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We consider a two-parameter family of Z2 gauge theories on a lattice discretization T (M)
of a three-manifold M and its relation to topological field theories. Familiar models such
as the spin-gauge model are curves on a parameter space Γ. We show that there is a
region Γ0 ⊂ Γ where the partition function and the expectation value 〈WR(γ)〉 of the
Wilson loop can be exactly computed. Depending on the point of Γ0, the model behaves
as topological or quasi-topological. The partition function is, up to a scaling factor, a
topological number of M. The Wilson loop on the other hand, does not depend on the
topology of γ. However, for a subset of Γ0, 〈WR(γ)〉 depends on the size of γ and follows
a discrete version of an area law. At the zero temperature limit, the spin-gauge model
approaches the topological and the quasi-topological regions depending on the sign of
the coupling constant.
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1. Introduction

A lattice gauge theory with gauge group Z2 is the simplest example of a gauge

theory.1 In dimension d = 2, the partition function for Z2 (as for any other compact

gauge group) can be computed in various ways. In dimensions larger than two,

however, the simplicity of Z2 does not help us to solve the model. Even without

matter, the relevant models are nontrivial and exact solutions are not known. Such

solutions would be a very important achievement. A Z2 gauge theory on a cubic

lattice can be made dual to the 3D Ising model, an outstanding problem in statistical

mechanics.2,3 It is clear that in d = 4, the problem is at least as difficult as in d = 3.

‡Corresponding author.
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In this paper, we will not have much to say about d = 4 since the tools we use are

peculiar to dimension three.

However difficult, 3D lattice models with local gauge symmetry are not always

beyond the reach of exact solutions. That depends on the dynamics, i.e. the choice

of an action for a lattice plaquette. Topological Quantum Field Theories (TQFTs)

are examples where one can perform exact computations. Examples have been

constructed on the lattice in dimensions d = 34,5 as well as d = 4.6 Once the

topology on the manifold in question is fixed, the partition function does not depend

on the lattice size and can be trivially computed for a discretization with very

small number of sites, links and plaquettes. Such models are very simple from the

physical point of view. It follows from topological invariance that transfer matrices

are trivial.

Despite being trivial dynamically for a fixed topology, TQFTs are quite relevant

in physics. The reason being that TQFTs can come out as limits of ordinary field

theories in the continuum as well as in the lattice. The most celebrated example is

topological order in condensed matter physics7 where the physics at large scales

is described by a TQFT. Something of similar nature also happens for lattice

theories in d = 2 that are quasi-topological.8,9 They are reduced to a TQFT at

the appropriate limits.

In order to understand the relationship between fully dynamical d = 2 models

and their possible topological limits, one can first look at quasi-topological models.

They are very easy to work with since we can compute all relevant quantities.

Quasi-topological models in d = 2 are a nice set of toy models for this purpose. In

particular, the relation between the original models and their topological limits is

made very explicit. As for d = 3, the situation is more complicated. We do not have

at our disposal toy models that are at the same time not topological and easily

computable. We have no choice but to work with fully dynamical theories where

no exact computations are available.

The focus of this paper is to investigate how lattice field theories with local

Z2 gauge symmetry are related to topological theories. Before going any further

we need to say what we mean by a lattice model being topological. Let T (M)

be a lattice triangulation of a fixed compact three-manifold M. We say that such

a model is topological if the partition function is the same for all triangulations

T (M). Actually, this is a weak definition since we may ask that not only the

partition function but the expectation value of all observables to be of a topological

nature. In any case, we have to go beyond the usual regular cubic lattices and take

into account arbitrary lattices.

In Ref. 10, we investigated the spin-gauge model in d = 3. We showed that in

the limit β → ∞ the partition function Z is given by

Z(T (M))|β→∞ = Ztop(M) 2NF+NL−NT , (1)
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where NT , NF and NL are the number of tetrahedra, faces and links of T (M) and

Ztop(M) is a topological number and as such does not depend on the discretization

T (M). Equation (1) tells us that at the limit β → ∞ the partition function is not

strictly speaking topological since it depends on the triangulation. However, it does

not depend on the details of the triangulation but only on its size. For this reason

we say that the partition function is quasi-topological. It follows from (1) that the

partition function can be computed for all triangulations. Let T0(M) be a lattice

triangulation where the numbers NT0 , NF0 and NL0 are very small such that Z(T0)

can be written down explicitly. For an arbitrary lattice T (M) we have

Z(T )|β→∞ = Z(T0)|β→∞2(NF−NF0)+(NL−NL0)−(NT−NT0) . (2)

We will find it convenient to rewrite Z as a product of local Boltzmann weights,

in the form

Z =
∑

{ga}

∏

f

W (f) , (3)

where the product is over all faces of the triangulation and sum is over all configu-

rations. Let a, b and c be the links of a face f and (ga, gb, gc) a gauge configuration

at f . The corresponding local Boltzmann weight for the spin-gauge model can be

written as

W (1)(ga, gb, gc) = eβgagbgc . (4)

Another very common choice is to set the local Boltzmann weight to

W (2)(ga, gb, gc) = e−β(1−gagbgc) , (5)

which corresponds to the usual gauge theories where flat holonomies will have the

highest weight.

