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ABSTRACT
In this paper we apply the fibering method of Pohozaev and the notion of
extremal values introduced by Il’yasov to a Schrodinger—Poisson system,
with prescribed L? norm of the unknown, in the whole R3. The method
makes clear the role played by the special exponents p = 3, p = 8/3,
p=10/3.
In addition to showing that old results can be obtained in a unified

way, we exhibit also new ones.
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1. Introduction

It is well-known that the following Schrédinger equation (where all the physical
constants are normalized to unity),

(L1) 0= —Agp+q(|- |71+ [0y — N3, ¢ :R*xR —C,

has a relevant role in many physical models. Here i is the imaginary unit, A,
is the Laplacian with respect to the spatial variables, *x is the z-convolution
and ¢, A are positive parameters.
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As we can see, two types of potentials, different in nature, appear in the
equation: the first one is the Hartree (or Coulomb) potential given by

V(o t) = [+ [7h = e, 1)

which is nonlocal and the second one is the Slater approximation of the exchange
term, given by |1[%/31, which is local, although nonlinear. In this context g
and A are also called, respectively, the Poisson constant which represents the
electric charge, and the Slater constant. The nonlocal potential can be seen
as “generated” by the same wave function 1, in virtue of the Poisson equation

— A, Vi = 4r|]?.

A particular feature of (1.1) is that, due to the invariance by U(1) gauge-
transformations and the invariance by time translations, by the Noether theo-
rem, on the solutions ¢ the quantities

M(y)(t) = /|¢(x,t>|2d;c
and

B0 = [ IVb@lPde+ ] [ (1 o6 0P w0k

=5 [

are conserved in time. In physical terms they are called respectively mass and
energy of the solution.

Since the Hartree potential and the Slater term have different signs in the
energy functional, they are in competition and then a different behaviour of F is
expected depending on the values of the parameters ¢ and A. For more physical
details and the derivation of (1.1) see, e.g., the seminal works [6,15,18,19, 25]
and the references therein. We mention that the above equation has been
derived also in the framework of Abelian Gauge Theories in [5] and called the
Schrodinger—Poisson system.

In this work we consider the problem of finding standing waves solutions

Yz, t) =u(z)e™™ uw:R*—= R, (eR

to the above equation (1.1) under the mass constraint (as justified by the mass
conservation law) and where the exponent 8/3 is replaced by a more general p.
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More specifically, we consider the problem of finding ¢ € R and u € H'(R?)
satisfying

—Au+ qpyu — NulP~2u = fu, in R3

(1.2) fur

(from now on all the integrals will be in R and dx will be omitted) where
e ¢, )\, 7 > 0 are given parameters,
* p€(2,0),
o ¢, € DY2(IR3) is the unique solution of the Poisson equation —A¢=4mu?

in R3, that can be represented, for u € H'(R?), as
1
Oy = N * uZ.

In particular we are interested in finding ground state solutions u, namely
the solutions with minimal energy in the sense specified below.

The usual way to attack the problem is by variational methods. Indeed the
weak solutions of equation (1.2) are easily seen to be critical points of the energy

1 A
E(u) == Eq(u) = 2/|Vu|2+ b /Wﬂ - p/|u|p,

constrained to the L?(R3) sphere

S, = {u € H'(R?) : /u2 - 7’},

as it follows by the Lagrange multiplier rule; in this case £ € R is the Lagrange

functional

multiplier associated to the critical point. Then this problem fits into the ques-
tion of finding critical points of the energy on the mass constraint (see [4]).

An interesting problem is the search for ground states solutions, namely the
minima of F on S,, since they give rise to stable standing waves solutions for
the evolution problem (1.1). The problem is not trivial since the behaviour of E
depends on g, A, p but actually also the value r has a main role.

The search of minima for similar problems has been addressed by Lions in the
celebrated paper [16] where he studied the problem from a mathematical point
of view and established, roughly speaking, that the existence of minimizers is
equivalent to the strict sub-additive inequality

(1.3) inffE<infE+ inf £, 0<s<r.
Sr SS S’V‘*S
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In turn, this is equivalent to showing that dichotomy does not occur when one
tries to apply the concentration-compactness principle of Lions (since the van-
ishing is avoided due to infg, E <0). Asshowed in recent papers, inequality (1.3)
does hold in certain intervals that depend on the values of p. See, e.g., Bellazzini
and Siciliano [2, 3], Catto and Lions [8], Sdnchez and Soler [22], Jeanjean and
Luo [12], Catto et al. [7] and Colin and Watanabe [9].

We point out that in the last decades equations like (1.2), even without
the mass constraint, have been extensively studied due to the mathematical
challenges raised by the nonlocal term ¢, and its competition with the local
nonlinearity.

The aim of this paper is to establish, by using the fibration method of
Pohozaev developed in [20] and the notion of extremal values introduced in
I’'yasov [10], a general framework which permits us to search for global mini-
mizers of E over components of a suitable Nehari type set. These components
are shown to be differentiable manifolds and natural constraints for the energy
functional. The method proposed in this work makes more clear the relation
between minimizers of E restricted to S, and the parameters ¢, A\,p and r. In
particular, it sheds some light on the role of special exponents p appearing in
the Schrodinger—Poisson system: p = 8/3,p = 3,p = 10/3. Moreover, it relates
the strict sub-additive inequality with topological properties of some natural
curves that cross the Nehari manifolds as r varies.

Indeed beside recovering known results, we get also new ones and interesting
estimates.

We think that this fibering approach can be used to solve also other different
problems involving suitable constraints (different from the L?-norm).

To conclude this Section, we point out that recently the fibration method to-
gether with the notion of extremal values, that guarantees regions of parameters
in which the Nehari manifold method can be applied to prove existence of solu-
tions, has been used successfully also in other types of equations as in [11,23,24].

2. Statement of the results

In this paper we obtain five types of results, all based on the introduction
of a suitable Nehari set type for the functional E restricted to .S, and on its
properties. Before we state our results, we need to introduce some notation.
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First of all, by using standard methods, it is easy to see (see Proposition 4.2)
that every critical point of E restricted to S, belongs to the Nehari type set

N’r‘ = N’r‘,q,)\ = {U S S’r‘ : /|Vu|2 + Z /gbuuz — 3(]72; 2>A/|u|p = O}

Indeed this set has been already introduced in [1,12]. However, by means of
the fibering method, we are able to decompose N, into the subsets

N+{ueN /|v G 243p 8) /||p>o}
/\/Toz{uej\/}:/|Vu|2 3p = i3p 2 /||p—0}
)319

N;:{ue/v /|v 2 2 /||P<o}

so that V. = N;FUNC?UN,~ and even more, we show that whenever nonempty,

NP and N~ are differentiable manifolds of codimension 2 in H(R?) and a

natural constraint for the functional E restricted to S, (see Theorem 4.9).
One of the main ingredients in our proofs will be the analysis of the functional

(f [Vul2)i6-5 (q [ guu?) -9

Rp(u) = 1
(A S [ulr) 20

) uESlvp#?)

This functional is obtained with the help of Pohozaev’s fibration method and
is the so-called nonlinear Rayleigh quotient introduced by Il'yasov in [10]. Its
topological properties are related with existence and non-existence of solutions
for our problem and, although not in this form, this functional was already
used in [7]. See also [9] where the nonlinear Rayleigh quotient was found by
fixing r > 0 and considering ¢ as a parameter; however, this is different from
our approach, the main goal of which is to analyse the topological properties of
the Nehari set also when r varies.
A rough summary of the results proved here is the following:

(I) we present new inequalities involving functions in H!(R?) and its New-
tonian potential;
(IT) we show the structure of the Nehari set N, and related existence/non-
existence results;
(ITI) we estimate the smallness of » > 0 which guarantees the existence of a
minimum stated in [3, Theorem 4.1];
(IV) we prove existence of global minimizers at a positive energy level;
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(V) we estimate the smallness of 7 > 0 which permits to apply the methods
used in [1] and show the existence of a solution.

Let us better detail our results.
(I) Our first results concern new inequalities we were not able to find in the
literature. They are obtained by exploring the functional R,,.

THEOREM 2.1: For each p € [10/3,6) there exists a constant Cg xp, > 0 such
that

Vul? 3p-8 2\2(p—3)
Jrvely = U™ v e @) qoy.
(qf¢uu2) 2
We remark that similar inequalities are known in the literature, see Catto
et al. [7] for the case p € [8/3,10/3].
We have also the following inequality whose proof will be more involved than

/\/ lul? < Cq%p(

the previous theorem.

THEOREM 2.2: For each p € (2,3) there exists a constant Cy » , > 0 such that

IVul) " Ty e sy (o)

(q [ puu?) 2

(IT) The second type of results deal with the structure of A,. and its conse-

)‘/ ul? > Coxp

quences. The situation will be different in the cases p # 3 and p = 3 and related

existence/non-existence results are obtained.
THE CASE p # 3. For each p € (2,6) \ {3}, define the infimum of E over a
subset of the Nehari set, by

I =T, = inf{E(u) : u € N,F UNP}.

In particular infg, ' < I,.. With our approach we are able to show the following.

THEOREM 2.3: The following hold:
(i) If pe(2,8/3), then N, =N, #0 and —oco< I, =infg. E <0 for all r>0.
) If p € (10/3,6), then N, = N, # 0 and I, = —occ for all r > 0.
(iii) If p=8/3, then N,.=N," #0 and —co < I, =infg, E <0 for all r>0.
)

(iv) If p=10/3, then there exists a constant Kgn > 0 such that N, # 0 if,
and only if,
5 1
< r?/3,
3Kan A

In case N, # () we have that N,. = N7 and I, = —oo0.
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(v) Ifp € (8/3,3), then Nt NO, N~ are non-empty and I,, < 0 for allr > 0.
(vi) If p € (3,10/3), then there exist 0 < r* < r§ such that

(1) N;F, N, are non-empty if, and only if, r > r*.

(2) N # 0 if, and only if, r > r*.

Moreover, if r >, then I, =infg, E < 0 while if r € [r*, r§], then I, > 0.

