained proof 

of the following result (see I2]): If G is 

an affine algebraic group and Ka closed sub-

group, then if K is exact in G,the 

variety G/K is affine. 

quotient 

r 

t 

Introduction: Let G be an affine algebraic group and K a 

closed subgroup. In [2] the induction representation functor from 

K-modules to G-modules was defined, as well as the concept of exact 

subgroup. The subgroup K is said to be exact in G, if the induction 

representation functor from K to G, is exact. In the mentioned paper 

the authors prove that K is exact in G if and only if the quotient 

variety G/ K is affine. The proof that G/K affine implies that K 

• is exact in G is based on the fact that i;f G/K is affine, the algebra 

of polynomial functions on G is faithfully flat when considered as 

a module over the algebra of the K-invariant polynomials on G. Here 

we present a proof of the other implication, (Theorem 2.1), that 

goes as follows. First we use a criterion developed in [1] in order 

to . prove that if K is exact in G, then the quotient variety G/K is 

quasi-affine. Second we observe that if G/K is quasi-affine it can 

be covered by a finite number of principal affine open sets (G/K)f, 

with fin KP(G). Here P(G) represents the algebra of polynomial 

functions on G and KP(G) the algebra of K-fixed elements of P(G) • 

Then, we use the exactness again to guarantee that the ideal gene­

rated by the f's is all of KP(G). The rest is an easy exercise in 

algebraic geometry. 
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We start by fixing some notations. All algebraic 

groups will r be affine and defined.over an algebraically closo<l field 

F. If G is such a group we indic:-~te by H(G) _the category of all r~ 

tional G-modules. If M is a G-module we . denote by ~l={md,t jx.m=m V x£G}. 

If G is an affine group and Ka closed subgroup we think of K acting 

on G on · the - right by multiplication. The orbit space of this action 

will be denoted by G/K. It is well known that G/K has a natural 

str.ucture of quasi-projective variety. The action of K on G ,induces 

an action of K on P(G) on the left as follows: if xEK and f E P(G). 

x.f is the element of P(G) ~hat takes at an element y of G the value 

(x.f)(y) = f(yx). The algebra of regular functions on G/K can be 

identified with _KP(G) where the K-fixed part is taken with respect 

to the natural action defined above. The restriction map from P(G) 

to P(K) will be denoted by n. 

If Mis an arbitrary object of ~(K) we endow P(G)GM with the 

diagonal K-action and define MIG as MIG= K(P(G)~N). Xote that 

P(G)~M has a natural s~ructure of G-module as folloKs: if 

xcG,fcP(G) and mcM, x.(f®m)=f.x- 1~m. where f.x-l is the eleme11t of 

P(G) that at the pointy of G takes ~he value f(x~ 1y). With the 

G-module structure defined above MIG~ is. a G-submodule of P(G)~M. 

Moreover if: a:M➔N is a K-module homomorphism, id®a from P(G)®M 

into P(G)~N. is a G-map and sends ~qG into NIG• 

Defn. 1.1. The induction representation functor, that we 

denote as IndK,G' or simply as Ind, from M(K) to M(G), is the 

functor that sends M into MIG, and a into the restriction of 

id©a to MIG. for any K-module Mand for any _K-homomorphism a . 

Defn. 1.2. In the situation above, we say that K is exact 

in G if the f~nctor IndK,G is exact. 

Note that Ind, is automatically left exact. Thus,K 1s exact 



in G if ·and only if for every morphdsm of K-modulcs a:N-+M such that 

a(N) =M, we have ·that (idQa) (N!G)=M ]G. 

Defn. 1.3. If G is an affine algebraic group and Ka closed 

subgroup,- a rational multiplicative character y of K is said to . be 

extendible to G, if there is a non zero polynomial fe:P(G) such that 

for every xe:K, x.f=y(x)f. Such an f is called an extension of y • 

It is easy to show that if y is extendible to G, there is an 

extension f of y such that TI(f)=y , or equivalently such that f(l)=l 

If y is- a rationa 1 character of K WE: denote by y * the character 

y*(x)=y(x)- 1 . 

· It was proved in [1] that if for every character y that is 

extendible to G, the character y* is also extendible to G, then the 

quotient G/K is quasi-affine. 