As we will see in this paper, the relationship between gauge models and TQFTs

can be better understood if we depart from a specific example as in Ref. 10 and

consider a more general class of gauge models. In order to have a gauge theory, the

local weight should depend only on the product of the gauge variables around an

oriented plaquette:

W (ga, gb, gc) =M(gagbgc) . (6)

Gauge invariance means that M(g) is a class function or, in other words

M(hgh−1) = M(g), ∀h ∈ G. The character expansion for the group Z2 is very

simple and implies that

M(ga, gb, gc) = m1(gagbgc) +m0 , (7)

where mi ∈ R. The original spin-gauge model with one parameter β can be re-

covered by restricting the model to a curve (m0,m1) = (cosh(β), sinh(β)) in this

two-dimensional parameter space. We will refer to the parameter space as Γ.
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The first question to be addressed is the generalization of Eq. (2). We will show

that there is a subset Γ0 of the parameter space Γ such that the partition function

Z(m0,m1, T (M)) can be written as a product of a topological invariant Ztop(M)

times a known function depending on the numbers NT , NF and NL of tetrahedra,

faces and links. Again, an easy consequence is that at Γ0 the partition function

Z(m0,m1, T (M)) can be computed for any lattice T (M). The subset Γ0 is made of

two pairs of lines, namely, mi = 0, i = 0, 1 and m1 = ±m0. It turns out that these

two regions of Γ0 have different properties. For instance, the topological invariant

that appears in the first pair is trivial and Ztop(M) = 1 for all compact manifolds

M. As for second pair, Ztop(M) depends on the first group of co-homology of M.10

The two pairs of solutions are also related to high and low temperature limits as it

will be clear from the discussion on Sec. 2.

As in any gauge theory, one would be interested in more observables than just the

partition function. In particular it is important to calculate the expectation value

〈WR(γ)〉 of Wilson loops for arbitrary representations R of the gauge group and

closed curves γ. In our previous work,10 we considered only the partition function.

In the present paper, we would like to go further and ask whether 〈WR(γ)〉 can

be computed for some points of Γ. As it happens for the partition function, such

computation can be performed for all points of Γ0. Note that, in a truly topological

gauge theory such as Chern–Simons, 〈WR(γ)〉 is a topological invariant of γ. That

is not true for all points of Γ0. It turns out that 〈WR(γ)〉 depends on the size of γ

for points of Γ0 of the form (m0,m1) = (λ,−λ). Since there is no dependence on

the details of γ we say that the observables 〈WR(γ)〉 are quasi-topological.

Our approach is based on the fact that a large class of lattice models, topological

or otherwise, can be described by a set of algebraic data on a vector space V . These

data comprises of a multiplication m, a co-multiplication ∆ and an endomorphism

S such that S2 = 1. It is also assumed that there is a unity e and a co-unity ǫ. It

has been shown in Refs. 4 and 5 that when the data (m,∆, S, e, ǫ) defines a Hopf

algebra, one can construct a lattice topological field theory. We observed in Ref. 10

that the same data can be used to describe an ordinary Z2 gauge theory. In Ref. 10,

however, (m,∆, S, e, ǫ) is not a Hopf algebra. In particular, the co-multiplication

is not an algebra morphism as it happens for Hopf algebras. Another important

difference is that instead of a fixed algebraic data, we had a one parameter family

m(β) of multiplications where β is the coupling constant of the model. It turns out

that a Hopf algebra is recovered in the limit β → ∞ and the model becomes quasi-

topological. It is also possible to have examples with matter fields via a family of

co-multiplications ∆(λ) where λ is the corresponding coupling constant.11 In this

paper, however, we will be limited to pure gauge theories. As stated before, we

will consider gauge theories with two coupling constants given by (7). If we were to

follow the formalism of Ref. 10, that would be encoded in a two parameter family of

multiplications m(m0,m1). The model considered in Refs. 4 and 5 corresponds to

the unique point (m0,m1) = (1, 1) where m(1, 1) together with ∆, S, e and ǫ define

a Hopf algebra. For the present paper, however, the Hopf structure is less important.
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What matter are the points where the model is quasi-topological. That happens

for (m0,m1) belonging to the region Γ0 described above. The data m(m0,m1),∆, S

and e defines a Hopf algebra only at a single point of Γ0. Just as the topological

model of Refs. 4 and 5, the limit β → ∞ of Eq. (1) also corresponds to a point in

the set Γ0.