In the above Theorem we presented the statements in that order due to
the techniques used in the proofs, which are similar, respectively, for (i)—(ii),
(iil)—(iv) and (v)—(vi).

Theorem 2.3 (parts of it) can be found in most of the works cited until now,
in particular we would like to refer the reader to the works [7,12], where some
calculations can be found explicitly.

Our contribution here is to show how, with a general framework, it is possible
to connect all these results with the partitioning of the Nehari set A, in terms
of N7, N?, N,~. Moreover we give a characterisation of the quantities r*, % in
terms of R, namely

. (410—3p) ffpilso)( 4p )2<p1—3) inf R, (w)
R G PR 3(p—2)(3p — 8) 2, B

and

. (2(10=3p)\ibm [ P \ze-w .
o= 3p—8 ) (3p78) A, Fr(w)

(see (5.2)) and it will be evident that they are related to some geometrical
properties of the Nehari set (see Proposition 4.5). Note that (as already known)
for p € [10/3,6) we have I, = —oo, which is equivalent to A,. = N, and also
suggests a mountain pass geometry (see Bellazini et al. [1]). Observe that
items (iv) and (vi) of Theorem 2.3 give also results of the non-existence of
critical points of F over S, depending on r. Indeed since every critical point
of E constrained to S, belongs to N, it follows that if AV, is empty, then there
is no critical point at all; therefore as an immediate consequence of Theorem 2.3

we infer

COROLLARY 1: The functional E constrained to S, has no critical points if:

(i) p=10/3 and 42 | >r?3,
(i) p € (3,10/3) and r < r*.
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Note that the results in Theorem 2.3 and Corollary 1 are independent of ¢ > 0
and the unique case in which A has a role is when p = 10/3.

THE CASE p = 3. Here the situation changes drastically in the sense that r no
longer has a role and the properties of the Nehari sets depend on ¢ and A. In
order to make clear this dependence, we use the notation N, x, I, », ... instead
of the previous N, I, . . ..

We prove the following:

THEOREM 2.4: Let p = 3 and r > 0. For each fixed q > 0, there exist positive
constants Ay < Aj , such that

(i) NJA,N(;A are non-empty if, and only if A > A7. Moreover, if A\ > A
then N, # 0.

(ii) IfA > X, then I,y = infs, E < 0, while if A € (0,);,), then I, 5 > 0.

Similarly to the quantities rg, 7", the quantities Af ;, A\; have a geometrical
interpretation and are given by

AE = (9)1/2 1/2 inf ( |Vw|2f¢ww2)1/2
0a = \g) T 25 [ w3
and

2 2\1/2
* _ 91/2 inf (f|Vw| f¢ww )
et

We observe that, unlike Theorem 2.3 item (vi), in Theorem 2.4 we were not
able to describe the behavior of /\/:17)\3 o This is due to the fact that u € /\/‘qg\g .
if, and only if, u is a minimizer of the quotient

(f IVw]? [ duw?)'/?
lwl?

The fact that the above quotient is bounded away from zero is due to Lions [17],

on Si.

however, it is an open problem if this functional has a minimizer. As was pointed
out in [7], the minimizers of that functional also are (up to some constant)
global minimizers of Iy x; ~and Igx; = 0. As before, we can deduce by using
Theorem 2.4 a non-existence result.

COROLLARY 2: Let p =3 and r,q > 0. The functional E constrained to S, has
no critical points if A € (0, \}).
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(IIT) Our third type of result complements [3, Theorem 4.1]. Indeed in [3] (see
also [7]) the authors proved, among other things, that for small 7, there exist
minimizers for E over S,. With our approach we are able to give a quantitative
estimate on the “smallness” of r in terms of R, which guarantees the existence

of minimizers.

THEOREM 2.5: Let p € (2,3). Then for each

re (0[P nt myw)

2 P weS1

there exists u € S, satisfying F(u) = ming, E.

(IV) The fourth type of result deals with the existence of a global minimizer
with positive energy when p € (3,10/3) which has never been treated in the
literature. In this case the inequality infs, E' < 01is no longer true for r € [r*, 7]
Moreover, infg, ' =0 if 0 < r < 7§ and it is not achieved.

We extend these results by showing the existence of local minimizers for £
on S, with positive energy, when r belongs to a neighborhood of r§. Unfortu-
nately we are not able to cover the whole range (3,10/3). Our result is

THEOREM 2.6: There exists pg € (3,10/3) such that if p € (pg,10/3), then

(i) the function [r*,00) 3 r + I, is decreasing, I.» = 0 and I, > 0 for

re [7’*, TS);
(ii) for eachr € [r*,ry) there exists u € N;F UN? such that I, = E(u);

(iii) there exists € > 0 such that if r € (r} —e,r{), then there exists u € NT
such that I, = E(u).

Indeed we find explicitly the number

T3+ V145

Do 97

which is new in the literature.

We believe it is an interesting problem to study the case p € (3, po).

We point out that similar results to our Theorem 2.6 have been obtained in
[13, Theorem 1.1] for a different equation involving a quasilinear term. However,
with our new approach we present a characterisation of the extremal value r§;
see (5.2).
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(V) Finally we study the smallness of r which guarantees the existence of
solutions by the methods used in [1]. With this aim let

J, =inf{E(u) : u e N, }.
We have

THEOREM 2.7: Let p € [10/3,6). Then for each

e (O, (2(6 —p)) it e ( 3p )2@33)

inf )
5p — 12 5p— 12 inf Fop ()

u€Sy
there exists u € N, such that J, = E(u).

ORGANISATION OF THE PAPER. The paper is organized as follows.

In Section 3 we study deeply the Rayleigh quotient R,. Indeed most of the
results are based on its properties. We then give the proof of Theorem 2.1 and
Theorem 2.2.

In Section 4 we introduce the set A, and give a description via the fibering
method of its subsets N7, N;-, N'? on which we study the energy functional E.
In particular, we show that N7, N~ are differentiable manifolds and natural
constraints for E (see Theorem 4.9).

In Section 5 we study deeply these sets depending on the parameters g, A, p, 7.
This analysis will allow us to prove our second type of results, namely Theo-
rem 2.3 and Theorem 2.4.

In Section 6 we show the subadditivity condition for I,. that will serve as a
prerequisite for the subsequent Section.

In Section 7 we prove Theorem 2.5 and Theorem 2.6.

Section 8 is devoted to the proof of Theorem 2.7.

In Appendix A we give a new estimate concerning I, and I, for r < ry
obtained by means of the fibering approach.

NOTATION. As a matter of notation, throughout the paper we denote by || - ||,
the LP-norm in R3. We use 0,(1) to denote a vanishing sequence. Given a
function v and t > 0, we set

u'(x) = t3 u(tx).

Note that |ull2 = ||u?|2.
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3. The nonlinear Rayleigh quotient Rz,

Let us start with a simple and general result whose proof is straightforward, so
it is omitted.

PROPOSITION 3.1: Suppose that b # 0, ce — bf # 0, (bd — ae)/(ce — bf) > 0,
(af —cd)/(ce—bf) >0, A, B,C >0 andp € (2,6)\ {3}. Then the system

atA +brB + ers— 14740 =0

(3.1) ‘
dtA + erB + frg’ltjzp%c =0

admits a unique solution r,t > 0. Moreover, explicitly we have
- 3p—8 3p—10
B (bd - ae) 2p3) (af - cd) 20710 Aa(p-3) Balr—3)
~ \ce—bf ce—bf C 22 '

Recall the next two results.

LEMMA 3.2 (Catto et al. [7]): For each p € (2,6) and r > 0, there exists a
sequence of functions {u,} C S, and positive constants Cy, Cy and Cs, satisfying
C
/|un|p =Ch, /|Vun|2 = Cyn, /(bunui < 2 VneN.
ns3
LEMMA 3.3 (Catto et al. [7]): Assume that p € [8/3,3], then there exists a
constant C' > 0 such that

p—2
2

(3.2) /|u|p < C</u2>2(3_p)</¢uu2) (/|Vu|2>p_2, Vue H' (R?),

If p € [3,10/3], then there exists a constant C > 0 such that

10—-3p
2

(3.3) /|u|p§0</u2)2(p_3)</¢uu2> </|Vu|2> 7 ue H(RP).

Let us define for p € (2,6) \ {3} the quotient

3p—8 10—3p
(34) R (u) _ (f|Vu|2)4<P*3> (QI¢UU2)4(1773) u € Sl-
’ (A S fuf) 2= ’
Note that in particular
_ S a3 (f [Vul?)?/2

(35) Rg/g (’LL) and R10/3 =

(g ) guu?)?? (A [ Ju|ror3)3/2"
The next result is just Lemma 3.2 and the inequality (3.3) of Lemma 3.3
rewritten in terms of our functional R,,.
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PROPOSITION 3.4: The functional R, defined above is continuous. Moreover:

(i) if p € (2,3), then the functional R, is unbounded from above,
(ii) if p € (3,10/3], then the functional R, is bounded away from 0.

Proof. The continuity is obvious. To prove (i), if {u,} is the sequence given in
Lemma 3.2, since p < 3, it follows that R,(u,) > Cn where C' is some positive
constant. The proof of (ii) is a direct consequence of (3.3) of Lemma 3.3.

For future reference we consider the system

r2 f |Vu|2 + thqf¢uu2 . 3(p2;2) Tp/Qte.(p;z))\f ul? = 0,
(3.6) _2 -
92t [ uu? = 72PN [ Julr =0,

where v € S; and r,t > 0. From Proposition 3.1 and recalling R, defined
in (3.4) and (3.5), we have that if p € (2,6) \ {3}, then the system has a unique
solution (7(u), t(u)) which is given by:

o if p € (2,3) with p # 8/3:

=[5 (7 R,

2 p
(3.7) s
~ . p - 4;;: q f¢uu 3p—8
Hu) = (2(1)7 o) T\ g )"
o if p=138/3:
r(u) = 231/2 Rg/s(u),
(3.8)

~ 1 A S |ulp)3/2
) — OS e
2572 (q [ puu?)'/? [ |Vul?
Remark 1: Note that 7(u) as a function of p is continuous in p = 8/3 since
, 1/2(p—2)\ sr87 460 1
(L2
p—8/3 L2 D 23/2
We recall the following Hardy-Littlewood—Sobolev inequality (see [14, Theo-
rem 4.3)):
THEOREM 3.5: Assume that 1 < a,b < oo satisfy

1 1 5

a+b73'
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Then there exists a constant H,, > 0 such that

‘ /] fl(z)g;ﬁ)dzdy < Hoollfllallgllss  VF € LO(R®), g € LN(RY).
R3 xR3 -

Then we can prove the following result.

