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Abstract - Geochemical analyses can provide multiple analytical
variables. Accordingly, the generation of large geochemical
databases enables imputation studies or analytical estimates of
missing values or complex measuring. The processing of bauxite is
a key step in the production of aluminum, in which the
determination of Reactive Silica (RxSiO2) and Available Alumina
(AvALQO3) are very relevant. The traditional analytical method for
achieving RxSiO: has limitations associated with poor
repeatability and reproducibility of results. Based on the values
from the unsupervised Self-Organizing Maps technique, this study
aims to develop, systematically, the imputation of missing grades
of the geochemical composition of bauxite samples of a database
from three trial projects, for the variables: total Al2O3; total SiO2;
total Fe203; and total TiO2. Each project was submitted to partial
exclusion of AvAl:O3 and RxSiO2 values, in proportion of 20%,
30%, 40% and 50%, to investigate the SOM technique as
imputation method for RxSiO: and AvAl:Os. By comparing the
imputed values from the SOM analysis with the original values,
SOM technique demonstrated to be an imputation tool capable of
obtaining analytical results with up to 50% of missing data.
Specifically, the best results demonstrate that AvAL2O3 can be
obtained by imputation with a higher correlation than RxSiO2,
based on the parameters and variables involved in the study.
Similarity in the nature of samples and an increase in the number
of embedded analytical variables are factors that provided better
imputation results.

Index Terms - Analytical Geochemical Imputation, Self-
Organizing Maps (SOM), Bauxite, Reactive Silica, Available
Alumina.

[. INTRODUCTION

Currently, in the fields of geophysics and geochemistry,
there are numerous advances that allow the acquisition of a high
density, of multivariate samples. The analysis of these data,
however, requires greater methodological studies, especially
regarding the optimization of relationships between different
variables. During the exploratory phase of database analysis, it
is possible to improve the integration and interpretation, as well
as to impute and / or estimate analytical values.

A data imputation approach can be developed from
statistical methods (univariate, causal or multivariate), or even
by intelligent and non-statistical methods (such as Fuzzy Logic,
Supervised Artificial Neural Networks, Self-Organizing Maps
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and Genetic Algorithm). However, in relation to the non-linear
and non-parametric series, Self-Organizing Maps (SOM)
presents some advantages, since the method is based on the
organization in an n-dimensional space, whose results are
projected as a map, preserving the topological relations of
similarity.

According to [1] SOM can be considered an exploratory
data analysis tool, and the method can be used to carry out broad
categories of operations, such as forecasting or estimating,
clustering, classification, and/or noise reduction. Although
several imputation methods that can synthetically create values
in areas with missing data, Self-Organizing Maps (SOM)
outstands. While most of methods are statistical, and processed
in a single variable - such as neighborhood-based
interpolations, SOM is a non-linear method, based on the
principles of vector quantization and measurement of vector
similarity [2].

In a multivariate database, SOM analysis treats each
sample as a vector unit. After creating an n-dimensional space,
bring “n” is the number of variables involved, the samples elect
a Best Matched Unit (BMU), which provides the corresponding
values for each variable. It makes possible the creation of
synthetic values of samples with missing values from their
respective BMUs, in a multivariate database, as proven by [3]
and [4].

Therefore, it becomes possible to implement SOM
analysis as an alternative tool to impute analytical data. To
address such a proposal, quantitative measurement of Available
Alumina (AvAl,O3) content, mostly related to gibbsite, and
Reactive Silica (RxSi0O;), mainly present in kaolinite, in bauxite
deposits from various regions of Brazil were explored.

Initially, XRF chemical analyses were carried out at
Technological Characterization Laboratory (LCT) from the
Department of Mining and Petroleum Engineering (PMI) of the
Polytechnic School of USP [5], AvAl,O; and RxSiO, at
external laboratory. Among the variables obtained from the
chemical analysis of bauxite samples, the RxSiO, results
showed low reproducibility, repetitiveness and incurred
analytical high costs [6], besides dealing with minucious and
time-consuming procedures. Thus, imputation techniques, such



as SOM, become important by estimating values in the
multivariate analytical data.

Bauxitic ore is generally composed of hydroxide or
oxyhydroxide aluminum minerals (e.g., gibbsite, boehmite and
diaspore) iron and other minor minerals (e.g., mainly kaolinite,
hematite, goethite, quartz, anatase), produced by weathering of
aluminosilicate rocks under tropical and subtropical climate
conditions, typically under high percolation rate hydrological
conditions [7], [8], [9], [10]. In Brazil's economic scenario,
bauxite has a prominent position, as the country holds the
world's third largest reserves and ranks third as a country
producer [11].

