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Abstract

Cleavage Under Targets and Release Using Nuclease (CUT&RUN) is a recent development for epigenome mapping, but its unique
methodology can hamper proper quantitative analyses. As traditional normalization approaches have been shown to be inaccurate,
we sought to determine endogenous normalization factors based on the human genome regions of constant nonspecific signal.
This constancy was determined by applying Shannon’s information entropy, and the set of normalizer regions, which we named
the ‘Greenlist’, was extensively validated using publicly available datasets. We demonstrate here that the greenlist normalization
outperforms the current top standards, and remains consistent across different experimental setups, cell lines and antibodies; the
approach can even be applied to different species or to CUT&Tag. Requiring no additional experimental steps and no added cost, this
approach can be universally applied to CUT&RUN experiments to greatly minimize the interference of technical variation over the

biological epigenome changes of interest.

Keywords: CUT&RUN; CUT&Tag; normalization; epigenomics

INTRODUCTION

With the advent and popularization of high-throughput sequenc-
ing technologies, the field of genome biology experienced drastic
changes as several genomic assays were adapted to high-
throughput approaches. Chromatin immunoprecipitation and
sequencing (ChIP-seq) is perhaps the most popular among them
[1-3], allowing for target-specific isolation of DNA-protein
complexes, and thus the genome-wide mapping of epigenetic
modifications, chromatin-modifying enzymes and transcription
factors. Similarly, Cleavage Under Targets and Release Using
Nuclease (CUT&RUN) is a recent development by Skene and
Henikoff [4] for genome-wide mapping of DNA-protein inter-
actions, an optimization of chromatin immunocleavage [5] for
high-throughput sequencing, which seeks to specifically address
some of ChIP-seq’s main drawbacks. Rather than relying on
the random shearing and immunoprecipitation of chromatin,
CUT&RUN relies on a micrococcal nuclease protein fusion guided
by a protein-A/G-conjugated antibody, directing the cleavage
activity to the genomic loci of interest. This approach greatly
minimizes the generation of antibody-nonspecific fragments, i.e.

noise [4, 6]. In turn, this significantly higher signal-to-noise ratio
results in much lower requirements for both starting sample
volumes and required read depths [4, 6, 7], greatly reducing the
sequencing cost compared to ChIP-seq. In addition, this target-
directed enzymatic cleavage enhances the accuracy (4, 7], as it is
no longer necessary to rely on random shearing from sonication
or undirected enzymatic cleavage.

The advantages of CUT&RUN have led to its increasing
adoption [8-13], gaining popularity as a simpler, cheaper
alternative to ChIP-seq. A derived technique has been developed,
Cleavage Under Targets and Tagmentation (CUT&Tag) [14-17], by
integrating Tn5 transposase tagmentation, resulting in an even
higher signal-to-noise ratio. In addition, both protocols have been
adapted and enhanced by multiple research groups, fine-tuning
them for low sample inputs [18-20], minimization of off-target
fragments [21, 22] and simplifications of the workflow [23, 24].

Early CUT&RUN mainly relied on the numerous tools and
analysis concepts previously developed for ChIP-seq [4]. However,
the methodological differences of CUT&RUN have since prompted
the development of specialized tools and approaches, such as
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specialized peak calling algorithms [7, 25] and quality control
analysis (26, 27].

A recurrent challenge has been proper signal normalization
to make samples comparable; for ChIP-seq analyses, straight-
forward library size-based approaches (such as fragments per
kilobase million or fraction reads in peaks) have been extensively
found to be inappropriate [28-30]. Normalizing by nonspecific
noise can be an option; however, CUT&RUN's low noise generation
typically results in an inconsistent background [4, 7], inappro-
priate for this kind of approach. So far, the accepted golden
standard has been spike-in normalization [4, 6, 29, 31]; however,
this approach fails to account for the cleavage efficiency and pat-
terns, as the spike material is separately fragmented in advance
[30, 32, 33].

In the course of our work with CUT&RUN (unpublished), we
began to search for better alternatives, building upon concepts
presented in the ENCODE blacklist of problematic regions for
ChIP-seq [34]. This work identified that certain regions of the
genome present very high background signals, regardless of other
experimental factors, being reliably used in ChIP-seq analyses
[34-36].