The organization of the paper goes as follows: In Sec. 2, we explain how the

algebraic data can be used to encode the model and how familiar models, such as the

spin-gauge model, fit into the parameter space Γ. In Sec. 3, we determine the subset

Γ0 where the model is quasi-topological. The computation of the expectation value

for Wilson loops is investigated on Sec. 4. We show that 〈WR(γ)〉 can be computed

for Γ0. The model is not topological for all Γ0. We show that for a particular region

of Γ0, 〈WR(γ)〉 depends on the size of γ and follows a discrete version of an area law.

We close the paper with some final remarks on Sec. 5.

2. The Partition Function

In this section, we introduce the formalism we will use to describe the partition

function of a Z2 gauge theories. We will follow Refs. 4, 5 and 10, but we will make

a few modifications to suit our purpose.

Let T (M) be a triangulation of a compact three-dimensional manifold M. For

the description of a pure gauge theory, what is relevant in a discretization is the set

of faces and how they are interconnected. To encode the connectivity information

we will split T (M) into individual faces and record the information on how they

should be put back together. This process can be described as follows. For each

face fk ∈ T (M), we associate a disjoint face Fk and for each link lj ∈ T (M), we

associate a hinge object Hj with nj flaps as illustrated in Fig. 1. The number nj

(a) (b)

Fig. 1. In (a) we have a small piece of a triangulation. Figure (b) shows its corresponding de-
composition into flaps and faces.
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of flaps is equal to the number I(lj) of faces of T (M) that share the link lj . To

reconstruct T (M) from the disjoint faces Fk, we can use the hingesHj to determine

which faces are to be joint together. This is illustrated by Fig. 1. The faces Fk and

the hingesHj are to be given an extra structure called orientation. For the case of Z2

gauge theories, this orientations are not relevant but we will mention them as they

help to organize the model. We will call the set {Fk, Hj} and its interconnections

a decomposition of T (M).

We will use the decomposition {Fk, Hm}, plus some extra data, to define a

partition function. The first step is to choose a vector space V of dimension n.

The edges of a face Fk have to be enumerated from 1 to 3. That amounts to a

choice of orientation of the face and a choice of the starting point [see Fig. 2(a)].

The edges of lm ∈ Fk carry configurations (ak1 , a
k
2 , a

k
3), with aki ∈ {1, . . . , n}. A

statistical weight Mak
1a

k
2a

k
3
will be associated to the face Fk. Note that Mak

1b
k
2c

k
3
can

be viewed as the components of a tensorM ∈ V ⊗V ⊗V . Furthermore, it should be

invariant by cyclic permutations of its indices since we do not care which edge is to

be numbered as the first one. On the other hand, a change in orientation can affect

the corresponding weight since Mabc may not be the same as Mcba. In a similar

fashion, the flaps of a hinge Hm can be cyclically numbered from 1 to q = I(lm).

Once more, this is equivalent to give Hm an orientation, as illustrated by Fig. 2(b).

The flaps of Hm carry configurations (am1 , . . . , a
m
q ), ami ∈ {1, . . . , n} just like the

edges of a face. That will correspond to a statistical weight ∆am
1 ···am

q .

Such numbers can be interpreted as the components of a tensor ∆ ∈ V ∗⊗· · ·⊗V ∗

and have to be invariant by cyclic permutations of the indices. As before, change

in orientation of Hm will change the statistical weight to ∆am
q am

q−1···a
m
1 .

Once we fix an orientation for each Fk and an orientation for each Hm, we

produce a tensor Ma1a2a3(Fk) for each face and a tensor ∆b1···bq (Hm), q = I(lm)

(a) (b)

Fig. 2. The links on a triangular face are numbered from 1 to 3. The orientation is indicated in
(a). Figure (b) shows a hinge with four flaps and its orientation.
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Fig. 3. In terms of tensor, we interpret the gluings as contractions of the corresponding indices.

for each hinge. One can see that the product
∏

k

Mak
1a

k
2a

k
3
(Fk)

∏

m

∆bm1 ···bmq (Hm) , (8)

has one covariant index for each edge and one contra-variant index for each flap

of {Fk, Hm}. The partition function will be the scalar constructed by contracting

all indices. A covariant index aki is to be contracted to a contra-variant index bmj
whenever the corresponding edge Fk and flap Hm are to be glued together. In other

words, we define the scalar Z as

Z =
∏

k

Mak
1a

k
2a

k
3
(Fk)

∏

m

∆bm1 ···bmq (Hm)
∏

b∈{gluings}

δ
ar
i

bs
j
(b) , (9)

where the last product is responsible for contracting indices. There will be a δ
ar
i

bs
j
(b)

for each paring edge-flap (Fr, Hs) that are glued together, as illustrated by Fig. 3.

