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∗ Author to whom any correspondence should be addressed.

E-mail: Caroline.Alves@th-ab.de and aruane.pineda@usp.br

Keywords: cortical networks, machine learning, complex networks, complex systems, deep learning

Abstract
Mental disorders are among the leading causes of disability worldwide. The first step in treating
these conditions is to obtain an accurate diagnosis. Machine learning algorithms can provide a
possible solution to this problem, as we describe in this work. We present a method for the
automatic diagnosis of mental disorders based on the matrix of connections obtained from EEG
time series and deep learning. We show that our approach can classify patients with Alzheimer’s
disease and schizophrenia with a high level of accuracy. The comparison with the traditional cases,
that use raw EEG time series, shows that our method provides the highest precision. Therefore, the
application of deep neural networks on data from brain connections is a very promising method
for the diagnosis of neurological disorders.

1. Introduction

Neurological disorders, including Alzheimer’s disease (AD) and schizophrenia (SZ), are among the main pri-
orities in the present global health agenda [1]. AD is a type of dementia that affects primarily elderly individuals
and is characterized by the degeneration of brain tissue, leading to impaired intellectual and social abilities [2].
Currently, around 25 million people live with AD [3]. In the US, nearly six million individuals are affected by
AD, with incidence projected to increase more than two-fold to 13.8 million by 2050 [4]. Individuals with
SZ have symptoms such as hallucinations, incoherent thinking, delusions, decreased intellectual functioning,
difficulty in expressing emotions, and agitation [5, 6]. According to the World Health Organization, SZ affects
around 26 million people worldwide [7].

The base for successful treatment of AD and SZ is the correct diagnosis. However, both the diagnosis and
the determination of the stage of AD and SZ are based primarily on qualitative interviews, including psychi-
atric history and current symptoms, and the assessment of behavior. These observations may be subjective,
imprecise, and incomplete [8–11]. To provide a quantitative evaluation of mental disorders, methods based
on magnetic resonance imaging, computerized tomography [12], and positron emission tomography [13, 14]
has been used to aid professionals in the diagnostic process [15]. However, the use of multiple imaging devices
can be expensive to implement and the fusion of images from different devices can have poor quality due to
motion artifacts.

To overcome these restrictions, EEG data is a viable candidate to support the diagnosis of SZ and AD
[16]. Although EEG has a low spatial resolution, it has a comparatively low cost, good temporal resolution
and is easily available in most contexts. Nonetheless, visual analysis of EEG data is time-consuming, requires
specialized training, and is error-prone [17–19]. However, we can consider automatic evaluation of EEG time
series using modern classification algorithms, which can help to improve the efficiency and accuracy of AD
and SZ diagnosis, as verified in previous works [20–23].
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Moreover, instead of using raw EEG time series, it is possible to encompass the connections between brain
regions by constructing cortical complex networks [24]. In this case, we build cortical networks for healthy and
individuals with neurological disorders. To distinguish between them, we use network measures to describe
the network structure, as described in a previous work of ours [25] (see also [26, 27] for a description of the
methodology used in network classification). Therefore, each network is mapped into a d dimensional space,
where d is the number of measures adopted for network characterization. This process of building a set of
features to represent the input data is called feature engineering. After extracting the network features for the
two classes of networks, i.e. healthy and individuals with mental disorders, supervised learning algorithms are
adjusted to perform automatic classification. Previous works verified that this approach enables the diagnosis
with accuracy higher than 80% in the case of childhood-onset SZ [25].

Although this methodology has been used for many different diseases (e.g. [20, 25, 28, 29]) the performance
of the algorithm depends on the measures selected to describe the network structure. The network properties
included in the model could represent just a subset of the information necessary to get the best performance
of the supervised model. Therefore, the network representation can be incomplete, restricting the accuracy
of the classifiers. One possible solution to this problem is the use of a matrix of connections in combination
with deep neural networks [30], as we show in the present paper. In this case, instead of extracting the network
measures, the matrix of connections is considered as input to train a deep neural network. This matrix encodes
all the information necessary to represent the network structure and avoid the choice of network measures.

In this work, the metrics used to construct the matrices also have restrictions. A limitation of the pairwise
matrices used in this study is the possible loss of information when reducing the raw EEG time series. How-
ever, our study suggests that the amount of information retained is sufficient for the classification of AZ and
SD and represents a more computationally efficient approach that is more practical in a clinical setting. In this
work, the metrics used to construct the matrices also have restrictions. As an example, Pearson’s correlation
considers only linear correlations, on the other hand, Spearman’s correlation is limited when there are many
observations with the same order, and Granger’s causality considers the series stationary. Nevertheless, we aim
here to develop an efficient method to classify patients and not to make a comparison of methods.