In the present work, we aimed to expand upon this concept
by identifying a set of genomic regions that exhibit consistent
background signals in CUT&RUN experiments. We have coined
the term ‘greenlist’ to refer to this list of regions, following the
naming scheme used for ChIP-seq blacklists [34], greylists [37]
and sequencing barcoding whitelists. We demonstrate that these
greenlist signals remain consistent across various CUT&RUN
experiments involving different antibodies and cell types, thus
making them suitable for use as control signals for normalization
purposes. We have made available a human CUT&RUN greenlist
and blacklist, a mouse CUT&RUN greenlist and blacklist, as well
as a human CUT&Tag greenlist and blacklist as Supplementary
Table S1. This provides a robust, intrinsic solution for quantitative
CUT&RUN analysis, surpassing current methods without any
additional cost or experimental steps.

RESULTS
Generating the greenlist

Similar to the ENCODE blacklist [34], we sought to develop a
systematic pipeline to identify genomic regions with constant
signals across all publicly available negative control CUT&RUN
samples. After filtering, we obtained 463 human samples from
102 experiments, derived from 73 established cell lines and 112
patient biopsy samples, and using 30 commercial anti-IgG anti-
bodies (plus 56 samples with no antibody); this variety is essential
in ensuring that our results are not biased to specific cell types
or experimental setups. As expected, we observed variable cor-
relations between samples (Figure 1A), especially across different
experiments. To better understand these differences, we per-
formed a principal component analysis (PCA) (Figure 1B) to test
the correlation of the components to known meta-factors, which
revealed that this variation was mainly related to differences
in protocol/commercial kit used, cell line and sequencing depth
(Figure 1C, Supplementary Table S2). We also saw significant
variation across experiments not attributed to other tested meta-
factors (Figure 1C), indicating that there are still experiment-
specific sources of noise of unknown origin. In fact, we expect a
fair portion of noise generation to be stochastic in nature and not
all variation to be fully explainable.

Of note, the processing of these datasets confirmed the ubiqg-
uity of CUT&RUN’s varying yields, with several datasets pre-
senting extreme variations in library size (up to 48x difference),

even across supposedly identical replicates, as well as samples
presenting very low alignment percentages (1.34-99.78%). These
differences can have a major impact on quantitative analyses,
highlighting the need for better quantitative tools.

To identify how constant the signal of each region is across all
the samples, we relied on Shannon entropy [38, 39] (Figure 2A).
Briefly, we expect bins with inconsistent high-count outliers to
have low information entropy and bins with a more homoge-
nous distribution across the dataset to have higher entropy (fur-
ther detailed in the Methods). This approach is preferable to
simply using the standard deviation or standard error, as those
would require the assumption that all bins follow the same gen-
eral distribution function, which cannot be assumed in advance.
As expected, progressively filtering out the lowest entropy bins
greatly increased the correlation between samples (Figure 2B),
indicative of how consistent the signals from the high-entropy
regions were.

We computed the entropy distributions of our test set
(equivalent to 10% of bins) after normalization using candidate
regions with progressively smaller percentages of highest entropy
bins and compared them with a standard DESeq normalization
based on library size (Figure 2C). We also compared with
the entropy computed with non-normalized counts, which
was very low (Figure 2C), as technical variation and different
sequencing depths compound with the biological variation and
lead to extreme differences between the samples. A nearly
ideal threshold was approached by using normalization regions
with progressively smaller percentages of highest entropy bins
(Figure 2C); a perfect normalization would maximize entropy,
nullifying technical variation and leaving only the biological.
Based on these results, we selected the top 0.1% most entropic
bins as the threshold for generating the greenlist (Figure 2C,
highlighted). This threshold maximized entropy and avoided
overfitting, whereas the normalization with very small frac-
tions of highly entropic bins (<0.02%) decreased entropy, as
more bias was introduced by enhancing the effect of minor
stochastic variations, being less representative of the overall
data.

We subsequently filtered out from the candidate greenlist any
region overlapping or close to any known genes (<5 kb away
from known genes), to avoid possible overlapping of true signals,
i.e. fragments generated in an antibody-specific manner within
gene bodies and neighborhoods. Finally, we extended and merged
a selected region if other regions in its vicinity were in the top
1% highest entropy bins (similarly to the original blacklist [34])
in order to avoid short, scattered regions, thus obtaining our
CUT&RUN greenlist (available as Supplementary Table S1). The
pipeline for greenlist generation is summarized in Figure 2D.