PROPOSITION 3.6: For each p € [10/3,6), there exists a constant Cyx, > 0
such that
Ry(u) > Cyrp, YueS:.

Proof. We have by definition

3p—8
Vul?)aw-3)
RP(U) = (f|1 | ) 3p—10 u € Sl'
A [ [ulP)2e=2 (g [ ¢pyu?) 1r=9

We can assume that ||Vu||2=1 and hence the conclusion is a simple consequence
of Sobolev embeddings and the Hardy-Littlewood—Sobolev inequality.

More involved is the proof of the next result.

PROPOSITION 3.7: For each p € (2,3), there exists a constant Cy 5, > 0 such
that
Ry(w) > Cyrp, Yw € Sy.

Proof. First note that
Ry(w") = Ry(w) and /|th|2 = 152/|Vw|2 Yw e S1, t > 0.
From this it follows that

(3.9) inf R,(w) = inf {Rp(w) cw € Sy, /|Vw|2 = 1}.

weST

Indeed, for any € > 0 there exists u € Sy such that R,(u) <infg, R,+e. Then,
if we consider u'+, where ¢, [ |[Vu|? =1, we have that

u'> € S' and /|Vut* 2=1.

Consequently
inf {Rp(w) Tw € S, /|Vw|2 = 1} < Ry(u™) = Ry(u) < iglpr +e

and (3.9) follows. The approach to prove the theorem will be different according
to the values of p.



Vol. TBD, 2023 ON A CONSTRAINED SP SYSTEM 15

Caske 1: p € (8/3,3).
Assume on the contrary that there exists a sequence {w,} C S such that

Ry(w,) =0 asmn — +oo.

Let 7(wy,) and t(wy,) be the solutions of system (3.6), see (3.7), and set for

1/2 wg(wn )

brevity r,, = F(wy,) and u, = ry . It is easy to see that, for all n € N,

f |vun|2 + Z f(bunugl - 3(1;;2))‘f |Un|p =0,

(3.10) ,
5 S Su,un =7 [ JualP =0.

Now observe that (3.10) is the same as [3, equation (4.9)] and therefore

E(uy) = 3-p / |Vu,|? <0, VneN,
2-p
which implies that I,,, < E(u,) < 0 and hence, since I,, — 0 as n — 400, we
obtain that E(u,) — 0 as n — oo. The last convergence implies [3, formula
(4.10)]. Therefore, by following the proof of [3, Theorem 4.1., step 5, case (e)],
we reach a contradiction and hence R, is bounded from below over the sphere S;.
To treat the other cases of p, we observe that, since p < 3, the Lemma is

proved once we show that Rf)(pfg) is bounded above if ||w|l2 = ||[Vw|2 = 1.

CASE 2: p € (12/5,8/3].
By choosing a = p/2 and b = 3p/(5p — 6) from Theorem 3.5 we obtain

/¢ww2 < Ha,b|

w?|lpp2llw?llo = Hapllwlllwli3y, vw € H(R?).

Since 2 < 2b < p, from the interpolation inequality we have that

2(3—p)

p
lwllas < lJwllp®* lwll3*™,

and hence

2 ) s22)
Pww” < Hopllwllp™ ™ [Jwll™
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Consequently, for a suitable constant C, ; > 0 depending only on p and g, we get

10—-3p

(f IVw]?) 2" (g [ puw?)
A Jwl

Cop (f|w|p)§(01;32}'3

A [l

2(8—3p)

T/

<2 /\ VwESl,/|Vw|2:

Rp(w)Q(pig) =

IN

CASE 3: p € (2,12/5].
We choose a = b = 6/5 in Theorem 3.5 and use the interpolation inequality

to conclude that
2(12 5p)

/¢ww < Heys.6/5/wll12/5 < Heys, 6/5Hw||p Jwllg ©, Vwe HY(R?).
From the Sobolev inequality we obtain that, for a suitable constant S > 0,

depending only on p, we have

6p
[ o < HopopsSlulis™, vwe s [ 1Vul =
Consequently, for a suitable constant Ci, , >0 depending only on p and g, we have

([ IVw]?) ™" (g [ dpuw?

Al
Cop (f Jw]?)”e="
A [lwp

8(3—p)

- Ciap (/|w|p) -

<2 tP VweSl,/|Vw|2:1

10 3p

R2(p 3 (w) =

IN

and hence the proof is concluded.

As a consequence of the previous proposition, we have the new inequalities
stated in Theorem 2.1 and Theorem 2.2.

3.1. PROOF OF THEOREM 2.1 AND THEOREM 2.2. They follows respectively

by Proposition 3.6 and Proposition 3.7 with a simple L?-normalization.
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4. Natural constraints for

In this Section we prove the existence of a natural constraint for the energy
functional E restricted to S,. Although such a constraint appeared already
in [1,12], the proof that it is a manifold and a natural constraint seems to
be new.

We start with a well-known Pohozaev identity, which will be quite useful:
for a,b,c,d € R consider the equation
(4.1) —alAu + bu + cpyu + djulP~2u = 0,

' ue H'(R?),

and define P : H'(R?) — R by

3b 5 3d
Pu) = ;L/|Vu|2+ ) /u2+ 4C/¢uu2+ ) /|u|p.

Then we have the following Pohozaev identity; see [21, Theorem 2.2]:
PROPOSITION 4.1: If u satisfies (4.1), then P(u) = 0.

As a consequence we get the next result which is already known (see [12,
Lemma 2.1]), however, we prove it for completeness.

PROPOSITION 4.2: Assume that u € S, is a critical point of E restricted to S,.

Then
2, 4 2 3(p—2) / p_
/|Vu| + 4/¢uu 2 A JulP =0.

Proof. Indeed, from the Lagrange multiplier rule there exists p € R such that
E'(u) = pu, that is, u is a solution of

—Au + qpyu — NulP"u = pu.
In particular, u satisfies

/|Vu|2+q/q§uu2—)\/|u|p:M/u2

and by Proposition 4.1 also

1/ 9 3/2 5/ 9 3/\/
Vul*— _p [ v+ q [ ¢puu” — ulP =0
A ; "

which together give the desired equality.
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Proposition 4.2 justifies the introduction of the set

3(p—2

(4.2)  Npga = uGST:/|Vu|2+q/¢uu27 (p )/\/|u|p:0 :

” 4 2p
since it contains any solution u of (1.2). In the following we will simply write N..
3p—8
(3p—8) /|u|p o 0},

0 2 8
(4.4) Ny =<queN,.: [ |Vu] - |ulP =

3p—
45) N = {uEN /|V = 3p 2 /|u|1’ <o}

Just in Subsection 5.2 it will be more convenient to express explicitly the de-

Define also

(4.3) NF = {u eEN,: /|Vu|2 3p - i
—2)(
4p
)

pendence on ¢ and A, instead of r, since they will have an important role.
To obtain basic estimates for the elements of N, let us recall the Gagliardo—
Nirenberg inequality:
3(p—2)

(4.6) /|u|p < KGN</|Vu|2) ' (/u2) GZP, Vu € H'(R?),

where Kgn > 0, hereafter, is the Gagliardo—Nirenberg constant which depends

only on p. Then we have
PROPOSITION 4.3: Let r,A > 0 and u € N,.

(1) Forp € (2,10/3), we have
4 3(p —
[1vu < wgeen (0

2p

10— 3p

2))\) 10é3p ” 6—p
(2) Forp =10/3, we have
< r2/3.

3AKgn —
(3) If p € (3,10/3), then there exist constants cp,c, > 0 such that

C/
/IWI2 > and /IUIP > 7.
r A1

(4) For p € (10/3,6), we have

4
[1vup = wgn (0 D)
P
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Proof. First observe that for any u € N, we have

(@7) /|vu|2 < 3(p2p 2>A/|U|P.

Combining (4.7) with the Gagliardo-Nirenberg inequality (4.6) we infer, for
any u € N,., that

3(p—2)
3 — 2 )\ 4 6—p
/|Vu|2 < Ken (p2p ) </|Vu|2) -7

From this we deduce (1), (2) and (4).
Now assume that p € (3,10/3). From [12, Lemma 2.3], there exist ¢, ¢, > 0
positive constants, such that

/|Vu|2+i/¢uu2—3(p2; 2))\/|u|p20/|Vu|2—cp</|Vu|2) ry, Yues,.

Therefore
3
2
[l = e [1ouR) st <0, vuen.
and hence
2
9 c 1
(4.8) /ﬁvm > ( ) . YueN,
cp) T

which is the first estimate in (3). The second one follows by (4.7) and (4.8).

For the sake of completeness we observe, by looking at the proof of [12,
Lemma 2.2 and Lemma 2.3], that the constants appearing in (3) of Proposi-
tion 4.3 are given explicitly by

3(p—2)(4 — p)27—1’)1/(p73) , 2p ( e )2’

b C =
p Po3(p—2)
64 — 1
CcC =

64w

Cp

and do not depend on q.
As we will see, item (2) in Proposition 4.3 will be improved in Theorem 5.3.
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4.1. THE FIBRATION FOR N,. We will use the fibration method of Pohozaev
to study N,.. Given u € Sy, define the fiber map

Prana € (0,00) s E(r/?ul) € R

where u'(z) = t3u(tz) € Sy and then r'/2u! € S,. Also in this case, until

Subsection 5.2 we will write simply ¢, .. Then explicitly we have

t? 2, o 2 £3/2p=8 /2
Oru(t) = 27’ |Vul|® + 47’ q | duu’ — PN [ |ulP.
p

A simple computation gives the next

LEMMA 4.4: The fiber map ¢, ,, is a smooth function and
2 3(p—2) sp
dutty=tr (190 + 7 a o2 =20 Dix sy [lup,
’ P

_9 _8)
duty = v [ (vup = 20T AO T sz flp,
’ p

Then we can give a complete description of the fiber ¢, ,,.