Theorem 1.4. Let G be an affine algebraic group and K a 

closed subgroup. If K is exact in G then G/K is quasi-affine. 

Proof. It is easy to reduce the theorem to the case where 

G is irreducible. In that case we prove that if y is an extendible 

character, then y* is also extendible. T~ke g an· extension of y 

such that g(l)=l, and define j . in P(G) ~s ~(x)=g(x- 1). Note that 

Il(~)=y*. · Call <Ki> the K-submodule of P(G) generated by j. Consi 

der the mapa from Fg® <Kg> into F, defined as the composition 

a=j(Il©Il), where j is the multiplication map from Fy©Fy* into F that 

sends y~y* into 1. It is clear that if we endow Fg®<Kg> with the 

diagonal K-module structure, and if we endow F with the trivial 

K-module structure, a is a surjective K-module homomorphism. By 

exactness we ·deduce that 
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. . ••:-.t•,iucn.tly there is a te/(P(G)©fg{') <Kg>) such that (id©a) (t)=l. 

Write t= r f.©g©h., and define fas f= I f.h .. From the fact . 
J. 1 l 1 

I t t is K-fixed, we deduce that 'gf -is also K-fixed. Thus, for any 
f 1.1 

~,K we have, x.(gf)=gf, and then, as x.g=y(x)g, we deduce that 

1.f=y*(x)f. 

Now, if we define Le: F by the equality II(h.)=Ly*, the equa-
l . . 1 1 

lity (id~a)(t)=l gives us that rA.f.=1. But A.~h. (1), thus, 
1 1 1 1 

f(l)= r f.(l)h.(l)=I A.f.(l)=l. Cons_equently, f is an extension of 
1 1 1 1 

y* to G. Q.E . D. 

SECTION 2. In this section we complete the proof of the main 

result .by proving thqt if . G/K is quasi-affine and K is exact in G , 

then the quotient variety G/K is affine. 

Theorem 2.1. (Cline, Parshall and Scott). If K is an exact 

closed subgroup of the affine algebraic group G, then the quotient 

variety G/K is affine. 

Proof. A standard argument reduces the proof to the case 

where G is irreducible. From Theorem 1.4, we deduce that G/K is 

quasi-affine. Then, there is a non z.ero ~lement fin KP(G) such that 

the principal open set (G/K)f={xKEG/K l f(x)fO}, is affine.Consider 

the ideal . I of KP(G) generated by the set {£.y\yEG} . It is clear 

that the ideal IP(G) cannot have any zero in G, so that IP(G)=P(G). 

Then, w~ can find a finite number of elements £1 ,f2 , ...• fn in 

K P(G), and g1 , ••• ,gn in P(G) such that E figi=l. Consider tr.e K-mo 
n 

dule homomorphism a, from$ P(G) into P(G), defined as 
1 

a(a1 , ••• ,an) = E fiai. As a sends (g 1 , ••• ,gn) into 1, we deduce that 

a is surjective. Using the exactness we deduce that the map 

n 
id®a:K(P(G)~ e P(G)) ~ K(P(G)~P(G)) is also surjective. The multi­

i=l 
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l 
as a G-map J Thus, the mapµ defined as the restriction 

~ 

'(r(G)~P(G))
1
, is also surjective. CotJsider now the map 

5. 

of µ to 
n 

'& :ElP(G) -► KP(G) 
1 

defined as tci(b
1

, ••• ,b )== r f. ·b .. It is easy to see from the· definitions 
. , n 1 1 

above that: µ(id~n)=a(eµ) and consequently that & is surjectivc . 
K . 

That implies that there exist functions h1 , •.. ,hn in P(G) such that 

t f.h.=l. Thus, I=KP(G). Using (3], exercise 2.17, page 81, we 
]. ]. 

deduce that G/K is affine. 
Q.E.D. 

The result used at the very ~nd of the proof above, reads as 

follows. Let X be an algebraic variety d~fined over F with structure 

sheaf O. Suppose there are ·elements £1 , ... ,fn E Q(X) such that: a) 

For every i the principal open set Xf_ is affine. b) The ideal gene-
1 

rated in Q(X) by the set {f1:i=l, ... ,n} is the unit ideal. Then the 

variety Xis affine. 

( 
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