Evaluating this final list by the same previous parameters,
we observed results comparable to the initial threshold tests
(Figure 3A and B). Some loss of efficiency is to be expected since
many high-entropy regions are lost when filtering out gene neigh-
borhoods, but this extra cautious approach did not seem to sig-
nificantly affect the performance of the final list. To ensure this
entropy maximization behavior was not simply due to the size of
our greenlist, we performed a Monte Carlo simulation randomly
selecting 0.1% of bins (Figure 3C) and saw that our greenlist nor-
malization showed a significantly (P <107%, 100 000 trials) higher
entropy median than a random selection, both before and after
filtering out gene neighborhoods. We also confirmed that the
signal from these regions did not seem to be significantly biased
to experimental differences such as different antibodies or cell
types (Figure 3D, Supplementary Table S2), with each principal
component only explaining small fractions of the total variance
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Figure 1. Overview of publicly available negative control CUT&RUN samples. Comparison of the 463 CUT&RUN samples selected for analysis. (A)
Heatmap of Pearson correlation between the samples, considering all genomic bins (1 kb). (B) First two components of the PCA, colored by aligned
library size as indicated on the scale at right. (C) P-value of association between each of the first 10 principal components (PC1-10, columns) to known
meta-factors (lines), tested by ANCOVA; P-values considered significant (P < 0.01) are indicated on the scale at right.

(Figure 3E). We did observe a significant association (P <10~%)
between library size and the first principal component (even
after normalization), but that was expected: higher sequencing
depths will highlight subtle variations along the regions, while
lower depths will mask them. Regardless, this accounted for only
4% of the total variation of the dataset. Some of the remaining
principal components were affected by cell type, suggesting that
greenlist regions can still be slightly impacted by differences in
chromatin accessibility. Importantly, differences in experimental
setups, such as different antibody brands/isotypes, protocol opti-
mizations or test variables of interest, showed limited impact
on the overall observed variability (<25% counting the 20 PCs)
(Figure 3D). As an additional estimate of the greenlist robustness,
we assessed the stability of greenlist generation by random sam-
pling different proportions of the CUT&RUN dataset from 98%
down to 2% and found that the similarity between the original
greenlist and the greenlists obtained from subsets of the data
remains high (correlation >0.8) down to ~110 to 60 datasets
(Figure 3F).

To further assess the possible biases in the generation of our
greenlist, we next characterized the genomic properties of the
high-entropy regions found. We observe no significant bias of
greenlist regions toward gene bodies, euchromatic regions or

heterochromatic regions when compared to their overall distribu-
tion across the human genome (Table S4), keeping in mind that we
purposefully discarded candidates overlapping gene bodies. This
indicates that the high entropy values observed are not simply a
consequence of chromatin accessibility. There is, however, a bias
toward centromere regions (Table S4), especially after filtering;
this is in line with previous literature findings of centromere
regions generating considerable nonspecific noise [34], but we
show that our pipeline was able to separate which centromere
regions had constant noise and which had not. Following, we
observe no distinct pattern of chromosomal distribution of either
greenlist regions (Figure S1) or pre-filtering candidate regions
(Figure S2). The base composition of greenlist regions (Figure
S3) also followed a random distribution, with a similar guanine-
cytosine (GC)% as the total human genome. Analyzing the average
normalized counts per greenlist region (Figure S4), we observe
a few (40 regions) high-count outliers, overall fitting a negative
binomial distribution. We observed a trend for greenlist regions to
be slightly more repetitive than the overall genomic profile (Figure
S5), but we believe this to be a consequence rather than a cause,
as the overall repetitiveness of a bin shows no correlation to its
calculated entropy (Figure S6), and thus should not be expected
to significantly bias our pipeline.
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Figure 2. High-entropy regions are effective normalizers. Shannon entropy calculations over all genomic bins (excluding those with no counts on any
samples). (A) Frequency distribution of entropy for all bins. (B) Median Pearson correlation between samples (solid line), considering different percentage
fractions of the highest entropy bins, with Q25-Q75 range shown in the shaded area (red). (C) Entropy distributions for our test set (the 10% of bins with
the lowest entropies) after normalization using different percentages of highest entropy bins, as indicated in the x-axis; in the y-axis, boxplot represents
median entropy, first and third quartiles, whiskers extend to 5 and 95% quantiles. (D) Summary of the processing pipeline used for greenlist generation,

generalized for applicability in new contexts.

A robust approach for different organisms, for
CUT&RUN or CUT&Tag

Next, we sought to expand the applicability of our greenlist by
defining the greenlist for the mouse genome. Application of the
pipeline to 611 mouse negative control samples showed similar
quality metrics as seen before (Figure 4A-C), indicative of the
consistency of the method. Next, we asked whether a viable
greenlist could be generated from a single experiment with a large
enough sample size; this should cover cases where a greenlist is
needed for an organism with none or few previously available
public samples. For this, we used the GSE151326 GEO dataset
[40], an antibody characterization study with 50 samples of 43
different antibodies on human cells, as a demonstration. We see
that despite how different the samples were initially (Figure 4D),
filtering the highest entropy regions yielded very consistent sig-
nals (Figure 4E), which did not appear to be biased by library size
or antibody target.