An extensive database was created by analyzing many
bauxites and mineral separation products from the
determination of AvAlOsz and RxSiO, content by wet
chemistry and others main elements by XRF. The database
contains necessary and significant elements to impute unknown
values of these variables in other samples. From the
multivariate data analysis technique SOM, this research aims to
impute unknown values of AvAl,O3; and RxSiO; in bauxite
samples by BMU from self-organized maps, which represent
the relationships of samples in a n-D space of the variables.

The SOM analysis was divided into four phases for each
of the three projects A, B and C. The samples were chemically
analyzed using the variables: mass recovery (%) and content
(wt%) of (i) AvAL,O3; (ii) RxSiO,, (iii) Total Al,Os; (iv) Total
Si0»; (v) Total Fe;Os; and (vi) Total TiO,. The phases consist
in the partial omission of 20%, 30%, 40% and 50% analytical
values of AvAl,O3 and RxSiO; for the samples. The results
imputed by the technical SOM were compared with the original
analytical geochemical values, and evaluated according to
descriptive statistics.

Once demonstrated, the correlation between original data
and impute analytics by SOM can assist users of chemical
analysis in bauxites in getting AvAl,O; and RxSiO, content
with low cost material and labor. The analytical and
probabilistic tests on these results would bring safety and
reliability for the use of the tool as a reference factor in other
analyses.

The experiments developed in this project aim to address
challenges of the validation of a new system to achieve
AvVAILO;3 and RxSiO; content, with low running costs without
compromising the quality of results standards. Furthermore, the
results aimed at promoting the use of SOM art as imputation
tool capable of providing satisfactory analytical results. The
results precede the application of SOM in geochemical,
geophysical essays or in several other areas where similar
uncertainties occur or needs with respect to imputation,
integration and interpretation of multivariate data.

II. MATERIALS AND METHODS

A. Bauxite sample selection for SOM analysis

The bauxite samples selected for SOM analysis were part
of the three projects’ databases (A, B and C), composed by
different lithologic characteristics. The interaction between
different projects was carried out to obtain the best

representation and comparability between them. Samples were
prior studied for mineral separability at the Technological
Characterization Laboratory (LCT) of the University of Sao
Paulo - Brazil (EPUSP).

Estimation and evaluation of the mineralogical
composition of the bauxite samples were developed using
chemical analyses of total contents of Al,Os, SiO,, Fe;O3 and
TiO, by X-ray fluorescence (XRF) and specific content of
AvVAILO3 and RxSiO, by wet chemistry.

Effectively, it was prioritized the chemical
compositional variation between high and low RxSiO; and
AvAl,O3 grades. Thus, the variability of the source of the
samples, and the different methods to which they have been
subjected, such as classification and separation assays of
minerals, have enabled an extensive and diverse database to
perform the SOM analysis.

The data acquired from the Project A were composed of
690 samples and the variables characterized were: the total
content of Al,O3, SiO», Fe,Os. The data used in Project B rely
on the content of Al,O3, SiO,, Fe,O3 and TiO; in 219 samples.
The Project C had a group of 70 samples, characterized in total
contents of Al,O3, SiO,, Fe;O3 and TiO; [6].

B.  Experimental procedure

Once selected the samples, it was required a pre-
processing of these samples to feed the analysis of imputation
values. In the sample pre-processing, random values of
AvALO; and RxSiO; were excluded for later estimative by the
SOM analysis. Finally, the imputed values were compared with
the original values obtained by lab chemical analysis.

To measure and assess the magnitude of SOM analysis,
sampling data tables with random exclusion of AvAl,O3 and
RxSi0O, values were modified. For each project, 20%, 30%,
40% and 50% of the total samples were randomly hidden for
the generation of new tables to be used in imputation values.
The data table then was introduced in SOM platform from
SiroSOM® software.

TABLE 1
SAMPLES PREPARATION
Samples | E20% E30% E40% E50% \
Project A 690 138 207 276 345 4
Project B 219 44 66 88 122 7
Project C 70 14 21 28 35 6

E = Exclusion; V = variables.

C. Imputation values from SOM analyses
The AvAl;O3 and RxSiO, content imputation of bauxites
was developed according to the adaptation of a routine proposal
[12], where the data estimated by the technique are based on the
distances between available vectors [1]. For data to lower
spatial resolution, the traditional estimation process is given by
substitution, where the values are produced from the vectors of
the BMU's. Often, the data sets will result in biased estimates,
which make necessary the use of techniques such as nearest
neighbor [13].
A hexagonal grid was chosen as the display format; the
surface of a hyper toroidal volume was used for the projection
neurons or BMU's. To define the resulting self-organized map



size, as in (1) where [n] is the number of samples inserted at
SOM platform [14]. Thus, a map size was chosen as suitable for
this study. After the generation of the self-organized map,
images of U-Matrix and Components Plot were produced.