PROPOSITION 4.5: For each u € Sy the following statements hold:
(I) If p € (2,8/3), then ¢, , has only one critical point at t," (u) which is a
global minimum with ¢ (t}(u)) > 0.
(IT) If p = 8/3, we have:

(1) if
2 p/2
[t [ <o

then ., has only one critical point at ¢ (u) which is a global
minimum with ¢, (t;(u)) > 0;

@) if
2 p/2
[T [z

then ¢, ,, is strictly increasing and has no critical points.
(IIT) Ifp € (8/3,10/3), then there are three possibilities:
(1) ¢ has exactly two critical points at t, (u) < t}(u). Moreover,
t}(u) corresponds to a local minimum while t, (u) corresponds to
a local maximum with ¢’ (t}(u)) > 0 and @], (t, (u)) < 0;
(2) @y is strictly increasing and has exactly one critical point at t2(u).
Moreover, t°(u) corresponds to an inflection point;
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(3) @r is strictly increasing and has no critical points.
(IV) If p =10/3, we have:

(1) if
p/2
;/|vu|2—’p )\/|u|p<0,

then ., has only one critical point at t; (u) which is a global
maximum with ¢, (t; (u)) < 0;

2) if
p/2
v =" [ =

then ¢, is strictly increasing and has no critical points.
(V) If p € (10/3,6), then ¢, has only one critical point at t, (u) which is
a global maximum with ¢/, (¢, (u)) < 0.

Proof. 1t is straightforward.

A direct application of the Implicit Function Theorem shows that

LEMMA 4.6: Fix u€S; and suppose that (a,b) >t} (u) (respectively . (u))
is well defined. Then (a,b) > 1+ t;"(u) (respectively t, (u)) is C! in (a,b).

From Lemma 4.4 it is easy to see that, for each r > 0, N, given in (4.2) can
be written also as

N, = {r1/2u tu € S, @;yu(l) =0}

which, in some sense, justifies the name of Nehari set. Moreover, it holds
(see (4.3), (4.4) and (4.5)) that
NI ={ueN, ¢, (1) > 0},
(4.10) N ={ueN, ¢/, (1) =0},
N7 ={ueN,: ¢, (1) <0},
and NV, = N;FUNP UN.
Remark 2: Note that, given u € S1, t* is a critical point of the fiber map ¢, ,, if

and only if 7/2u?” € N,. Actually t* is a minimum (respectively maximum or
inflection) point of .., if and only if r'/2u*" € N+ (respectively N~ or N2).

In the following we study deeply the sets AT and N.
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4.2. N;F AND N,” AS NATURAL CONSTRAINTS. Let us start by defining, for >0,
the functionals

1 r
h(u) = /u27 , for u € H'(R?),
(4.11) () 2 2 (R7)
g(u) = 90;«,71(1), for u € S51.

LEMMA 4.7: Whenever nonempty, N;= and N~ are C' manifolds in H*(R?) of

co-dimension 2.

Proof. Let us show the proof for N since for N, it is completely analogous.
The proof will follow once we prove that h'(u) # 0, g'(u) # 0 and b/ (u), ¢'(u)

are linearly independent for each v € Nt. In fact, h'(u) # 0 is straightforward.

Suppose on the contrary that there exists u € N, and ¢ € R such that

g'(u) = ch/(u).
It follows that

3(p—2)

9 AulP~2u = 0.

—2Au — cu + gy u —
From Propostion 4.1 we conclude that

JIVuP = %r+5q [ dgu? = "% DA [ ful? =0,
2 [|Vul? —cr+q [ ¢puu® — 3(p;2)kf |ulP =0,

JIVuP? + 4 [ ¢y u® — B(Z;Q)Af [ulP = 0.

Let us set for brevity

A=/|Vu|2, B:q/¢Uu2, C:)\/|u|p

and solve the system with respect to these variables. A simple calculation shows
that it has a unique solution when p # 3, in which case

- 1
A re(8 3p), B re(3p 0)7 o rep .
8(p—3) 2(p—3) 6(p—2)(p—3)
We substitute A,C in ¢/, (1) to conclude that
(,0;_/’“(1) =0,

and hence a contradiction. If p = 3 we have two cases: when ¢ # 0, then the
system has no solution, which is a contradiction. When ¢ = 0, the system has
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the following solution

A= Z, B=C, C>0.
We substitute A,C in ¢]/, (1) to conclude that

(p;/’u(l) =0,

again a contradiction. From all these contradictions we conclude that h'(u)
and ¢’(u) are linearly independent for each u € N;t. Moreover, a careful look at
the previous calculations shows that ¢’(u) = 0 is impossible, since in that case we
would have ¢ = 0, which gives a contradiction in all cases. Therefore g'(u) # 0
and N;F is a C! manifold with co-dimension 2 in H*(R?).

Now we prove that ;T and A, are natural constraints for the energy func-
tional E.

LEMMA 4.8: Assume that there exist u € N7 UN,” and p,v € R such that
B/ (w) = b (w) + vg'(u)
where h and g are given by (4.11). Then v = 0.
Proof. Indeed, applying Proposition 4.1 to the equation
E'(u) — ph/ (u) = vg'(u) = 0

we conclude that

;(E/(u)u — ph/ (w)u —vg' (u)u) — P(u) = 0.
Simple calculations shows that
3

9 (E'(w)u — ph'(w)u — vg'(w)u) — P(u) = g(u) — v, (1),
which implies that v¢; (1) = 0, and hence v = 0.
Lemma 4.7 and Lemma 4.8 are summarized in the next

THEOREM 4.9: Whenever nonempty, N," and N~ are C' manifolds in H'(R?)
of co-dimension 2 and natural constraints for E.

The next step is then to see for which values of g, A, p, 7 the sets N,., N.T, N~
are non-empty. As a consequence of this study, we will be able to recover some
results known in the literature by our unified approach.
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5. Structure of N, N7 and N~

The structure of N, N;¥ and N~ strongly depends on the values of p and
indeed different approaches are needed. The particular value p = 3 is treated
separately.

5.1. THE CASE p # 3 AND PROOF OF THEOREM 2.3. It is convenient to con-
sider the cases p € (2,8/3]U[10/3,6] and p € (8/3,10/3)\ {3}.

5.1.1. The casep € (2,8/3]U[10/3,6). In this case we can give a simple descrip-
tion of N,.. We prefer to state separately the limit cases p = 8/3 and p = 10/3.

THEOREM 5.1: Let r > 0. Then:

(i) ifp € (2,8/3), then N, = N;F = (;
(ii) if p € (10/3,6), then ;. = N~ # 0.

Proof. The proof of (i) is a direct consequence of Proposition 4.5 item (I) since
for each u € S we have that #'/2uf () € N+, Similarly, the proof of (ii) is a
direct consequence of Proposition 4.5 item (V), since for each u € S; we have
that 71/2ut (W € N7

THEOREM 5.2: Let r > 0. If p = 8/3, then N,. = N.* # 0.

Proof. In fact, from Proposition 4.5 item (IT) it is sufficient to prove that there

exists u € S7 such that
2 /2
r r
/¢uu2 - /|u|p <0.
4 p

If {u,} C S; is the sequence given by Lemma 3.2, then

2 p/2 2 p/2 p/2
lim " /q¢u ,ui—r )\/|un|p < lim ( Cs v q—ClT )\) = —Clr A
n—oo \ 4 " D n—oo \n2/3 4 p p

Therefore for n sufficiently large, we have that r!/ 2uf{+(u") e NTF.
THEOREM 5.3: Let r > 0. If p = 10/3, then N, # @ if and only if

51
<
3Kan A

(as usual Kgn is the Gagliardo—Nirenberg constant as in (4.6)). Moreover, in
this case we have N;. = N”.
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Proof. By Proposition 4.5 item (IV) it is sufficient to estimate, for u € S, the

1w =" [

By the Gagliardo—Nirenberg inequality (4 6) we have that

/|u|p < KGN/|Vu|2, Vu € Sy,

quantity

where

p
Kgn = sup f|u|

u€Sy f |VU|2
It follows that

p/2 p/2
g/|Vu|2 - rp )\/|u|p > 7q/|w|2 ~ Kon | )\/|Vu|2
/IV 2 1 3KGN r2)).

By definition of Kgn, there exists u € S with

p/2
;/|vu|2f”p A/|u|p<0

51
SKen A

in which case r/2utr (W) € N~

if, and only if,

5.1.2. The case p € (8/3,10/3)\ {3}. In this case the description of N, is more
involved. We use the ideas introduced by II’yasov [10]: for r > 0 and u € Si,
consider the system (recall the definitions in Subsection 4.1)

Pru(s) = ¢luls) = 0.
Since p € (8/3,10/3) \ {3} we can solve it with respect to the variables s and r
to obtain a unique solution, denoted hereafter by (so(u),7(u)), given by
1 Vul?y a2
o= (L7 L Ty
3p— 8r(=2/2 ) [ Julp

and

2(10 — 3p)) irs ( P ) 2(p-3)
= R 5
ro(w) ( 3p—8 3p—8 p(t)

where R, is defined in Section 3. The following proposition is just a consequence

of the definitions and makes clear that p = 3 is a threshold.
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PROPOSITION 5.4: Assume that p € (8/3,10/3) \ {3}.Then for each u € Si,
there exists a unique pair (so(u),ro(u)) such that

sﬁm(u),u(so(u)) = W?U(u),u(SO(u)) =0.
Moreover:
(1) Ifp € (8/3,3) and r < ro(u), then ¢, (so(u)) <0 and ¢, (s0(u)) =0,
while if r > ro(u), then ¢, . (so(u)) > 0 and ;. ,(so(u)) = 0.
(2) Ifp € (3,10/3) and r < ro(u), then @, (so(u)) > 0 and ¢;. ,(so(u)) = 0,
while if r > ro(u), then ¢, (so(u)) < 0 and ;. ,(so(u)) = 0.