Comparing this de novo greenlist with our previous hg38 green-
list, we observed a middling correlation of the entropy metrics

(Figure 5A) but minimal overlap of the final lists (Figure SB), as
measured by precision-recall F1 scores. This is a direct conse-
quence of the variety of cell types used for the original, which
are lacking in a single experiment-based list; nevertheless, the
consistency of the found de novo greenlist regions shows that
this would be a suitable normalization option for the experiment
at hand, just not as widely applicable as one built from several
experiments.

In addition, we also expanded our efforts toward CUT&Tag.
Despite intrinsically producing even less background noise than
CUT&RUN, the analysis of 217 human CUT&Tag negative control
samples still revealed a greenlist of consistent signal regions
(Figure 5C and D), featuring similar entropy maximization results
as observed for CUT&RUN (Figure SE). Comparing the two lists,
we again saw little overlap (Figure 5B), suggesting that each list is
accurately optimized to their respective technique.

In parallel, we also took the opportunity to create blacklists
for human CUT&RUN, mouse CUT&RUN and human CUT&Tag,
following the methods of the original ChIP-seq blacklist [34].
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shown as a horizontal black dotted line.

Despite having since been validated for other techniques, the
ENCODE ChIP-seq blacklist has not been validated for CUT&RUN
or CUT&Tag, and the vastly different methodological steps (i.e.
the lack of random fragmentation and immunoprecipitation)
may affect the generation of high-signal background regions. We
observed a fair overlap between the CUT&RUN and CUT&Tag
blacklists (Figure 5B), indicative of the similarity of these
techniques, but as expected both feature little overlap with

the ChIP-seq blacklist, confirming their drastically different
noise profile. Previous efforts have been made to create a
CUT&RUN-specific blacklist [41] but with limited samples (N = 20),
which would present limited accuracy.

Importantly, we observe minimal overlap between the green-
lists and blacklists specific to each method (0.010 for CUT&RUN
and ~0.001 for CUT&Tag, Figure 5B), despite moderate correla-
tions between the two parameters (0.472 and 0.730, respectively;
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dataset alone.

Figure 5A). This shows that, although there is a tendency for high-
signal regions to also display high entropy, i.e. blacklist regions
tend to be reasonably consistent across experiments, the entropy
values of the vast majority of them were not high enough to be
selected in our pipeline. The exact reason for these observed mod-
erate correlations remains elusive—noise generation is a heavily
stochastic process, and the dynamics of how each technique
generates specific patterns of noise remains to be characterized
in the literature. Nevertheless, the low overlap scores observed
here between greenlists and blacklists (Figure 5B) show that our

pipeline was able to distinguish between the two and to identify
that blacklist regions are not consistent enough to be effectively
used as basis for normalization.

Greenlist normalization outperforms current
standards

We have observed that the greenlist regions act as suitable nor-
malizing factors in our tests, maximizing the entropy of our
negative control datasets, so we next sought to compare them
to consolidated normalization approaches. We reanalyzed dataset
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greenlist regions. (E) Entropy distributions for our human CUT&Tag test set after normalization using different percentages of highest entropy bins, as
indicated in the x-axis; in the y-axis, boxplot represents median entropy, first and third quartiles, whiskers extend to 5 and 95% quantiles.

GSE104550 [42], generated by the Henikoff laboratory and used by
Meers et al. [6] to establish the comparability of normalizations
by Escherichia coli carryover spike-in and external spike-in (such
as added Saccharomyces cerevisiae DNA), the two normalization
methods considered as the golden standards for CUT&RUN. The
design of this experiment [42] proved very advantageous for test-
ing normalization options, as the samples are expected to remain
biologically consistent within each of the two antibodies tested,
and the main sources of variation should be the starting number
of cells (tested here at several values between 100 and 1 000 000
cells) and the technical variations expected from DNA extraction,
library preparation and sequencing. Thus, we can consider the

ratio of library size to starting cell count as the de facto technical
variation, as we expect around the same number of fragments
generated per cell in each sample, and we can evaluate each
normalization method as to how well it can account for this
variation.