Therefore, we consider the matrix of connections between brain areas and deep neural networks to dis-
tinguish individuals with AD and SZ from healthy controls. Other than previous works, where only raw time
series are adopted as input for the neural network [31–37], we do not ignore the connections between the
electrodes used to record the time series. We construct the matrix of connections by using Granger causality,
Pearson’s and Spearman’s correlations [38–40]. We verify that this information about the connections is fun-
damental and improves the classification, compared to the previously mentioned approaches that use only raw
EEG time series.

In summary, in this work we achieve the following contributions:

• We propose a method to classify EEG time series from healthy and patients presenting AD and SZ. With
a matrix of connections as input for a tuned convolutional neural network (CNN) model, the accuracy
obtained is close to 100% for both disorders. Our results are more accurate than those observed in pre-
vious works that consider only raw EEG time series, reinforcing the importance of the network structure
on the diagnosis of mental disorders.

• We show that the method to infer the matrices of connections influences the quality of the classification
results. For SZ, the Granger causality provides the most accurate classification, whereas, for AD, the
Pearson’s correlation yields the highest accuracy.

• Our framework is general and can be used in EEG data from any brain disorder. It allows to determine
the best cortical network representation and adjust the CNN to optimize the accuracy.

In the next sections, we outline the data set, present the CNN architecture and show our results, comparing
them with more common approaches that do not consider the connections between brain areas.

2. EEG data

The AD data set considered here is composed of EEG time series recorded at a sampling frequency of 128 Hz
and a duration of 8 s for each individual and at 19 channels (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5,
P3, Pz, P4, T6, O1, and O2). The letters F, C, P, O, and T refer to the respective cerebral lobes frontal (F), central
(C), parietal (P), occipital (O), and temporal (T). The data is divided into two sets. The first one consists of
24 healthy elderly individuals (control group; aged 72 ± 11 years) who do not have any history of neurolog-
ical disorders. The second one is made of 24 elderly individuals with AD (aged 69 ± 16 years) diagnosed by
the National Institute of Neurological and Communicative Disorders and Stroke, the AD and Related Dis-
orders Association, following the diagnostic and statistical manual of mental disorders (DSM)-III-R criteria
([20, 41]).
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Figure 1. Illustration of the method for automatic diagnosis of mental disorders based on EEG time series. Time series are
collected and the correlation between electrodes are calculated yielding the matrices of connections, which encompass the
functional connectivity between brain regions. Finally, the CNN is adjusted to enable the automatic classification of individuals.

Table 1. Best hyperparameters and layer configurations obtained for the CNNtuned

model.

Type of layer Tuning hyperparameter Value

Convolutional — —

Convolutional Dropout

[0.00, 0.05, 0.10, 0.15,
0.20, 0.25, 0.30,

0.35, 0.40, 0.45, 0.50]
Convolutional — —
Convolutional Number of filters [32, 64]
Max pooling Dropout [0.00, 0.50, 0.10, 0.15, 0.20]
Flatten — —

Dense -units-activation
[32, 64, 96, . . . , 512]
[relu, tanh, sigmoid]

Dropout Rate [0.00, 0.50, 0.10, 0.15, 0.20]

Adam optimization compile Learning rate

Min − value = 1 × 10−4

Max − value = 1 × 10−2

Sampling = LOG

Table 2. The network architecture for the CNNtuned model used in the
AD and SZ data sets.

Type of layer Output shape (AD) Output shape (SZ) Parameter

Convolutional (None, 17, 17, 16) (None, 14, 14, 16) 160
Convolutional (None, 15, 15, 16) (None, 12, 12, 16) 2320
Max-pooling (None, 7, 7, 16) (None, 6, 6, 16) 0
Dropout (None, 7, 7, 16) (None, 6, 6, 16) 0
Convolutional (None, 5, 5, 32) (None, 4, 4, 32) 4640
Convolutional (None, 3, 3, 32) (None, 2, 2, 32) 9248
Max-pooling (None, 1, 1, 32) (None, 1, 1, 32) 0
Dropout (None, 1, 1, 32) (None, 1, 1, 32) 0
Flatten (None, 32) (None, 32) 0
Dense (None, 160) (None, 160) 5280
Dropout (None, 160) (None, 160) 0
Dense (None, 2) (None, 2) 3

The data set used for diagnosis of SZ contains 16-channel EEG time series recorded at a sampling frequency
of 128 Hz over 1 min, including F7, F3, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2. Notice that
both data set come from studies of 16 common brain regions, with the AD data set having three more regions
analyzed. Furthermore, it also includes two sets, (i) one of 39 healthy young individuals (control group; aged
11 to 14 years) and (ii) one of 45 teenagers individuals (aged 11 to 14 years) with symptoms of SZ.

The Alzheimer’s disease database is freely available at [42].