Similarly, for » > 0 and u € S; we consider the system

Oru(s) = @1, (s) = 0.

Again, since p # 3 (and p # 10/3), we can solve it with respect to the variables s
and r to obtain a unique solution, hereafter denoted by (s(u), r(u)), given by

s(u) - ( 4p 1 I|V’u|2)3p310
-~ \3(p—2)3p —8) rP=2/2 ) [ |ulr
and
10 — 3p\ itr-3) 4p 2(0-3)
= (4 ) ( ) R, (u).
r(u) ( 3p—8 3(p—2)(3p—8) ()
However note that the expression for r(u) makes sense also for p = 10/3 and
in this case

(1) rtw) = (2)" Riojato).

Similarly to Proposition 5.4 we have:

PROPOSITION 5.5: Assume that p € (8/3,10/3) \ {3}. Then for each u € Sy,
there exists a unique pair (s(u),r(u)) such that

Pruy,u(3(w) = @l W (s(u)) = 0.
Moreover:
(1) If p € (8/3,3) and r < r(u), then ga’ru(s(u)) < 0 and ga’r’u(s(u)) =0,
while if r > r(u), then ¢, (s(u)) > 0 and ¢y, (s(u)) = 0.
(2) Ifp € (3,10/3) and r < r(u), then ;. ,(s(u)) > 0 and ¢, (s(u)) = 0,
while if r > r(u), then ¢, (s(u)) < 0 and ;. (s(u)) = 0.

Furthermore
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PROPOSITION 5.6: For each u € S; we have that:

(i) if p € (8/3,3), then ro(u) < r(u);
(ii) if p € (3,10/3), then ro(u) > r(u).

Moreover:

(iil) if p € (8/3,3), then the functions S1 3 u — ro(u),r(u) are unbounded
from above;
(iv) if p € (3,10/3), then the functions S1 > u — ro(u),r(u) are bounded

away from zero.

Proof. The proofs of (i) and (ii) are straightforward and the proofs of (iii)
and (iv) are a consequence of Proposition 3.4.

To treat the case p € (3,10/3) we need also the numbers

(5.2) Ty = ulélél ro(u) and r*:= u1é1£1 r(u).

Then the description of N, N;F, N~ is given.

THEOREM 5.7: The following hold:

(i) Suppose that p € (8/3,3). Then for each r > 0 there exists u € Sy such
that inf;~0 ¢ru(t) < 0. Moreover, N, and N, are non-empty.

(ii) Suppose that p € (3,10/3). If r < r*, then N;. = (), while if r > r*, then
N and N are non-empty. Moreover, if r < r, then inf;~q ¢, (t) > 0
for each v € Sy, while if r > r{, then there exists uw € S such that
infis0 @y (t) <O.

Proof. (i) Fix » > 0 and assume on the contrary that for each v € S we
have that inf;~o () > 0. In particular, it follows that ¢, . (5 (u)) > 0
and therefore, from Proposition 5.4 we conclude that ro(u) < r for all v € Sj.
This contradicts Proposition 5.6 (iii) and hence there exists v € S such that
inf;>0¢ru(t) < 0. To conclude, note from Proposition 4.5 item (III) that
ifu € Sy satisfies infy=q @ (t) < 0, then r/2ufr @) € N~ and #1/2uf" (W) ¢ T,

(ii) Fix 7 < r* and suppose on the contrary that N, # (). Take u € N, and ob-
serve from Proposition 4.5 item (ITI) that there exists ¢ > 0 such that ¢/, (£) <0
and ¢/, (t) = 0. From Proposition 5.5 we conclude that r > r(u) > r* which is
clearly a contradiction and therefore N, = ().
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Now fix 7 > r* and assume on the contrary that A/t = (), which implies from
Proposition 4.5 item (III) that N~ = 0 (and vice-versa). From the same propo-
sition, we conclude that for each u € Sy, when ), (t) = 0 then ¢/ () > 0. Tt
follows from Proposition 5.5 that r < r(u) for all u € S1, again a contradiction
and hence N, and N,  are non-empty.

By using the functional S; 3 u +— ro(u) instead of S1 3 u +— r(u), the rest of
the proof is similar.

Now we can give the proof of Theorem 2.3.

Indeed (i) follows by Theorem 5.1 and Proposition 4.5 item (I). (ii) follows
by Theorem 5.1 and Proposition 4.5 item (V). (iii) follows by Theorem 5.2.
(iv) follows by Theorem 5.3. (v) and (vi) follow by Theorem 5.7.

5.2. THE CASE p = 3 AND PROOF OF THEOREM 2.4. In this case the system
oru(t) = @p,,(t) =0

has no solution with respect to the variables t,r. Therefore, instead of the
variable r, we will solve the system with respect to the variable A and analyze
the dependence of the solutions with respect to ¢q. It will be clear from the
calculations that, at least topologically speaking, there are no changes in the
fibering maps with respect to r, hence, to reflect the dependence on ¢, A, we
change the notation here, so for example we will write Ny x, ©g x.u, - .. instead
of Ny, ©ru, ... we used up to now.
Consider then the system of equations ¢4\ u(t) = ¢ 5 ,(t) = 0. We solve
this system with respect to the variables ¢, A to find a unique solution given by
toatw = (1 L ek)
, P2\ [ uf?
and
ol = ()"0t [Vl [ fuu)?
’ 2 S lul?
Similarly, we consider the system ¢/ , ,(t) = ¢y ,(t) = 0 and solve it with
respect to the variables ¢ and A to obtain a unique solution given by
= (o)
P2\ [ ful?
and

ul? [ dyu?)?
Ag(u) = 243V |Vf||£|f )
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As an application of Lemma 3.3 we have:

PROPOSITION 5.8: For each r,q > 0, the functionals S1 3 u — A q(u), Ag(w)
are bounded away from zero. Moreover, Ay(u) < Ao q(u) for all u € S;.

For each r,q > 0 define

Ao = Inf Aoq(u) and )\; = inf Ag(w).

4 u€S u€E S

Then the proof of Theorem 2.4 can be finished. Indeed it is similar to the
proof of Theorem 5.7 (we use Proposition 5.8 instead of Proposition 5.6).

6. On the sub-additive property for p € (2,10/3)
For each p € (2,10/3) define
I :=1I 4 = inf{E(u) :u e N UN}.

Since F is bounded from below on S, (see, e.g., [2, Lemma 3.1]) and N, C S,
we conclude from Theorem 2.3 that I, is well defined, that is I, > —o0.

In this Section we show how our method can be used to prove the sub-additive
condition for I,., namely

(6.1) L <Is+1I_5 0<s<r.
Again it is convenient to study separately the case p = 3.

6.1. THE CASE p € (2,10/3) \ {3}. We recall that, given u € S, by defini-
tion (7(u),t(u)) is the unique solution of

_ (p—2)
rt? [ |Vul? + Titqf¢uu2 - 3(1;192)7“?/21&3 2 A S |ulP =0,

3(p—

12t [ pu® — P22\ [ ulp = 0
see (3.7) and (3.8) for the explicit value of the solutions.

PROPOSITION 6.1: For each p € (2,10/3) \ {3}, the functional S; > u — 7(u)
is bounded away from 0. Moreover,

(i) if p € (3,10/3), then r(u) < 7(u) < ro(u), for all u € Sy;

(ii) if p € (8/3,3), then 7(u) < ro(u) < r(u), for all u € S.

Proof. That S1 3 u +— 7(u) is bounded away from 0, for all p € (2,10/3) \ {3},
follows from Proposition 3.4 and Theorem 3.7. The proofs of (i) and (ii) are
straightforward.



30 G. SICILIANO AND K. SILVA Isr. J. Math.

As was already observed (see, e.g., [3]), in order to prove the strict sub-
additive condition (6.1), it is sufficient to show that I,./r is decreasing in r.
Our strategy to prove that I,./r is decreasing in r will be the following: we will
construct paths that cross the Nehari manifolds when r varies and show that the
energy restricted to these paths, divided by r, is decreasing. Then we will show
that the function I, /r will inherit this property for some specific values of r.

Fix u € S7 and

(i) if p € (2,8/3), define f(r) := ¢, (£, (u)) for all r € (0, 00);

(i) ifp = 8/3 and ’f [ du® =343 [ ul/® < 0, define f(r) := ¢pu(t} (u))
for all » € (0,r(u)) where, in this case, r(u) is by definition the
unique r > 0 for which

2 3
f /¢““2 - 8T4/3)\/ Jul*/? = 0;

(iii) if p € (8/3,3), define f(r) := @, u(t,}(u)) for all r € (0,7(u));
(iv) if p € (3,10/3), define f(r) = @, u(t;} (u)) for all r € (r(u), c0).

Define also

Clearly f, and consequently g, depend on u € 5.

PROPOSITION 6.2: Let u € S.

(i) If p € (2,8/3), then the function (0,00) > r — g(r) is decreasing for
all v € (0,7(u)) and increasing for all r € (7(u),7(u)).

(ii) If p = 8/3, then the function (0,00) > r +— g(r) is decreasing for
all v € (0,7(u)) and increasing for r € (7(u),r(u)).

(i) If p € (8/3,3), then the function (0,r(u)) > r +— g(r) is decreasing for
all r € (0,7(u)).

(iv) If p € (3,10/3), then the function (r(u),00) > r — g(r) is decreasing
for all r € (7(u), 00).