Here, we again observe that the CUT&RUN signal across the
entire genome shows drastic differences between the antibodies
used (Figure 6A); nevertheless, greenlist signal remained constant
and was adequate to be used as normalizer among these sam-
ples (Figure 6B). We saw that spike-in normalization (either by
E. coli carryover or added S. cerevisiae material) exhibited low
correlations to our known de facto technical variations (R?=0.513)
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Figure 6. Greenlist normalization outperforms spike-in on dataset GSE104550 from the Henikoff laboratory. (A) Heatmap of Pearson correlation between
all samples, considering all 1-kb genomic bins. Samples labeled by antibody used. (B) Heatmap of Pearson correlation between all samples, considering
only greenlist regions. Samples labeled by antibody used. (C) Correlation between spike amplification (inferred as Saccharomyces cerevisiae fragments
reads divided by original fragments, where original spike-in fragments remain constant for all samples and was thus omitted) and de facto library
amplification (inferred as total library size reads divided by starting number of cells). (D) Correlation between greenlist amplification (inferred as total
greenlist counts divided by starting number of cells) and de facto library amplification (as in G above). Linear regression and 95% confidence interval

shown for graphs (C) and (D), R? calculated as fit to the linear regression.

(Figure 6C), failing to arrive at consistently normalized libraries.
On the other hand, greenlist counts appropriately encapsulate
this variation (R? =0.982) (Figure 6D).

Importantly, while the exact cell count is known in this exper-
iment [42], as the variation was an intended design, it does not
need to be known in advance for other experimental applications;
thus, greenlist normalization can more accurately account for
unknown variations in cell counts that may arise from experimen-
tal conditions.

Overall, these results demonstrate an intrinsic advantage of
endogenous normalization factors such as our greenlist. As they
are generated concurrently with the fragments of interest, they
are directly affected by the same technical and experimental
variations, such as different starting cell counts or variations in
yield as discussed earlier.

A detailed documentation on applying greenlist normal-
ization to a typical CUT&RUN workflow is provided via a
GitHub Jupyter notebook (https://github.com/fndemello/CUT-
RUN_greenlist/blob/main/CUTandRUNAnalysis.ipynb). We chose
dataset GSE157095 by Singh et al. [43] as an example and provided
documentation for a greenlist normalization approach to call
PAX3-FOXO1-binding peaks over normalized inputs, as well as a
differential binding analysis using DESeq?2 [44].

Greenlist normalization uncovers relevant
variation from biased datasets

Lastly, we aimed to validate our greenlist’s applicability as a
normalization factor in real experimental scenarios. For this, we
specifically looked for CUT&RUN studies that featured extreme
differences in library sizes, as they stand to benefit the most
from a novel, robust normalization approach. We first selected
study GSE221701 [45], which featured 48 samples and used 11
antibodies, with sample library sizes ranging from 11 to 134 mil-
lion read pairs. Secondly, study GSE194217 [46], with 26 samples
and 6 antibodies, with sample library sizes ranging from 3 to
64 million reads. Notably, both works evaluated the CUT&RUN
results in only a qualitative manner, instead seeking quantitative
validations from other techniques such as RNA-seq, ATAC-seq and
ChIP-seq.

To evaluate the impact of technical variation in the above
datasets and evaluate the potential of proper normalization
to mitigate it, we performed a PCA analysis of the genomic
data under different normalization scalings. Should the samples
be improperly normalized, we expected the variations of large
library size samples to contribute to the composition of PCs more
strongly, thus biasing the graph and eclipsing variation patterns
of interest (such as those related to biological sources). Applying
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standard normalization, based only on total library size, we saw
that the PCAs of each dataset seemed to form clusters divided by
antibodies (Figure 7A and B), but there was a strong correlation
between PC1 and library size (Figure 7C and D). Thus, the variation
observed was strongly impacted by technical variation, even after
normalization, and attempting to interpret the data under these
conditions could easily lead to inaccurate biological conclusions.
Zou et al. [46], authors of dataset GSE194217, did perform spike-in
normalization with added S. cerevisiae DNA; performing the PCA
analysis with this normalized data, we saw that it did remove
the correlation with library size (Figure 7E)—but only to replace
it with a correlation to raw spike-in counts (Figure 7F), thus still
arriving at biased results.

On the other hand, performing the analysis on greenlist-
normalized counts greatly minimized the bias of library size
(Figure 8A and B, without creating a bias to the greenlist itself
(Figure 8C and D). As such, the analysis can now be appropriately
interpreted in a biological context as a typical PCA would be
(Figure 8E and F). For the work of Zou et al. in particular, this
new analysis now highlights two histone marks, H3K27ac and
H3K27me3 (Figure 8F), which is in line with some of the major
findings of their work [46].