3. Concepts and methods

Our framework to perform the automatic diagnosis of AD and SZ is illustrated in figure 1. In a first step, EEG
time series, which are free of artifacts, are used to construct the matrices of connections. The strength of the
connections between two brain regions is quantified by three different methods: (i) Granger causality test [43],
(ii) the Pearson’s [44] and (iii) Spearman’s [45] correlation measures.

In our work, we have the following null hypothesis: the coefficients of the corresponding past values are
zero (one EEG channel does not influence the other). The rows are the response variables and the columns
are the predictors. We calculate the p-values, if these p-values are less than 0.05 (significance level) this implies

3
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Table 3. The network architecture for the CNNuntuned model used in the AD and
SZ data sets.

Type of layer Output layer (AD) Output layer (SZ) Kernel

Input layer 19 × 19 × 1 16 × 16 × 1 —
Convolution 18 × 18 × 32 15 × 15 × 32 4
Max pooling 18 × 18 × 32 15 × 15 × 32 2
Convolution 17 × 17 × 16 14 × 14 × 16 4
Max pooling 17 × 17 × 16 14 × 14 × 16 2
Flatten 17 × 17 × 16 3136 —
Fully connected 10 10 —
Fully connected 1 1 —

Figure 2. Example of matrices of connections calculated with Pearson’s correlation for (a) an individual with diagnosed AD and
(b) an healthy individual.

Figure 3. Example of matrices of connections calculated with Granger causality test for (a) an individual with diagnosed SZ and
(b) an healthy individual.

that the null hypothesis can be rejected. Therefore, the p-value analyzes whether one brain region influences
the other. If p < 0.05 we assign the value 1 because we reject the null hypothesis, i.e. it is true that one EEG
channel influences another. This influence is related to having a high correlation.

Therefore, matrices are calculated for AD data sets (19 EEG channels) and for SZ data sets (16 EEG chan-
nels) filled with ‘1’ if p < 0.05 and ‘0’ if p � 0.05. These matrices are inserted in a CNN to discriminate healthy
individuals from individuals diagnosed with AD and SZ (see figure 1). Notice that the use of different meth-
ods to infer the brain areas is necessary because there is no general method to infer functional connectivity
[38–40, 46]. Indeed, choosing the best metric to infer these connections between brain areas is a current
challenge in network neuroscience (e.g. [47, 48]).
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Table 4. Classification results for AD using the CNNtuned model (best results are in bold).

Matrices of connections Hyperparameter Sample Accuracy Precision Recall AUC

Granger causality

Random search Train 0.81 0.81 0.81 0.88
Test 0.75 0.75 0.75 0.97

Hyper-band Train 0.65 0.65 0.65 0.65
Test 0.75 0.75 0.75 0.97

Bayesian optimization Train 0.68 0.68 0.68 0.82
Test 0.75 0.75 0.75 0.93

Pearson’s correlation

Random search Train 0.95 0.95 0.95 0.98
Test 1.00 1.00 1.00 1.00

Hyper-band Train 0.86 0.86 0.86 0.90
Test 1.00 1.00 1.00 1.00

Bayesian optimization Train 0.88 0.88 0.88 0.98
Test 1.00 1.00 1.00 1.00

Spearman correlation

Random search Train 0.47 0.47 0.45 0.47
Test 0.75 0.75 0.75 0.75

Hyper-band Train 0.47 0.47 0.47 0.45
Test 0.75 0.75 0.75 0.62

Bayesian optimization Train 0.47 0.47 0.47 0.45
Test 0.75 0.75 0.75 0.68

Table 5. Classification results for SZ using the CNNtuned model (best results are in bold).

Matrices of connections Hyperparameter Sample Accuracy Precision Recall AUC

Granger causality

Random search Train 0.90 0.90 0.90 0.93
Test 1.00 1.00 1.00 1.00

Hyper-band Train 0.73 0.73 0.73 0.77
Test 0.72 0.72 0.72 0.78

Bayesian optimization Train 0.72 0.72 0.72 0.78
Test 1.00 1.00 1.00 1.00

Pearson’s correlation

Random search Train 0.54 0.54 0.54 0.54
Test 0.50 0.50 0.50 0.50

Hyper-band Train 0.54 0.54 0.54 0.54
Test 0.50 0.50 0.50 0.50

Bayesian optimization Train 0.54 0.54 0.54 0.54
Test 0.50 0.50 0.50 0.50

Spearman correlation

Random search Train 0.53 0.53 0.53 0.53
Test 0.50 0.50 0.50 0.50

Hyper-band Train 0.53 0.53 0.53 0.53
Test 0.50 0.50 0.50 0.50

Bayesian optimization Train 0.53 0.53 0.53 0.53
Test 0.50 0.50 0.50 0.50

Table 6. Classification results for AD using the CNNuntuned model (best results
are in bold).