Sizegoy = 5x,/[n] (1)

The Component Plots (CP) allow visualizing and quantifying
the contribution of the analyzed variables for each resulting
neuron in self-organized map, allowing the verification of the
relationship between the responses of the various components.
The U-Matrix enabled the classification of data related to vector
similarity constructed from these samples.

As aresult, the BMU's were obtained for each sample and
analyzed variable, as well as in samples with incomplete
analysis. The imputation values were therefore determined
from the unique BMU's for each sample, reflecting synthetic
representative content for samples where these levels were
originally unknown.

It is important to mention that, for allocating data,
SiroSOM® code works with the combination of two
approaches and variations: (i) replacement of missing values by
the BMU's values; (ii) the improvement of the values estimated
by an iterative process. In (i), the initial SOM is calculated and
determines an initial set of replacement values, whereas in (ii)
SOM values are recalculated again to replace the values not
found in the input data.

D. Correlation tests and results evaluation

The comparison of the results presented by classical
analysis and from the SOM analysis was performed using
descriptive statistics, with the completion of charts and scatter
plots that confront the values obtained for each sample studied
of continuous random variables: AvAl,O3 and RxSiO,.

Dispersion measurements were made around the average,
such as variance and covariance, to determine the correlation
between calculated and measured variables simultaneously, and
the correlation coefficient to the purpose of normalizing the
covariance range -1 to 1. Equation 2 calculates the correlation.

Cov(X)Y)
COTT[X, Y] = W (2)

Accordingly, in a scatter plot, the regression line was
shown generating a linear correlation and a set of ordered pairs
to determine a functional relationship by the minimum squares
method.

The correspondence of the values obtained by SOM
analysis and chemical lab analysis was measured by the
difference between the mean and median levels, followed by
the percentage of relative error, according to (3), where Tsou
represents the contents obtained by the SOM tool and T} the
original contents, obtained by laboratory analysis.

ERP = [52=111) , 100 3)

Trcr

In addition, mean and median were calculated for each
variable to obtain the percentage error of the samples of each
project. According to the comparison of values, it is possible to

measure the SOM range by assessing the percentage of error
and correlation to determine the effectiveness for omitting
AvALO; and RxSiO; by 20%, 30% 40% and 50%.

III. RESULTS

A.  Self-Organizing Maps analysis

To obtain new values of AvAl,O3 and RxSiO, 12 self-
organized maps were produced at every stage of samples
exclusion for the three projects. The number of rows and
columns were calculated from the desired size map (SizeSOM).

In addition, at the end of each SOM analysis, the
quantization error (QE) was calculated, which represents the
average distance between each array and its respective BMU,
as the map resolution. In the same way, it has been calculated
the final topographic error (Te), which simulates the proportion
of all data vectors for which the main BMU (first and second)
are not adjacent units.

Table II shows the completed and calculated parameters
in the SOM analysis initialization step for each design, the four
data deletion steps of 20%, 30%, 40% and 50%, represented by
E20% S30% E40%, ES0% respectively.

TABLE II
INITIALIZATION STAGE
Initialization
Size E20% E30% E40% ES50%
SOM

Roll[Col| Qe | Te Qe | Te Qe | Te Qe | Te
IProject A | 10| 14]0.165 |0.470(0.147|0.539{0.128 |0.545]0.110 [ 0.570
IProject B | 8 | 9 {0.337]0.128]0.338[0.155]/0.330 {0.146 |0.317 | 0.228
IProject C | 6 | 7 |0.282]0.114(0.298| 0 [0.268| 0 [0.264| O

E = Exclusion; Qe = Quantization error; Te = Topographic error

Then, in the training process, it was selected the kind of
neighbor to each Gaussian vector and defined rough and fine
data. Those values were set by default as: Initial radius (Irl),
Final radius (Frl) and Training Length (TL1), calculated by
SOM, presented in Table III.

To represent the structure and pattern of the input samples
by the similarities, SOM analysis used the distance data and the
initial length for each input sample value.

After initialization and training vectors, CP maps were
generated to each variable, along with their integration in the
Matrix-U view.