This validation approach was repeated with three additional
datasets for confirmation. Dataset GSE223997 by Xu et al. [47]
featured 50 CUT&Tag samples, with total library sizes ranging
from ~180 000 to 59 million reads. As before, library size nor-
malization (Figure S7a) and spike-in normalization (Figure S7b)
still lead to biased PCA results, with technical variation masking
biological findings; however, normalization with the CUT&Tag-
specific greenlist greatly minimizes this bias (Figure S7c and
d). Following, dataset GSE171327 by Weigel et al. [48] featured
24 mouse CUT&RUN samples, varying from 15 to 77 million
reads. Although the technical bias after spike-in normalization
was milder than other examples (Figure S8a and b), greenlist
normalization still showed an improvement (Figure S8c and d),
with a lesser contribution of technical variation to the PCA. Finally,
dataset GSE166221 by Vinjamur et al. [49] featured both human
and mouse CUT&RUN samples, with the mouse samples display-
ing a considerably smaller library size range than the human
samples (6-9 million and 4-33 million reads, respectively). Conse-
quently, PCA of the library size-normalized human samples was
more influenced by technical variation (Figure S9a and b), which
is again minimized by greenlist normalization (Figure S9c and d).
Importantly, these additional validations not only corroborate our
previous demonstrations (Figures 7 and 8), but also confirm that
the mouse CUT&RUN and human CUT&Tag greenlists prove just
as effective.

To further evaluate the performance of our greenlist as normal-
izing factors, we next considered its effects over the experimental
replicates in the previously selected datasets. Regardless of
each study’s topic, experimental replicates should have minimal
biological variation, and should thus arrive at similar results if
properly normalized. We quantified this similarity with F1 scores
and observed that greenlist normalization consistently outper-
forms spike-in approaches for human CUT&RUN (Figure 9A),
CUT&Tag (Figure 9B) and mouse CUT&RUN (Figure 9C), with
replicate pairs presenting on average greater similarity when
peaks are called over greenlist-normalized inputs. As a contrast
to the datasets chosen so far, dataset GSE157095 by Singh et al.
[43] features very little library size variation (7.3 to 9 million
reads), which results in both normalization approaches showing
comparable results (Figure 9D). This highlights that while spike-in
normalization can be an accurate approach in best-case
experimental scenarios, its effectiveness falls behind for more

CUT&RUN greenlist | 9

challenging datasets; meanwhile, greenlist normalization matches
spike-in's effectiveness at its best, and consistently surpasses
it in more dire situations. In this sense, the GSE104550 dataset
by Meers et al. [6] (analyzed in Figure 6) once again serves
as a great test for normalization approaches, as the samples
feature minimal experimental variation outside of the different
number of cells used; as expected, greenlist normalization can
better deal with the simulated technical variation introduced
(Figure 9E), achieving more similar peaksets than those of spike-
in normalization. And in contexts where spike-in was originally
not performed, such as in the work of Vinjamur et al. [49],
the option of greenlist normalization remains accessible, a
clear improvement over the default library size normalization
(Figure 9F).

DISCUSSION

High-throughput genomic techniques such as CUT&RUN can be
especially sensitive to poor normalization, as the vastly different
signal profiles of different targets and experimental designs can
interfere with typical statistical assumptions. Consequently, this
poor normalization risks jeopardizing the technique’s quantita-
tive power. And as new experimental protocols are developed, so
too do specialized in silico tools become necessary for their proper
analysis. In that sense, we here introduce a new normalization
technique, highly specialized for either CUT&RUN or CUT&Tag,
through a novel application of information theory approaches to
the underlying concept of the ENCODE ChIP-seq blacklist [34]. Our
approach leverages the extensive collection of datasets published
thus far, and through rigorous testing and validation we observed
our greenlist’s applicability across a variety of experimental sce-
narios.

Naturally, this reliance on previously published datasets
imposes limitations to future broadening of this method beyond
the characterization work performed here. We have rigorously
documented the capabilities and sensitivities of our pipeline in
order to make it applicable to different contexts (such as different
organisms and variant methodologies), including considerations
to mitigate small sample sizes, but these future applications will
inevitably depend on a robust availability of samples. This issue
compounds with the inherent randomness of noise generation,
as we are unable to deterministically define the exact causes
of the observed constancy of greenlist regions. Although this
uncertainty should always be kept in mind, we have sought
to minimize sample bias as much as possible throughout our
pipeline, and thus believe that the empirical observations at the
core of greenlist normalization are reliably robust. Based on our
results, we observe that roughly 60-120 samples are needed
to generate a robust, widely applicable greenlist (Figure 3F).
For organisms with fewer samples than that, the greenlist
generated can still be a reliable normalizer (Figure 4D and E,
50 samples), but will likely be overfit to the datasets used, and
thus may not be applicable for future studies with the same
organism.