Matrices of connections Sample Accuracy Precision Recall AUC

Granger causality Train 0.97 0.97 0.99 0.99
Test 0.58 0.57 0.66 0.75

Pearson’s correlation Train 0.98 0.99 0.98 0.99
Test 0.92 1.00 0.83 1.00

Spearman’s correlation Train 0.97 0.98 0.97 0.99
Test 0.83 1.00 0.66 1.00

3.1. Convolutional neural network
CNN is a type of neural network [49] with three types of layers and masked parameters, as proposed in
[50, 51]. The convolutional layer performs the mathematical operation called convolution, which is done in
more than one dimension at a time. The weights of the artificial neurons are represented by a tensor called
kernel (or filter). The outputs from the convolutional layer include the main features from the input data. The
convolution process between neurons and kernels produces outputs called feature maps.

5



J.Phys.Complex. 3 (2022) 025001 (13pp) C L Alves et al

Table 7. Classification results for SZ using the CNNuntuned model.

Matrices of connections Sample Accuracy Precision Recall AUC

Granger causality Train 0.97 0.97 0.97 0.99
Test 0.52 0.53 0.73 0.55

Pearson’s correlation Train 0.61 0.58 1.00 0.53
Test 0.57 0.55 1.00 0.45

Spearman’s correlation Train 0.62 0.59 0.97 0.58
Test 0.62 0.58 1.00 0.53

Table 8. Classification results for AD using raw
EEG time series and the CNNtuned model.

Set Accuracy Precision Recall AUC

Train 0.68 0.61 1.00 0.68
Test 0.75 0.66 1.00 0.75

Table 9. Classification results for SZ using raw
EEG time series and the CNNtuned model.

Set Accuracy Precision Recall AUC

Train 0.62 0.62 1.00 0.50
Test 0.55 0.55 1.00 0.50

The pooling layer reduces the dimensionality and operates similarly to the convolutional layer. The dif-
ference is that pooling kernels are weightless and add aggregation functions to their input data, such as a
maximum or mean function [52, 53]. The max-pooling function is used here to return the highest value within
an area of the tensor, which reduces the size of the feature map. The fully connected layer categorizes input data
into different classes, based on an initial set of data used for training. The artificial neurons in the max pooling
and fully connected layers are connected, as the output predicts precisely the result of the input EEG data as
healthy and unhealthy [21].

Two approaches for the CNN architectures are proposed here, one using a tuning method (CNNtuned)
and another without this optimization step (CNNuntuned). Tuning is an optimization method used to find the
values of hyperparameters to improve the performance of the CNN model [54]. Three tuning techniques are
used in the present work: (i) random search [55], (ii) hyper-band [56] and (iii) Bayesian optimization [57].
The traditional way to optimize the hyperparameters is exhaustive searching through a manually specified
parameters search space and evaluating all possible combinations of these parameter values. However, this
approach has a high computational cost. An alternative method is to select the values of parameters in the
search space at random until maximize the objective function (here, this objective function is the maximization
of accuracy).

The idea of hyper-band optimizations is to select different possible models (with different hyperparameters
values), train them for a time, and discard the worst one at each iteration until a few combinations remain.
In contrast, Bayesian optimization is a global optimization method that uses the Bayes theorem to direct the
search to find the minimum or maximum of a certain objective function [30].

In the CNNtuned model, the dropout regularization technique is employed to avoid overfitting [58]. The
layers and range used for hyperparameters are presented in table 1. The best CNNtuned architectures tuned for
each data set individually are depicted in table 2. The CNNuntuned model presents fewer layers and therefore
lower computational costs. The parameters used in our analysis are described in table 3.

3.2. Evaluation
Since we have a two-class classification problem (negative and positive), we consider the precision and recall
measures in the evaluation process [59]. Precision (also called specificity) corresponds to the hit rate in the
negative class, whereas recall (also called sensitivity) measures how well a classifier can predict positive exam-
ples (hit rate in the positive class). For visualization of these two measures, the receiver operating characteristic
(ROC) curve is a common method as it displays the relation between the rate of true positives and false pos-
itives. The area below this curve, called area under ROC curve (AUC) has been widely used in classification
problems [60], mainly for medical diagnoses [61–64]. The value of the AUC varies from 0 to 1, where the value
of one corresponds to a classification result free of errors. AUC = 0.5 indicates that the classifier is not able
to distinguish the two classes—this result is equal to the random choice. Furthermore, we consider the macro
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Figure 4. ROC curve obtained from the CNNtuned model. The matrices of connections are constructed by (a) Pearson’s
correlation for AD disease and (b) Granger causality for individuals diagnosed with SZ.