TABLE III
TRAINING STAGE
Training
Irl Frl TL1 Ir2 Fr2 TL2
IProject A 18 5 20 5 1 400
IProject B 13 4 20 4 1 400
IProject C 10 3 20 3 1 400

Ir = Initial radius; Fr = Final radius; TL = Training Length

IV. IMPUTED VALUES USING SELF-ORGANIZING MAPS

The SOM technique with SiroSOM® software allowed
the imputation of 1414 data pairs excluded from AvAl,O3 and



RxSiO, contents, key control elements in the aluminum
production chain. Furthermore, from the BMU adjustments,
new values were obtained for each sample in the input
variables.

A. Correlation and evaluation

To evaluate and simplify the visualization of the results
obtained by the SOM, the mean (Mt) and median content (Met)
of AvAl,O3 and RxSiO; of the original data was calculated, as
well as those obtained by the BMU generated by SOM analyses.

This procedure was performed for each project and for the
different scenarios of data exclusion. The results are shown in
Tables IV, V, VI and VII with the purpose of comparing the
influence of deleted data proportion in the use of variables and
samples of each project. The correlation graphs between the
original and imputed data can be seen in Fig 1.

In general, it can be noted that both AvAl,O3; and RxSiO,
correlation coefficients as all projects is effective, that is, it
maintains a positive, indicating right proportionality. The
results are coherent, therefore, considering that they address
comparison of the same variable.

Project A Project B Project C
BMU BMU BMU BMU BMU BMU
Av | Av | Rx | Rx Av | Av | Rx | Rx Av | Av | Rx | Rx
ALOs| ALOs| SiO2|Si0; | ALOs| ALOs| SiO2|SiO: | ALOs| ALOs| SiO2 | SiO2
IMt  |36.69]37.05| 6.39 | 6.02 |33.88]34.06| 9.67 | 9.86 [37.93|38.02/10.34/10.30)
Met [39.70]41.45| 5.05] 5.58|37.00|36.16| 5.31| 5.58 |48.90|48.48| 4.40 | 3.99
IER % 4.22 9.50 2.32 4.84 0.87 10.28
ICorr 0.83 -0.05 0.99 0.98 1.00 1.00
IRR 0.69 0.00 0.98 0.96 1.00 0.99

TABLE IV
STATISTICAL ANALYSES AvALL,O; AND RxSiO,. EXCLUSION 20%
Project A Project B Project C
BMU BMU BMU BMU BMU BMU
Av | Av | Rx | Rx Av | Av | Rx | Rx Av | Av | Rx | Rx
ALOs| ALOs| SiOs [ SiO2 | ALO3| ALOs| SiO2 | SiO2 | ALOs| ALOs| SiO: | SiO2
Mt [36.03|36.19] 6.42| 6.44 [34.75|35.10] 8.90| 8.86 [41.96|141.37| 9.45] 9.36
Met [39.60[40.33| 5.36| 5.54 [36.19|36.40| 5.28| 6.14 |51.45|49.90| 4.60 | 4.52
IER% 1.81 3.25 0.58 14.01 3.11 1.77
Corr 0.84 0.03 0.99 0.98 1.00 1.00
IRR 0.71 0.00 0.98 0.95 1.00 0.99
TABLE V
STATISTICAL ANALYSES AvAl,O; AND RxSiO,. EXCLUSION 30%
Project A Project B Project C
BMU BMU BMU BMU BMU BMU
Av | Av | Rx | Rx Av | Av | Rx | Rx Av | Av | Rx | Rx
ALOs| ALOs| SiO2|Si0; | ALOs| ALOs| SiO2|SiO: | ALOs| ALOs| SiO2 | SiO2
IMt  [36.07|35.76| 6.46 | 6.84 |34.13|34.61| 9.18| 9.17|36.68|36.86|11.80(11.48|
Met [39.41|139.05| 5.21] 5.52|36.62|37.89| 5.30| 6.10 |48.90/49.06| 5.00 | 6.27
IER% 0.92 5.62 3.35 13.11 0.33 20.26
ICorr 0.78 -0.10 0.99 0.98 1.00 1.00
IRR 0.61 0.01 0.98 0.96 1.00 0.99
TABLE VI
STATISTICAL ANALYSES AvAl,O; AND RxSiO,. EXCLUSION 40%
Project A Project B Project C
BMU BMU BMU BMU BMU BMU
Av | Av | Rx | Rx Av | Av | Rx | Rx Av | Av | Rx | Rx
ALOs| ALOs| SiO2|Si0; | ALOs| ALOs| SiO2|SiO: | ALOs| ALOs| SiO2 | SiO2
IMt  [36.46|36.84] 6.44| 6.14|33.63|33.82| 9.66| 9.83 {36.88|37.22/11.10[11.00|
Met [39.40|38.80| 5.07| 4.96 |36.57|136.11| 5.31| 5.61 |48.95|48.53| 4.60 | 4.26
IER% 1.55 2.22 1.27 5.35 0.87 7.98
ICorr 0.80 0.05 0.99 0.98 1.00 1.00
IRR 0.64 0.00 0.98 0.97 1.00 0.99
TABLE VII