Proof. Indeed, from the definition of f(r), it follows from Lemma 4.6 that g
is C' and

2
g'(r) = ¢l (tF () + t* / puu® — P T2t () 8 / Jul?.
’ p
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For simplicity denote ¢, = ;7 (u). It follows that g’(r) = 0 if, and only if,

rtrf|Vu|2 " qubuu — p 2)7"1’/2152 - /\f|u|p =0,

(6.2) 1t [ o u2 — P2ypp/2- 2t27 /\f|u|p:0
27‘ u D T i

which is equivalent to system (3.6). Fix r > 0 and define

/qau ~ 250 4A/|u|P

We consider two cases:

CASE 1: p=18/3.

Observe that the first equation of (3.6) has a unique solution ¢. By plugging
this solution in the left-hand side of the second equation, which is exactly th(¢),
the proof of (ii) is complete.

CASE 2: p € (2,10/3)\ {8/3,3}.

Note that the second equation of (3.6) has a unique solution ¢. By plugging
this solution in the left-hand side of the first equation, which is exactly ¢}, (¢),
we conclude, by using Proposition 4.5, the following:

(1) ifpe(2,8/3) and r€(0,7(u)), then ¢, (t) > 0, while for r € (7(u),r(u))
we have that ¢ () < 0;

(2) if p € (8/3,3) and r € (0,7(u)), then ¢ () <0;

(3) if p € (3,10/3) and r € (7(u), 00), then ;. () < 0.

Now we can prove (i), (iii) and (iv).

(i) If r € (0,7(u)), then from item (1), we conclude that ¢ > ¢, and hence
h(t;) < h(t) =0, whileif r € (7(u),r(u)), then ¢t < ¢, and hence h(t,) > h(t)=0.

(iii) If r € (0,7(u)), then from item (2), we conclude that ¢ < ¢, and hence
h(t;) < h(t) =0, that is ¢’(r) < 0.

(iv) If r € (¥(u), 00), then from item (3), we conclude that ¢ < ¢, and hence
h(t;) < h(t) =0, that is ¢’(r) < 0.

Let us define now

M, = {

o e N, and E(u) < 0}.
[[ull2
LEMMA 6.3: The following hold:

(i) ifpe(2,3) and 0 <1y <ry <r* then M,, = M,, = 51;
(ii) ifp € (3,10/3) and r* <71 < r9, then M,, C M,,.
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Proof. (i) Fix 0 < r < r*. Then, ¢, ,, satisfies Item (III)-(1) of Proposition 4.5
for all w € S7 and hence M,, = M,, = S;.

(ii) Indeed, if u € M,,, then the fiber map ¢, , satisfies Item ITT — 1)
of Proposition 4.5. From Proposition 5.5 it follows that r(u) < r < 79
and hence ¢, ,, also satisfies Item (IIT)-(1) of Proposition 4.5, which implies
that M,, C M,,.

LEMMA 6.4: Suppose that p € (3,10/3) and let r € [a,b] where 1§ < a < b.
Then there exists a negative constant ¢, such that ¢'(r) < ¢, for all u € M,
and r € [a,b].

Proof. In order to prove the lemma, it is sufficient to prove that the left-hand
side of the second equation of system (6.2) is bounded from above by ¢ for
all w € M, and r € [a, b].

First observe from Proposition 6.1 that 7(u) < ro(u) < r for all u € M,
and all r € [a,b] and hence, from Theorem 6.2, we conclude that ¢’(r) < 0 for
all u € M,. and r € [a,b]. Now note that

g(r) = Sﬁryu(t:r (u))/r = Sﬁr,su(t:«r(su))/T

for all s > 0 and therefore, by choosing s = 1/||Vulls, we can assume
that | Vul|2 = 1 for all u € M,..
Suppose on the contrary that there exists a sequence {u,} C M,
with [|[Vu,|l2 = 1 and corresponding sequences t,, > 0, r,, € [a, b] such that
2 _ 3p_»
Tntp f |V’U,n|2 + TIQI(bUnU?L - 3(2:02)747%/2@12 )‘f |un|p =0,

_ _o 3P _3
St [ buyud = 7220 TN funl? = 0n(1).

(6.3)

From Proposition 4.3 and the Gagliardo—Nirenberg inequality it follows that
there exist positive constants c,d such that ¢ <t, < dand ¢ < f |un|P < d for
all n. Therefore from the second equation of (6.3) we obtain that

4 2,2
t, = ( p ,,,nzp q f(bunun)“’ 8 +On(1)
20-2) " A [lual

By plugging t,, in the first equation of (6.3) we conclude that r,, = 7(u,)+0,(1)
and hence r, = cro(un) + on(l) < erp + 0,(1) where ¢ € (0,1), which is a

contradiction. Then there exists a negative constant ¢, such that ¢'(r) < ¢, for
all u € M,..
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Since we do not have a priori estimates like in Proposition 4.3 for the
case p € (2,3), a similar version of Lemma 6.4 for that case is not so imme-
diate, however, if we control the term f |u|?, then we can prove the following:

LEMMA 6.5: Suppose that p€(2,3) and let r €[a, b] where 0 <a <b<inf,ecgs,7(u).
Fix d > 0. Then there exists a negative constant ¢ such that ¢'(r) < c¢ for
all u € M, satisfying [ lut* @1|P > ¢ and all r € [a, b).

Proof. In order to prove the lemma, it is sufficient to prove that the left hand
side of the second equation of system (6.2) is bounded from above by ¢ for
all u € M, satisfying [ [u* [P > d and all 7 € [a,b]. From Theorem 6.2, we
have that ¢'(r) < 0 for all u € M,.. Now note that

9(r) = ru(t (W) /7 = rsults (su) /7
for all s > 0 and therefore, by choosing s = 1/||Vulls, we can assume
that ||Vul|lz = 1 for all u € M, satistying f|utr+(“)|p > d. Suppose on the
contrary that there exists a sequence {u,} C M, satisfying ||Vu,||2 = 1 and
+ u .
J |uf{( ")|p > d and corresponding sequences t,, > 0, 7, € [a, b] such that
rute | [Vnf? + 770 [ Guid = G 20208 TN fual? = 0

2p
Tt [ Sunt2 — 722002208 0 [ unl? = 0, (1).

Arguing as in the proof of Lemma 6.4 we conclude that

rn = Fun) +0n(1) > inf 7(w) +04(1) > b+ +o0a(1)
ueS1

for some e, which is a contradiction. The proof is complete.

At this point we have the desired result on I,./r.

THEOREM 6.6: The following hold:

(i) ifpe(2,3), then the function (0,inf,es,,7(w))>r— I /r is decreasing;
(i) if p € (3,10/3), then the function (r§,00) 3 r — I./r is decreasing.

Proof. (i) Fix 0 < r1 < ry < infyeg, 7(u) < r* and let {u,} C N be a
minimizing sequence to I,. Since every such sequence is non-vanishing, we
can assume that [ |u,|P > d for some positive constant d and all r € [r1,r].
From Lemma 6.3, Lemma 6.5 and the mean value theorem, we conclude that,
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for all n € N,

Pra,un (t;j; (un))
T2 T2
T1,Un t;«i_ Un
= o8l | g6y )

< Pri,un (t;j_l (un))
T1

IN

+c(re —r1)

where 6 € (r1,r2). As a consequence

I, < I,
T2 T1

+ e(rg — 1),

and the proof of (i) is complete.
(ii) Fix 7§ < r1 < ro and note from Lemma 6.3, Lemma 6.4 and the mean
value theorem that

I, ‘Pw,u(t;; (u))
T2 T2
T1,U tj U
_ el ) L o
T1
T1,U tJr n
_ Prualth, (un))

T1

+c(re —r1), Yu € M,
where 6 € (r1,r2). As a consequence

I, < I,

T2 T1

+ ¢(re — 11),
and the proof of is complete.

As an immediate consequence of Theorem 6.6 we have the sub-additivity

inequality for I,.
THEOREM 6.7: The following hold:

(i) if p € (2,3), then for each r1,r2 € (0,infycg, 7(w)), with 1 < 72, we
have that I, < I, + Ir,_r,;

(i) if p € (3,10/3), then for each ry,7r2 € (1, 00), with 11 < 72, we have
that I, < Ly + Iyyr,.
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Remark 3: When p € (2,8/3] we see from Theorem 6.2 that after 7(u) the
function g is increasing. This suggest that the same property may hold for I,./r
when 7 is big and this suggests that I, may not satisfy the strict sub-additive

property.

6.2. THE CASE p = 3. We assume that A > A7, which implies from Theorem 2.4
that N, # 0 for all » > 0. We define in this case

MT:{ :uG./V'TJr}.

u
[[ull2
Since, as observed in Subsection 5.2, the system ¢, (t) = ¢, (t) does not
depend on 7 > 0, it follows that
LEMMA 6.8: We have that

M, = M1, Vr > 0.

From Lemma 6.8 we conclude that if u € M; C Sy, then ¢ (u) is defined for
all 7 > 0 and thus we can define f(r) = ¢, (£} (u)).

LEMMA 6.9: For each r > 0 and u € My, we have that f(r) = f(1)r3.

Proof. Note that

03O0 [l 5 foae () [

Since ru'* (") € N, we also have that
tr(u)y2 2, 165 (u) o Loth(u)ys 3
( T ) /|Vu| +4 T /q[)uu _2( T ) /|u| =0

Therefore
!/
(f(g)) —0, Vr>0,
r
which completes the proof.

PROPOSITION 6.10: For each r > 0, we have that I, = I1r3.
Proof. For each u € M1, we have from Lemma 6.9 that
Pru(tsh ()
= e )
Therefore

— inf et () =4

I. inf {‘Pr,u(t:r(u))}

7'3 ueEM;y

and the proof is completed.
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Then we have also for p = 3 the sub-additivity condition.

THEOREM 6.11: Suppose that A > Aj ;. Then for each 0 < ry < rg, we have
that
Ly, <Ipy +1py_r,.

Proof. From Theorem 2.4 we know that )\Z < )\37(1 and I; < 0, therefore the
conclusion is a consequence of Proposition 6.10.