Figure 5. ROC curve obtained from raw EEG time series for (a) individuals diagnosed with AD and (b) individuals with SZ.

average of ROC curve, which computes the AUC metric independently for each class (calculate AUC metric for
healthy individuals, class zero, and separately calculate for unhealthy subjects, class one) and then the average
is computed considering these classes equally, in other words, an arithmetic mean is taken (the ROC curve of
class 0 and the ROC curve of class 1 are calculated, summed and divided by 2). The micro average is also used
in our evaluation, which does not consider both classes equally, but aggregates the contributions of the classes
separately and then calculates the average. Therefore, the number of elements in each class is considered as
weight in the calculation of the average.

4. Results and discussion

We consider the EEG time series described in section 2 to construct the matrices of connections for healthy
controls and individuals diagnosed with AD and SZ, following the description in section 3. These matrices are
built by using the Granger causality test, Pearson’s and Spearman’s correlations measures for both data sets.
In figures 2 and 3, some examples of such matrices of connections are shown and differences between them
can be noticed visually in both cases.

The matrices of connections are inserted into the CNN by applying the flattening method, which converts
the data into a one-dimensional array that is input to the next layer. Two CNN architectures are considered,
i.e. CNNtuned and CNNuntuned, to evaluate the classification. The CNNtuned is obtained by hyperparameter opti-
mization, whereas the CNNuntuned is a simpler model, without using the tuning optimization. The evaluation of
both models is done by using the area under the ROC curve (AUC). Nested k-fold cross-validation (k = 10) for
model selection, adjustment and evaluation is considered here. The training and test sets are selected accord-
ing to the holdout method, where we include 10% of the observations in the test set. The training set is used
to adjust the model, whereas the test set, for evaluation. Notice that these sets do not share any observations.
We also perform the classification considering 10% to 50% of the observation in the test set and verify that

7



J.Phys.Complex. 3 (2022) 025001 (13pp) C L Alves et al

regardless of the sample size, the obtained AUC is higher than 0.90 in all cases. These results were included in
the appendix, at the end of the paper.

The results for the CNNtuned model is shown in tables 4 and 5, for AD and SZ, respectively. In all the cases,
the CNNtuned model can unambiguously distinguish healthy individuals from individuals diagnosed with a
brain disorder. The best results with an accuracy close to 100% are obtained for both AD and SZ in the testing
set using random search for hyperparameter tuning.

Concerning the CNNuntuned model, the results are shown in tables 6 and 7 for AD and SZ, respectively. For
the AD data set, the best results are found using Pearson’s correlation with a test accuracy of 92%. Regarding
SZ disease, independently of the method used for the construction of the matrices of connections, results are
close to the random guessing (see table 7). Therefore, the CNNtuned model is more accurate for both AD and
SZ diagnosis.

Importantly, the overall predictive performance depends on the choice of measure to construct the matri-
ces of connections. In the case of AD, Pearson’s correlation provides the best performance in CNNtuned (see
table 4). On the other hand, in the case of SZ, Granger causality is superior to the other methods (see table 5).
Therefore, there is no general method to infer the connections and obtain the most accurate results. Thus, dif-
ferent methods should be considered to develop an accurate framework for the automatic diagnosis of mental
disorders.

For a comparison of our method with the more common approach known from the literature, the classifi-
cation is performed by applying the raw EEG time series as input for the CNNtuned model (whose performance
is the best for both diseases, as discussed before). The results are shown in tables 8 and 9 for AD and SZ,
respectively. The accuracy of 75% for AD and 55% for SZ are obtained. This outcome is supported by results
available in the literature. Janghel and Rathore [65] obtained an accuracy of 76% for AD, where the authors
did not consider the matrices of connections.

As we can see, our proposed method based on a matrix of connections provided as input to a CNN allows
for more accurate results. This reinforces the importance of using a data set that encompasses the connec-
tions between brain regions. Indeed, the network structure is a fundamental ingredient to differentiate healthy
individuals from patients presenting neurological disorders, as verified in many papers (e.g. [25, 66–69]).

In figure 4 we show the ROC curve for the best results, i.e. for AD (using Pearson’s correlation) and SZ
(using Granger causality test), respectively. For AD, the micro and macro-average ROC curve areas are 0.99
and 1.0, respectively, the micro and macro-average ROC curve areas are 0.92 for both cases. For comparison,
figure 5 shows the ROC curve for AD and SZ using raw times series, where the micro and macro-average ROC
curve areas are 0.75 for AD and around 0.55 for AZ. Comparing these results, we conclude that the use of the
matrix of connections provides the most accurate classifications.