Furthermore, we showed that greenlist normalization outper-
forms the current standards. This offers a robust analysis option,
which should apply to any CUT&RUN or CUT&Tag experiment,
with no added experimental step, and incurring no additional
costs. Even for organisms featuring few published datasets, we
showed that this entropy-based greenlist construction should
remain consistent and still offer a robust normalization. We
expect that this methodology will enhance the quantitative
potential of CUT&RUN and CUT&Tag in the scientific literature,
fostering more comprehensive and reliable analyses.
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Figure 7. Established normalization approaches are unable to remove technical bias in extreme cases. Validation of greenlist normalization performance
for two public datasets, GSE221701 (graphs A, C) and GSE194217 (graphs B, D, E, F). (A, B) First two components for PCA of each dataset, using default
library size-based normalization; samples colored by antibodies used, as indicated on the legends at right. (C-D) First two components for PCA of
each dataset, using default library size-based normalization, with samples colored by library sizes, as indicated on the scales at right. (E-F) First two
components for PCA of dataset GSE194217, using spike-in normalization; samples colored by library sizes (E) or spike-in counts (F), as indicated on the

scales at right.

MATERIALS AND METHODS
Sample selection and processing

Samples were selected from publicly available studies submitted
to the Sequence Read Archive repository (SRA, https:/www.
ncbinlm.nih.gov/sra), and manually curated to ensure the
consistency and accuracy of the metadata. Experimental meta-
factors considered included cell line, cell type/characteristics,
antibody brand and product, antibody target (e.g. anti-mouse IgG
versus anti-human IgG), antibody host, CUT&RUN protocol/kit

used, authors and authors’ primary affiliations. Only negative
control samples from studies with >6 samples total were selected.
Samples with too few aligned reads were discarded (<1.5 M
for human CUT&RUN, <1 M for mouse CUT&RUN, <500 k for
human CUT&Tag), based on recommendations of established
protocols [6, 50-52]. In total, 463 samples were used for human
CUT&RUN, 611 for mouse CUT&RUN and 217 for human
CUT&Tag; a full list of datasets used is available in Supplementary
Table S3.
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Figure 8. Greenlist normalization greatly minimizes technical variation, uncovering relevant biological data. Validation of greenlist normalization
performance for two public datasets, GSE221701 (graphs A, C, E) and GSE194217 (graphs B, D, F). (A-B) First two components for PCA of each dataset,
calculated after performing greenlist normalization; samples colored by library sizes, as indicated on the scales at right. (C-D) First two components
for PCA of each dataset, calculated after performing greenlist normalization, with samples colored by total counts in greenlist regions, as indicated
on the scales at right. (E-F) First two components for PCA of each dataset, calculated after performing greenlist normalization; samples colored by

antibodies used, as indicated on the legends at right.

Samples were downloaded with SRA-toolkit (SRA Toolkit
Development Team, v3.0.2 https://trace.ncbi.nlm.nih.gov/Traces/
sra/sra.cgi?view=software), cleaned with fastp (v0.20.0) [53] with
parameters ‘—detect_adapter_for_ pe -W 1 -3 -5’, and aligned
with bowtie2 (v2.3.5.1) [54] with parameters -X 1000 -no-
mixed -dovetail -no-unal —very-sensitive-local -N 1'. Genome
builds used were hg38/GRCh38 with gene annotation GENCODE
Release 40 [55] for human, mm39/GRCm39 with gene annotation
GENCODE Release M33 [55] for mouse, R64-1-1 (Saccharomyces
Genome Database, https://www.yeastgenome.org/) for yeast and
DH5alpha strain for E. coli (GenBank entry CP026085.1). Files were

processed as needed with samtools (v1.10) [56] and bedtools
(v2.26.0) [57].

For the validation analyses of specific experiments (GSE104550,
GSE221701, GSE194217, GSE223997, GSE171327, GSE157095 and
GSE166221), we followed their original published methodology for
sample processing and peak calling [42, 43, 45-49].

Construction of the greenlist
Binning was performed with 1-kb windows while blacklisting
only the ‘Low-Mappability’ regions of the ENCODE blacklist [34].
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Figure 9. Greenlist normalization increases similarity between biological replicates. Comparison of normalization approaches for increasing similarity
between replicates, as measured by F1 scores, with each point representing one replicate pair. Slope 'y = 1x’ highlighted as a dashed line for visual
clarity; points to the right of this line indicate a higher similarity between replicates normalized by greenlist compared with spike-in. The color scale
on the right of each panel indicates the difference in the total number of reads (in millions) between each pair of replicates. (A) Similarity of replicate
pairs of dataset GSE194217, of human CUT&RUN, when normalized by greenlist (x-axis) or spike-in (y-axis). (B) Similarity of replicate pairs of dataset
GSE223997, of human CUT&Tag, when normalized by greenlist or spike-in (as above). (C) Similarity of replicate pairs of dataset GSE171327, of mouse
CUT&RUN, when normalized by greenlist or spike-in (as above). (D) Similarity of replicate pairs of dataset GSE157095, a human CUT&RUN experiment
with low experimental variation, when normalized by greenlist or spike-in (as above). (E) Similarity of replicate pairs of dataset GSE104550 by the
Henikoff laboratory, testing different amounts of starting cells, when normalized by greenlist or spike-in (as above). (F) Similarity of replicate pairs of
dataset GSE166221, of human and mouse CUT&RUN, when normalized by greenlist (x-axis) or default MACS2 parameters (y-axis).