STATISTICAL ANALYSES AvAL,O; AND RxSiO,. EXCLUSION 50%

Moreover, it is possible to establish an AvALO;
correlation range between 0.98 and 1 in projects B and C.
However, for project A, AvALO; presents a minimum
correlation RR value 0of 0.61 and a maximum of 0.74, indicating
higher variance between initial AvAl,O3; and calculated by
SOM. In general, the correlation decreases as it increases the
deletion to the three designs.

The RxSiO; values did not show great variations with the
increase of sample exclusion. However, it is lower compared to
the correlation of AvALOs, which is more evident for project
A, where the imputation showed low correlations, with a range
of RR between 0 and 0.01. For Projects B and C, the correlation
RxSi0; remains high with RR between 0.95 and 0.99.

It is important to mention that the percentage errors were
calculated according to the median, as it is less sensitive to
fluctuations in the average values of the variable and it is more
representative of heterogeneous populations, as were the groups
of the original and calculated variables [15].

DISCUSSION

This research, which seeks to improve imputation reach
and interpretation of geochemical data, given actual limitations
on the adequate visualization of the various data sets of high
dimensionality, characterized by multiple variables. Thus, this
research was conducted with SOM technique, allowing the
generation of decomposed vectors, analyzed to extract the
relative importance of each of the components during
classification. Such an approach favored an insight into the
complex relationships in sets of high-dimensional data, such as
the geochemical analyses. The SOM analysis thereby favors the
preservation of topological relations and, at the same time, the
production of a statistical model derived from the data set [13].

Statistical analysis of the project resulted in the high
correlation of AvAl,Os. About the correlation values for
RxSiO, between imputed and original values in project A
showed inferior results in comparison with both B and C
projects, as with the results obtained for the AvAl,Os. Those
results are associated to a most samples completely unrelated in
regions of origin. This probably caused higher variance and
uncertainty in respect of the samples of a specific variable.

Furthermore, the Project A, the maximum RxSiO, content
of the original data is not a frequent value (not representative),
and sometimes shows much higher levels than median. For this
reason, it may be considered of analytical errors in certain
samples. However, the maximum grades calculated by the
SOM analysis were not directly influenced by these values.
Namely, the levels calculated by SOM followed the pattern of
other data RxSiO, variable.



In relation to the design B, this delivered the best results
for the imputation of the data, when compared to designs A and
C. These results reflect the product of the influence of a greater
number of variables, regardless the diversity of origin of
analyzed bauxite samples.

As for the C project, it became clear the high correlation
for both AvAL,Os and for RxSi0,. However, the study was done
with fewer data. In addition to this, the high value of correlation
may incur in low significance, given the limited number of
samples analyzed in C.

Overall, the results showed a high correlation between the
values of variables measured in the laboratory and those
imputed by SOM. However, in bauxite samples originating
from multiple sources it was remarkable that data imputation
AvAI,O3 had higher correlation with the original results to the
imputation obtained for RxSiO,. This can be explained by the
influence of other parameters or by the absence of related
variables or dependent on each other, which were not present in
the project analysis involving bauxite from different regions.

CONCLUSION

The imputation of 1,414 pairs of values for AvAl,O; and
RxSi0, using SOM, revealed the technique as a complementary
tool to generate the analytical data. Thus, SOM may be used as
a tool for impute chemical composition of analytical data,
besides the recognized ability of classification, integration and
interpretation of multivariate data. The high correlation
between the original values measured by chemical analysis in
the laboratory and those imputed by SOM allowed to define the
SOM effective for imputation data with up to 50% absence of
values in up to two simultaneous variables.

Regarding the influence of the parameters and variables
used in this study, SOM demonstrated to be more efficient when
used in samples originating from nearby sources. In this case,
the analyses provide the most appropriate SOM imputation,
resulting in lower sampling errors. As higher the number of
analytical variables input, smaller the error associated with
SOM imputation data. Consequently, the analysis of other
elements by instrumental analysis performance could generate
greater amounts of variables, which may provide better results
to the imputation, specifically in the case of RxSiO,.

This study focused in two specific variables of interest
(AvAlO; and RxSi0O,). Future studies may be developed to
explore the imputation at higher percentages exclude values
(above 50%), as well as larger amounts of variables.
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Fig. 1 Correlation between the original and imputed data in the three projects analyzed, in different amounts of sample exclusion.