5. Conclusion

In this paper, we propose a method for automatic diagnosis of AD and SZ based on EEG time series and
deep learning. We infer the matrix of connections between brain areas following three different approaches,
based on Granger causality, Pearson’s and Spearman’s correlations. These matrices are included in a CNN,
tunned with the random search, hyper-band, and Bayesian optimization. We verify that this approach provides
a very accurate classification of patients with AD and SZ diseases. The comparison with the traditional method
that considers raw EEG data shows that our method is more accurate, reinforcing the importance of network
topology for the description of brain data. Our method is general and can be used for any mental disorder in
which EEG times series can be recorded.

A limitation of our analysis is the relatively small data set, although this is common in other studies on
disease classification [21]. However, even with this restriction, our algorithm worked very well, showing that
AD and SZ are associated with changes in brain organization. As future work, we suggest considering larger
data sets and additional information about the patients, like health conditions and age. A method that provides
the level of the evolution of the disease is also an interesting topic to be developed from our study.
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Table 10. Table containing the hyper-parameters for each classifier using the Grid search optimizer.

Classifier Hyperparameters and description Values

RF

-max_depth: the maximum depth of the tree [1, 2, 5, 10, 20, 80]
-max_features: the number of features to consider when looking for the best split [2, 3, 5, 10]

-min_samples_leaf: the minimum number of samples required to be at a leaf node [1, 2, 3, 4, 5]
-min_samples_split: the minimum number of samples required to split an internal node [1, 2, 8, 10, 12, 20]

-n_estimators: the number of trees in the forest [1, 2, 3, 5, 10, 30, 50, 100, 200, 300, 500]

SVM -kernel: specifies the kernel type to be used in the algorithm [rbf, linear]
-gamma: kernel coefficient [1 × 10−3, 1 × 10−4]

-C: regularization parameter [1, 10, 100, 1000]

NB -var_smoothin: portion of the largest variance of all features that is added to variances for calculation stability Range 1 × 10−9 to 1

MLP

-activation: activation function for the hidden layer [identity, logistic, tanh, relu]
-solver: the solver for weight optimization [lbfgs, sgd, adam]

-alpha: L2 penalty (regularization term) parameter [0.0001, 1 × 10−5, 0.01, 0.001]
-batch_size: size of minibatches for stochastic optimizers [1000, 5000]
-learning_rate: learning rate schedule for weight updates [constant, invscaling, adaptive]

-learning_rate_init: the initial learning rate used [0.001, 0.01, 0.1, 0.2, 0.3]

XGBoost

-learning_rate: learning rate shrinks the contribution of each tree [0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2]
-min_samples_split: the minimum number of samples required to split an internal node Range 0.1 to 0.5

-min_samples_leaf: the minimum number of samples required to be at a leaf node Range 0.1 to 0.5
-max_depth: the maximum depth of the individual r egression estimators [3, 5, 8]

-max_features: the number of features to consider when looking for the best split [log2, sqrt]
-criterion: the function to measure the quality of a split [friedman_mse, mae]

-subsample: the fraction of samples to be used for fitting the individual base learners [0.5, 0.618, 0.8, 0.85, 0.9, 0.95, 1.0]
-n_estimators: the number of boosting stages to perform [10, 100. 1000, 10 000]
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Table 11. Classification results for AD using the Pearson’s correlation.

Classifier Subset AUC Acc. F1 score Recall Precision

SVM Train 0.95 0.95 0.95 0.95 0.95
Test 0.91 0.91 0.91 0.91 0.92

NB Train 0.76 0.76 0.76 0.76 0.77
Test 0.70 0.69 0.69 0.70 0.70

RF Train 0.98 0.98 0.98 0.98 0.98
Test 0.96 0.96 0.96 0.96 0.96

MLP Train 1.00 1.00 1.00 1.00 1.00
Test 0.97 0.97 0.97 0.97 0.97

GBC Train 0.96 0.96 0.96 0.96 0.96
Test 0.92 0.93 0.93 0.92 0.94

Table 12. Classification results for SZ using the Granger causality.

Classifier Subset AUC Acc. F1 score Recall Precision

SVM Train 0.56 0.56 0.53 0.56 0.57
Test 0.55 0.56 0.54 0.55 0.56

NB Train 0.57 0.57 0.55 0.57 0.58
Test 0.52 0.52 0.50 0.52 0.52

RF Train 0.67 0.66 0.66 0.67 0.67
Test 0.52 0.52 0.52 0.52 0.52

MLP Train 0.64 0.63 0.60 0.64 0.72
Test 0.59 0.59 0.56 0.59 0.61

GBC Train 0.50 0.50 0.33 0.50 0.25
Test 0.50 0.48 0.32 0.50 0.24

Figure 6. The AUC according to the test size for AD.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Appendix A. Machine learning algorithms for a small data set

Due to the fact that our data sets are very small since we cannot find more data in the available literature,
and that CNN may suffer from this lack of data, in this section, we aim to try other classifiers that work more
efficiently with small data sets.