Quantifications were done with deeptools (v3.5.1) [58] multi-
BamSummary, either in bins mode for bins or bed-file mode for
quantifying finished greenlists. Quantified bins were normalized
by quantile normalization with the broman (v0.80) R package [59],
and Shannon entropy was calculated with the entropy (v1.3.1)
R package [39], using the maximum-likelihood approximation.

Briefly, this metric quantifies the expected value of the informa-
tion content of a variable; in this case, for each bin X, we consider
the proportion of counts per sample over the total counts of X
as the probability to calculate X's information content, so that
bins with high-count outliers have low information entropies and
bins with a more homogenous distribution have high entropies.
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For calculating normalization factors, we tested both a manual
approach (simply dividing (library size)/sum(greenlist counts))
or using DESeq2 (v1.32.0) [44] to calculate size factors; both
approaches showed similar results, so DESeq2 was used for
convenience.

After testing, final constructions of the greenlists were done
by selecting bins in the top 0.1% of highest entropies, filtering
out bins <5 kb away from known genes, and extending them
if the bins in their proximity were in the top 1% of highest
entropies. Blacklist constructions were done in a similar fashion
but selecting bins with median normalized counts in the top 0.1
and 1% of highest signal instead.

In the interest of reproducibility, the R scripts used for greenlist
construction and validation are provided at https://github.com/
fndemello/CUT-RUN_greenlist.

Validations and statistics

For comparisons between lists, correlation was calculated as
Spearman'’s rank correlation coefficient, ranking bins by entropy
(for greenlists) or highest median signal (for blacklists). Overlap
comparisons were calculated by finding intersects with bedtools
[57] and calculating F-scores for each pair of lists. Likewise, F-
scores were also used to quantify similarity between peaksets for
validation of replicate pairs.

The Monte Carlo test to validate our analysis of normalization
efficiency of different thresholds (Figures 2C and 3B) was done
with base R, the doParallel (v1.0.16) package for parallelization
and doRNG (v1.8.6) package to ensure random seed consistency
across worker threads. Tests were done by selecting 0.1% of bins
(2789) with the sample function and testing their effect on entropy
of our test set (10% of lowest entropy bins, as previously), with
100 000 trials. Efficiency was also assessed after filtering out sam-
pled regions that were close/overlapping gene bodies. A similar
methodology was employed for assessing greenlist robustness
over subsampling (Figure 3F), randomly sampling at intervals of
2% of the total number of samples. To speed computations, and
since larger samplings are expected to present less variability of
results than smaller samplings, the number of trials per inter-
val was inversely proportional to the size of the sampling, i.e.
smaller subsamplings were repeated more times, following the
expression:

Trials = 2 x (100 — sampling percentage)

For analyzing the association of meta-factors to the overall
variation of the datasets, PCA was performed, and a linear regres-
sion model was built for each of the first five PCs. Significance
was tested with analysis of covariance (ANCOVA) F-test, with
a threshold of P <0.01 for significance with the R package car
(v3.0-12) [60]. It is worth noting that this statistical design is
by nature unbalanced, as we cannot ensure that all categori-
cal variables are equally represented without greatly downsam-
pling our dataset. As such, some groups are incomplete (i.e. not
every combination of variable values is present) and some val-
ues have a small representation (e.g. antibodies that were only
used once across the whole dataset), slightly limiting the estima-
tions; nevertheless, ANCOVA should be resilient enough to this
imbalance.

Additional statistical analyses were done with R (v4.1.0) [61],
and plotting was done with ggplot2 (v3.4.2) [62].
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Key Points

e CUT&RUN experiments always yield consistent nonspe-
cific noise over a few genomic regions, regardless of
experimental conditions; we have named these regions
a ‘Greenlist’.

e Greenlist regions show consistent sequencing represen-
tation and thus are effective endogenous normalizing
factors for genome-wide quantitative epigenome map-
ping.

e Greenlist normalization outperforms current normaliza-
tion standards and requires no additional experimen-
tal work.
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