7. Constrained minimization for p € (2,10/3)\ {3}

Now we turn our attention to the existence of minimizers: it is convenient to
consider two cases according to the values of p:

* pE(2,3),

* p € (3,10/3),

although the first case is almost done.

7.1. THE CASE p € (2,3) AND PROOF OF THEOREM 2.5. The proof follows
immediately from Theorem 6.7.

7.2. THE CASE p € (3,10/3) AND PROOF OF THEOREM 2.6. By the definitions
(see (5.2)):
Vr>ry: L, =inf E<0 and I =inf E=0.
s, o 5
In both cases the existence of minimizers is already known (see [3,7,12] and
also our Theorem 6.7). However as we will see 0 = infg F < I if r € (r*, 7).
Let us start with the following

THEOREM 7.1: If (r*,400) > r — I, is decreasing, then for each r € (r*,r§)
there exists u € N, UN} such that I, = E(u).

Proof. In fact, let {u,} C Nt UN? be a minimizing sequence to I,.. It follows
from Proposition 4.3 that there exist positive constants ¢, C' such that

c< HunH <C, VneN,

and we conclude that u, - 0 in L?(R®). So {u,} does not vanish and then, up
to translations, there exists a subsequence, still denoted by {u,,}, that converges
weakly in H'(R?), strongly in L? (R3) and almost everywhere in R3, to some
non-zero function v € H'(R3).
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From [26, Lemma 2.2], we conclude that

(7.1) I, = lim E(u,) = E(u)+ lim E(u, — u).

n—00 n—o0

Let, as usual,

Q) = [19u+ 1 [ =202 [lur <o

and note that

(7.2) 0= lim Q(un) = Qu) + lim Qluy, —u)
and
(7.3) ullg = 7 — Tim_ [, —ul

We claim that Q(u) < 0. On the contrary we would have from (7.2) that
Q(u, —u) < 0 for sufficiently large n. From Proposition 4.5, there exists t,, > 0
such that (u, —u)i" € A[IIJ;n—UHE for large n. Once E(u, —u) < I from (7.1)
and |lu, — ul|3 < r from (7.3) for sufficiently large n, we conclude that

IH”n‘“H% < E((un — U)tn) < E(Un — u) <1,

which contradicts the hypothesis that (r*,00) 3 r — I, is decreasing and there-
fore Q(u) < 0.
From Proposition 4.5 there exists t > 0 such that u? € /\/'HJ;||2 U/\/HOUHQ. Thus,
2 2

since E(u) < I from (7.1) and ||ul|3 < 7 from (7.3), we conclude that

Therefore, from the hypothesis (r*,00) 3 r +— I, is decreasing, we conclude
that r = [|ull3, v € N UNDz and E(u) = 1.
2

llull3 \

In order to make use of Theorem 7.1, we need to show that (r*, +00) 3 r — I,
is decreasing. Unfortunately we are able to do so only for some values of
p € (3,10/3), although we conjecture it is true for all p in the range. We note
here that in fact, when I,. < 0 this is a standard result in the literature. How-
ever, when I, > 0, which is the case for r € [r*,rj] (see Theorem 2.3), the
inequalities go in the opposite direction and thus the proof seems not to be
direct.
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Our strategy to prove that I, is decreasing in r will be the following: we
will construct paths that cross the Nehari manifolds when r varies and show
that the energy restricted to these paths is decreasing. To this end we need to
calculate some derivatives.

LEMMA 7.2: If r'/2ut € NiF, then
3(p—2) 3 _4 »
1&/|Vu|2 + ;q/qﬁuuQ — (p4 )t32 *4r2*1)\/|u|p <0.

Proof. For simplicity denote

A:/|Vu|2, B:/¢uu2 and C:)\/|u|p.

By assumption we have that

rtA+r2iB = 20 2 ri T 0 =0,

(74 rA = B8 5 Y 500 > 0.
From the equality in (7.4) we conclude that

tA+  qB - S =2) oL gy 3P DED)
2 4 4p

From the inequality of (7.4) we obtain

t7 =451\

3p—2) 3p_4 » 3(p—2)(3— p_4 P
tA+ ;qB - (p4 )t32 “Ar2INC < (b =2)( p)t32 “r2mINC <0
p

which is the conclusion.

COROLLARY 3: Let I C R be an open interval and fix u € Sy. If t}(u) is
defined for all r € I, then the function I > r — t}(u) is C*.

Proof. Indeed, define
F(r,t) = ¢.()
for r € I and ¢ > 0. From Lemma 7.2 it follows that F(r,t(u)) = 0

and %1: (r,t;F (u)) < 0. The proof is then a consequence of the Implicit Function
Theorem.

Consider the equation —27z2 + 146z — 192 = 0. It has two real roots and the
biggest one is given by

T3+ V145

o €(3.10/3).

Do
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LEMMA 7.3: Assume that r'/?u? € Ni}. The following hold:
(i) if p € (po,10/3), then there exists a constant ¢, < 0 such that

c//
t2/|Vu|2+rtq/¢uu S A 3/|u|p< i
T

(i) if p = po, then

t2/|Vu|2+rtq/¢uu N /|u|p0 <0.

Proof. For simplicity denote

A:/|Vu|2, /gbu and C = A/|u|p

By assumption (see Lemma 4.4 and (4.10)) we have that

2 3(p—2) .0, %P —4 —
rtA+r?1B — gp r2tz2 ~4XC =0,

75
(7.5) rA = 30705 550 s o,

From the equality in (7.5) we conclude that

R e e
p

p P 5
t?A+rtqgB — e 1t 80 — 324 +
and then, from the inequality in (7.5), we obtain
t2A + thB—)\rg 143 -3¢

—9(p—2)(3p—8) Bp—12\. »_, s
<( (p—-2)3p—8) 5 ))\r2—1t32—30

(7.6) 4p p
_ —27p? + 146p — 192\ / 2t
4p r

Since by assumption r'/2u* € Nt (see Remark 2), from Proposition 4.3 there
exists a constant c; > 0 such that

/ Pt >
- A’r’

therefore, from the definition of pg, coming back to (7.6), it follows that

» —27p% + 146p — 192 ¢, e
t2/|cu|2+TtQ/¢uU _)\T271t3 3/|u|p< P + P b = ;D’
4p r2 r2

from which the conclusion easily follows.

Observe that by (4.9), ¢, has an explicit expression.
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PROPOSITION 7.4: Suppose that p € (pg,10/3). Then the function
(r,00) > r I,
is decreasing.

Proof. Define f(r) = E(r'/2utr ) and set for brevity ¢(r) = t}(u). Observe

T

from Proposition 4.6 that f is differentiable and
t(r)? t A :
£y =" [19u+™q [z = Jrt i [

From Lemma 7.3 we conclude that f'(r) < 2¢/r?. Fix r* < r; < rp and
uwe M,,. If r € [r1,rg] then f'(r) < 2¢/r7. Therefore there exists 6 € (r1,r2)

such that o
£(2) = F0) = £/ O)(r2 = ri) < F (r2 =),

and hence .

2c
E(T;hut(”)) < E(T%mut(”)) + T2P (ry — Tl),
1
which implies that I, < I, and the proof is finished.
As a consequence of Theorem 7.1 and Proposition 7.4 we have:

THEOREM 7.5: Fix p € (po,10/3). Then for each r € (r*,r§) there ex-
ists u € N;F UNY? such that I, = E(u).

Now we will show that for r near rj the minimizer found in Theorem 7.5
belongs to N;f. To this end we need to compare the energy of F restricted
to NP with I,..

LEMMA 7.6: For each r > r*, there exists a positive constant c such that
c
E(u)> ", YueN.
r
Proof. Indeed by using the pair of equations that characterize u € N?, that is

rtA+r2 4B =20 i =0,

oA 3(p—2i}(73p—8)rgt3§ —5\C =0,
we can deduce that
10 — 3p / 2 0
E(u) = Vu s u e er
(u) 6(p —2) Vi

therefore from Proposition 4.3 the proof is complete.
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LEMMA 7.7: We have that
lim I, = 0.

rtrg

Proof. As we observed before E,.«=I,» and there exists w GNT'E with E(w)= L.

+ u
Let u € S; be such that w = réutré( ). Since E(w) = 0 we conclude from

the definition of r§ and Theorem 5.7 that ro(u) = r{. Moreover, r* = r(u).
It follows that ¢ (u) is well-defined for each r € (r*,r{). Since I, > 0 for
all r € (r*,r§) we obtain from Corollary 3 that
0 = lim E(ru’* ™) > lim I, > 0
s s

and the proof is concluded.

THEOREM 7.8: For each p € (pg,10/3) there exists € > 0 such that for
each r € (ry —e,ry), I is achieved. More specifically, there exists u € N;&
satisfying

I, = E(u).

Proof. From Theorem 7.5 it remains to prove that u € N;F. Let ¢/r be the

constant given by Lemma 7.6. Given 0 < d < ¢/r, from Lemma 7.7 there

exists £ > 0 such that I, < d for all r € (r§ —e,r§). In particular, since I, < ¢/r
E)

it follows that u ¢ N for all r € (r§ —e,74) and consequently u € N;F.

We can finish now the proof of Theorem 2.6. In fact (i) follows by Proposi-
tion 7.4 and Lemma 7.7; (ii) follows by Theorem 7.5 and (iii) follows by Theo-
rem 7.8.

8. The case p € [10/3,6)

This case was treated in [1], where existence of global minimizers over the
Nehari manifold NV,~ was proved for small r. Their proof relies on the fact that
for small r the function

Jp =inf{E(u) :ue N}

is decreasing.
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Fix u € S1 and consider the map

(81) f(?") = <Pr,u(t; (u)),
where ¢, (u) is the unique critical point of ¢, ,. By Proposition 4.5, the map f
is well-defined,

(i) forallr € (r(u),00), if p=10/3 and |, [ |Vu|?— ’"2/2)\f |ulP < 0, in this
case r(u) being the unique r > 0 for which § [|Vu|? — TI;/Z)\I lu|P = 0,
it coincides exactly with the value given in (5.1), justifying then the
same notation;

(ii) for all r € (0,00), if p € (10/3,6).