For our best AD results using Pearson’s correlation and SZ using Granger causality, we compared the
following machine learning methods to classify: support vector machine (SVM) [70], random forest (RF)
[71], naive Bayes (NB) [72], multilayer perceptron (MLP) [73] and extreme gradient boosting classifier
[74] (XGBoost). We used the same resampling described used with CNN model with a hyperparametric
optimization called grid search whose values used for each classifier model can be found in table 10.

We can see in the tables 11 and 12 the results of all classifiers and to AD (using the Pearson’s correlation)
and SZ (using the Granger causality), respectively. Note that there are no cases indicating overfitting. We can
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observe in table 11 that all classifiers are able to differentiate between patients in different health conditions,
as opposed to the results in table 12 that this cannot be verified (since all classifiers performed similarly to a
random classifier). Therefore, CNN was able to differentiate both cases with better performance.

We also perform the classification considering 10% to 50% of the observation in the test set. Notice that
we consider 10% of the elements in the test set to generate our results shown before. As we can see in figure 6,
regardless of the sample size, the obtained AUC is higher than 0.90. We also included a k-fold cross-validation
analysis for two different values of k, namely k = 4 and k = 12. For AD, considering k = 4, the AUC train is
0.99 and k = 12, the AUC train is 0.91. Therefore, we can see that we can predict the mental disorders with
high accuracy, independent of the test size and using the k-fold cross-validation technique.
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[54] Hutter F, Lücke J and Schmidt-Thieme L 2015 Beyond manual tuning of hyperparameters Künstl. Intell. 29 329
[55] Bergstra J and Bengio Y 2012 Random search for hyper-parameter optimization J. Mach. Learn. Res. 13 1–25
[56] Rostamizadeh A, Talwalkar A, DeSalvo G, Jamieson K and Li L 2017 Efficient hyperparameter optimization and infinitely many

armed bandits 5th Int. Conf. Learning Representations
[57] Doke P, Shrivastava D, Pan C, Zhou Q and Zhang Y-D 2020 Using CNN with Bayesian optimization to identify cerebral

micro-bleeds Mach. Vis. Appl. 31 36
[58] Srivastava N, Hinton G, Krizhevsky A, Sutskever I and Salakhutdinov R 2014 Dropout: a simple way to prevent neural networks

from overfitting J. Mach. Learn. Res. 15 1929
[59] Maimon O and Rokach L 2010 Data Mining and Knowledge Discovery Handbook (Berlin: Springer)
[60] Jin Huang J and Ling C X 2005 Using AUC and accuracy in evaluating learning algorithms IEEE Trans. Knowl. Data Eng. 17 299
[61] Ozcift A and Gulten A 2011 Classifier ensemble construction with rotation forest to improve medical diagnosis performance of

machine learning algorithms Comput. Methods Programs Biomed. 104 443
[62] Shen L, Chen H, Yu Z, Kang W, Zhang B, Li H, Yang B and Liu D 2016 Evolving support vector machines using fruit fly

optimization for medical data classification Knowl. Based Syst. 96 61
[63] Tanwani A K, Afridi J, Shafiq M Z and Farooq M 2009 Guidelines to select machine learning scheme for classification of

biomedical datasets European Conf. Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (Berlin:
Springer) pp 128–39

[64] Nanni L, Lumini A and Brahnam S 2010 Local binary patterns variants as texture descriptors for medical image analysis Artif.
Intell. Med. 49 117

[65] Janghel R R and Rathore Y K 2021 Deep convolution neural network based system for early diagnosis of Alzheimer’s disease IRBM
42 258

[66] Lynn C W and Bassett D S 2019 The physics of brain network structure, function and control Nat. Rev. Phys. 1 318
[67] De Vico Fallani F, Rodrigues F A, da Fontoura Costa L, Astolfi L, Cincotti F, Mattia D, Salinari S and Babiloni F 2011 Multiple

pathways analysis of brain functional networks from EEG signals: an application to real data Brain Topogr. 23 344
[68] Rodrigues F A and da Fontoura Costa L 2009 A structure-dynamic approach to cortical organization: number of paths and

accessibility J. Neurosci. Methods 183 57
[69] Antiqueira L, Rodrigues F A, van Wijk B C M, Costa L d F and Daffertshofer A 2010 Estimating complex cortical networks via

surface recordings—a critical note Neuroimage 53 439

12

https://doi.org/10.3389/fnins.2020.591662
https://doi.org/10.3389/fnins.2020.591662
https://doi.org/10.1016/j.compbiomed.2017.09.017
https://doi.org/10.1016/j.compbiomed.2017.09.017
https://doi.org/10.1186/s40708-018-0080-3
https://doi.org/10.1186/s40708-018-0080-3
https://doi.org/10.1007/s12652-018-1116-5
https://doi.org/10.1007/s12652-018-1116-5
https://doi.org/10.1016/j.cmpb.2018.04.012
https://doi.org/10.1016/j.cmpb.2018.04.012
https://doi.org/10.1007/s00521-018-3689-5
https://doi.org/10.1007/s00521-018-3689-5
https://doi.org/10.1007/s00521-018-3689-5
https://doi.org/10.1007/s00521-018-3689-5
https://doi.org/10.1007/s00521-018-3889-z
https://doi.org/10.1007/s00521-018-3889-z
https://doi.org/10.1007/s00521-018-3889-z
https://doi.org/10.1007/s00521-018-3889-z
https://doi.org/10.3389/fnsys.2015.00175
https://doi.org/10.3389/fnsys.2015.00175
https://doi.org/10.1523/jneurosci.4399-14.2015
https://doi.org/10.1523/jneurosci.4399-14.2015
https://doi.org/10.1007/s11571-013-9267-8
https://doi.org/10.1007/s11571-013-9267-8
https://doi.org/10.1159/000107183
https://doi.org/10.1159/000107183
https://doi.org/10.2307/1912791
https://doi.org/10.2307/1912791
https://doi.org/10.1037/0022-3514.86.1.96
https://doi.org/10.1037/0022-3514.86.1.96
https://doi.org/10.1016/j.physrep.2020.03.002
https://doi.org/10.1016/j.physrep.2020.03.002
https://doi.org/10.1088/1367-2630/13/1/013004
https://doi.org/10.1088/1367-2630/13/1/013004
https://doi.org/10.1103/physreve.94.032220
https://doi.org/10.1103/physreve.94.032220
https://doi.org/10.1113/jphysiol.1962.sp006837
https://doi.org/10.1113/jphysiol.1962.sp006837
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/s13218-015-0381-0
https://doi.org/10.1007/s13218-015-0381-0
https://doi.org/10.5555/2188385.2188395
https://doi.org/10.5555/2188385.2188395
https://doi.org/10.5555/2188385.2188395
https://doi.org/10.5555/2188385.2188395
https://doi.org/10.1007/s00138-020-01087-0
https://doi.org/10.1007/s00138-020-01087-0
https://doi.org/10.5555/2627435.2670313
https://doi.org/10.5555/2627435.2670313
https://doi.org/10.1109/tkde.2005.50
https://doi.org/10.1109/tkde.2005.50
https://doi.org/10.1016/j.cmpb.2011.03.018
https://doi.org/10.1016/j.cmpb.2011.03.018
https://doi.org/10.1016/j.knosys.2016.01.002
https://doi.org/10.1016/j.knosys.2016.01.002
https://doi.org/10.1016/j.artmed.2010.02.006
https://doi.org/10.1016/j.artmed.2010.02.006
https://doi.org/10.1016/j.irbm.2020.06.006
https://doi.org/10.1016/j.irbm.2020.06.006
https://doi.org/10.1038/s42254-019-0040-8
https://doi.org/10.1038/s42254-019-0040-8
https://doi.org/10.1007/s10548-010-0152-z
https://doi.org/10.1007/s10548-010-0152-z
https://doi.org/10.1016/j.jneumeth.2009.06.038
https://doi.org/10.1016/j.jneumeth.2009.06.038
https://doi.org/10.1016/j.neuroimage.2010.06.018
https://doi.org/10.1016/j.neuroimage.2010.06.018


J.Phys.Complex. 3 (2022) 025001 (13pp) C L Alves et al

[70] Bottou L and Lin C-J 2007 Support Vector Machine Solvers (Cambridge, MA: MIT Press)
[71] Breiman L 2001 Random forests Mach. Learn. 45 5
[72] Friedman N, Geiger D and Goldszmidt M 1997 Bayesian network classifiers Mach. Learn. 29 131
[73] Hinton G, Rumelhart D and Williams R 1986 Learning internal representations by error propagation Parallel Distributed

Processing: Explorations in the Microstructure of Cognition: Foundations (Cambridge, MA: MIT Press)
[74] Friedman J H 2001 Greedy function approximation: a gradient boosting machine Ann. Stat. 29 1189

13

https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1007465528199
https://doi.org/10.1023/a:1007465528199
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451

	EEG functional connectivity and deep learning for automatic diagnosis of brain disorders: Alzheimer's disease and schizophrenia
	1.  Introduction
	2.  EEG data
	3.  Concepts and methods
	3.1.  Convolutional neural network
	3.2.  Evaluation

	4.  Results and discussion
	5.  Conclusion
	Acknowledgments
	Data availability statement
	Appendix A. Machine learning algorithms for a small data set
	ORCID iDs
	References