Now observe from Lemma 4.6 that (in both cases) f is C* and

F1(r) =@t (u)

< /'V“|2 +rty )q/¢“u2 A”g_ltf(U)S;_s/Wf)
— (7@ [ 1902 vty [ =3 [ ),

being (see Lemma 4.4)

Ofcpru(r( ))

2 -9 3
S [19uk T ot =20 e [l

For simplicity denote t, = ¢, (u). It follows that f’'(r) = 0 if, and only if,

2 r? 2 _ 3(p—2),.p/2 32p —4 p _
52) rty [ |Vul> + 7, q [ puu by TPt A [P =0,
8.2 .
t2 [ |Vul® +rteq [ puu® — )\rg’ltﬁp*g [ |ulP = 0.

From Proposition 3.1, system (8.2) has a unique solution (r(u),t(u)), where
26 —p)\ it [ 3 -
r(u) = ( ( P))4< 3)( D )z< S)Rp(u).
5p— 12 5p— 12
Note that r(u) = ()3/?r(u) when p = 10/3 and that, by Proposition 3.6, we
have that

inf 0.
ulgsl r(u) >
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THEOREM 8.1: Suppose that u € Sy.

(i) If p=10/3, then the function (r(u),00) > r — f(r) is increasing.
(ii) If p € (10/3,6), then the function (0,00) 3 r — f(r) is decreasing for
all r € (0,7(u)) and increasing for r € (r(u), 00).

Proof. Let t, = t, (u). By multiplying the first equation of (8.2) by —4 and
substituting into the second one, we obtain that

3p _
(8.3) tf/|Vu|2+7’trq/¢uu2—/\rgflt,? 3/|u|p = t2h(r),

5
:73/|v 2y P /|u|p

Since (8.3) means that 2f/(r) = t2h(r), we are reduced to studying the sign
of h.
(i) This item is direct since, for p = 10/3, h(r) > 0 for

r > (175)3/21%10/3 = (3)3/27"(1;) = r(u).

(ii) We show that f’(r) is negative for r < r(u) and positive for r > r(u).

where

Taking into account that ¢, is continuous (see Lemma 4.6) and f has a unique
critical point since the solution of (8.2) is unique, it is sufficient to show that
there exist some 0 < r1 < r(u) < rg such that h(r1) < 0 and h(rg) > 0.

We start with the existence of r;. We claim that

(8.4) lim h(r) < 0.

r—0

Indeed, if ¢, is bounded from above as r — 0, then (8.4) is obvious; therefore
let us assume that ¢, — co as 7 — 0. Note from the first equation of (8.2) that

f2 3p—10
/ w2 = 28 2y / [ul” = 0,(1)
2p
3p—10 2p
pp/2-1y 2 )\/UP: /Vu2+0T1
ul = g, o) [ Vel o)

and hence
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Mﬂ:*?/WIQ @ P /ww
73/|Vu|2+ 57’ /|Vu|2+0,«(1)
P 3(p—2)

_ 31;):66/|Vu|2+0,«(1), as 7 — 0.

Therefore the claim is proved.

Then

Now we prove the existence of ro. We claim that

(8.5) lim h(r) > 0.

r——4o00

Indeed, if ¢, is bounded away from 0 as r — 0, then (8.5) is obvious; therefore
let us assume that ¢, — 0 as 7 — oo. Note from the first equation of (8.2) that

pf r
Jrvup =20 D s [l = g [ o

3p—10
Since r/4t, — +o00 as r — +00, we conclude that r?/271¢, 2 X [|ulP — +o0
as r — +oo and the proof is complete.

Let p € (10/3,6) and, for r,¢,d > 0, define

MT{HUH cu €N and/|u|p20and/|Vu|2§d}.
ul|2

LEMMA 8.2: Suppose that pe (10/3,6),r € [a,b] where 0 < a < b < inf,egs, 7(u)
and ¢,d > 0. Then there exists a negative constant ¢ = ¢(a,b,r,c,d) such
that f'(r) < ¢ for allu € M, and all r € [a,b].

Proof. In order to prove the lemma, it is sufficient to prove that the left hand
side of the second equation of system (8.2) is bounded from above by ¢ for all
u € M, and r € [a,b]. From Theorem 8.1, we have that f/(r) < 0 for all u € S;.
Now note that f(r) = ¢ru(t, (v)) = ¢rsu(t; (su)) for all s > 0 and therefore,
by choosing s = 1/||Vu|2, we can assume that |[Vulz = 1 for all u € M,.
Suppose on the contrary that there exists a sequence {u,} C M, satisfying
[[Vun|l2 = 1 and corresponding sequences {t,} C (0,+00), {rn} C [a,b] such
that

_ 3P _y

rtn [ [Vunl? + 75 q [ du,ul — YD T S funf? = 0
1,573

t2 [|Vun|? + 1tnq [ Gu,u? — M2 712 77 [ |un|P = on(1).
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From Proposition 4.3 and the condition [ |Vul|? < d we conclude that {t,} is
a bounded sequence which is also bounded away from zero; therefore [ |u,[P is
bounded away from zero and, arguing as in the proof of Lemma 6.4, we conclude
that r,, = r(un) +0n(1) > infyeg, 7(u) +0n(1) > b4+ 0,(1) for some e, which
is a contradiction. The proof is complete.

LEMMA 8.3: Suppose that p € (10/3,6). Then J,. > 0 and every minimizing
sequence is bounded and non-vanishing.

Proof. Note that
3p—10/ 9 3p—8 / 9 _
8.6 E(u) = Vul|* + duu®, Yue N.

Therefore from Proposition 4.3 we deduce that J,. > 0. If {u,} is a minimizing
sequence, then from (8.6) we conclude that {||Vuy|2} is bounded and hence
{u,} is bounded in H'(R?). Moreover, this sequence can not vanish, since on
the contrary, we would obtain from the equation

3(p—2
/|Vun|2+3/¢unuif (p2p )/\/|un|p:0

that [ |Vu,|* — 0 which contradicts .J, > 0.
THEOREM 8.4: The function (0,00) > r + J, Is decreasing over the interval
(0,infyes, m(u)).
Proof. Fix 0 < ry <y <infyeg,,r(u) < r* andlet {u,} C N} be a minimizing
sequence to I.,. From the mean value theorem we have that

Iry < Ory (t’I; (un)) = Priu, (tr: (Un)) + f/(en)(TQ - Tl)v Vn € N,

where 0,, € (r1,7r2). From Lemma 8.3, {u, } being bounded and non-vanishing, it
follows that {uy,/[|us||2}C M, and therefore {uy,/||un||2}C M, for all r € [r1, 72].
From Lemma 8.2 we conclude that f/(6,,)(re —r1) < ¢(re —r1) where ¢ < 0. As
a consequence

JTQ S JTl + C(TQ - Tl);

and the proof is complete.

Now we can conclude the proof of our last theorem.

8.1. PROOF OF THEOREM 2.7. Since by the previous theorem J,. is decreasing,
the result follows by [1].
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Appendix A. New inequalities

We conclude with some estimates; in particular, the second one is new in the
literature.

THEOREM A.l: The following hold:

(i) for eachp € (2,3), there exists a positive function f, : (0,00)% — R such
that if r; < ro, then

b () s (1) TG )

T2

(i) for each p € (3,10/3) and r* < ry < rq, then

3 c p 2(p—3)
o< () =2 GOILG) -1
T1 1 \T1 1

where cj, > 0 is the constant given in Proposition 4.3.

Proof. (i) Indeed, fix r1 < ro and take u € M, satisfying E(r;/Qut(”)) < 0. For
simplicity we set ¢; = ¢(r;), ¢ = 1,2. From Lemma 6.3 we know that u € M.,
and E(r] 1/2 u') < 0, which implies that t; is a global minimum for the fiber
map ¢y, . and therefore

3 r A p—3 2(p— 3)
E(r;/zutz) = TgE(r}mut? Té) + (Tl) [( / |r1/2 fa 1P,
1 p T2 T2

3 -3 3)
5 1/2 4 A 7“1)” [(7“ 2(p— 1/2 utz|P
> BB+ ry/*ut .

1 T2 T2

Since p € (2,3), it follows that (ry/r2)?P=3) — 1 > 0, therefore if {u,} C M,,
is choosen in such a way that {ré/ 2uf3} is a minimizing sequence for I,.,, since
it must be non-vanishing we obtain that

3

r P37 /71\2(P—3)
I > G+ B A () [(0) -1,
2> sl + fp(r1,72) ry ry
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(i) Indeed, fix r* < 11 < r9 and take u € M,,. For simplicity, let again
=t(r;) for i = 1,2 and set

_ 2 q 2 _ 3(]7 - 2) / P
—/qu|+4/¢uu by A lul”
Observe that

2) 3p_,4 »
Qe =t [19ut+ o fou =0 D oy

3 - — 2(p—3)
T 12 1T 3(19 2))\( 2) {(7’2) P _1}/ 1/2 4 p
= (ry’ "u )+ - " |y “ut|P.

2p

t;

Since Q(r}mutl) =0, r; <re and p > 3, we conclude that
Q(ry*u" 1) <0,

and hence from Proposition 4.5 item (III)-(1), it follows that ¢,”(u) < t1)? <ta.
Therefore

3 - A 2( 3)
B} ut) = "L a0 () [( o / ri 2 ut P,
9 P \T1
(A.1)

3 A p—3 2(p 3
> e+ ()2 =] i,
T3 P \T1 1

1/2

Since r/“u't € N,,, it follows from Proposition 4.3 that there exists a con-

stant ¢, > 0 such that
/|r1/2ut1|P > P ueM,
1 = )\'rl, 19
and consequently from (A.1) we conclude that

3 c p—3 2(p—3)
E(ﬁmutl) > TéE(T;/2ut2) 4P (7’2) [(rz) - 1}, Yu € M,,.
T3 1T 1

Therefore

3 c D 2(p-3)
o< () = ()G -
T1 1 \T1 T1

which concludes the proof.
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