We can simplify the notation of (9) by eliminating the Kronecker deltas and writing

Z =
∏

f∈{F}

Mabc(f)
∏

l∈{L}

∆b1···bNL (l) , (10)

where {F} and {L} are the set of faces and links of the triangulation. A contraction

on the indices corresponding to gluings is understood.

As of now, the partition function (9) is not very useful. We need to be more

precise about the weightsMa1a2a3(Fk) and ∆b1···bn(Hm) if we want Z to be related

to physical models like the spin-gauge model. Note that Z depends on the choice

of orientations of individual faces and hinges. This dependence on the orientation

should not be present in the final model. Furthermore, the weight function should

be the same for all faces Fk and hinges Hm. To go any further we need to constraint

the tensors Mabc(Fk) and ∆b1···bn(Hm). That can be done with the help of some

algebraic data that we will now introduce.

The first algebraic structure we need is a product on V defined by

φa · φb =Mab
cφc , (11)

where we are using a tensorial notation with the usual convention of sum over re-

peated indices. We will use the symbol A to refer to the vector space V to emphasize

that we are now working with an algebra.
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In this paper, we will choose A to be the group algebra of Z2. The group elements

are written as (−1)a, a = 0, 1 and a basis for A is {φ0, φ1}. The product is defined by

φa · φb = φa+b . (12)

Whenever a sum a + b of indices appear, as in (12), it will always denote sum

module 2. This product can also be given in terms of the tensor Mab
c as

Mab
c = δ(a+ b, c) . (13)

It is also convenient to define the dual vector space A∗, the dual base {ψi} and

the usual pairing

〈ψa, φb〉 = δab . (14)

We then define the trace T ∈ A∗ as

T =Mab
bψa . (15)

Given a face Fk, as in Fig. 3, we define the associated weight Ma1a2a3 as

Ma1a2a3(z) = 〈T, φa1 · φa2 · φa3 · z〉 , (16)

where z = α0φ0 + α1φ1 is a generic element of A. Since the underlining group is

Abelian, the weightMa1a2a3(z) is automatically cyclic and gauge invariant. Further-

more, Ma1a2a3(z) does not depend on the orientation of Fk.

The choice of z in (16) will determine the model we are describing. For example,

consider the curve (α0, α1) =
(

1
2e

β, 12e
−β

)

parametrized by β. The corresponding

weight

Ma1a2a3

(

1

2
eβ ,

1

2
e−β

)

= eβ(−1)a1+a2+a3
, (17)

corresponds to the spin-gauge model. We can also choose the curve (α0, α1) =
(

1
2 ,

1
2e

−2β
)

and that will give

Ma1a2a3

(

1

2
,
1

2
e−2β

)

= e−β[1−(−1)a1+a2+a3 ] , (18)

describing yet another model.

The second algebraic information is a co-product ∆ : A→ A⊗A defined by

∆(φc) = ∆c
abφa ⊗ φb . (19)

The tensor ∆c
ab defines also a product on the dual space A∗. Using the dual basis

{ψa} we define

ψa · ψb = ∆c
abψc . (20)

In analogy with (15) and (16) we define the co-trace T ∗ ∈ A as

T ∗ = ∆b
baφa (21)
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and the tensor ∆b1···bn as

∆b1···bn =
〈

ψa1 · ψa2 · · ·ψan , T ∗
〉

. (22)

It turns out that the co-product that we will need is very simple. We will set

∆c
ab = δac δ

b
c . (23)

Therefore,

∆b1···bn =

{

1 if all indices are equal ,

0 otherwise .
(24)

Note that the orientations of hinges do not affect the corresponding statistical

weight.

The tensors Mab
c and ∆a

bc given in (13) and (23) together with the weights

Mabc and ∆a1···an defined by (16) and (22) completely specify our model. It is a

simple exercise to show that the partition function (9) reduces to

Z(α0, α1) =
∑

{σl}

∏

f∈T (M)

Ma1a2a3(f) , (25)

where the sum {σl} is over the configurations on the links l ∈ T (M) and Mabc(f)

is the weight of a configuration (a1, a2, a3) on the face f ∈ T (M). Notice that

Z(λα0, λα1) = λNFZ
(

α0, α1
)

. (26)

As Ma1a2a3 depends on z = α0φ0 + α1φ1 ∈ A, the model depends on two

parameters (α0, α1). We will denote the parameter space by Γ. The parameters

(α0, α1) are related to the parameters (m0,m1) of (7) as

m0 = α0 + α1 ,

m1 = α0 − α1 .
(27)

Let us recall that the algebra defined in (12) is a group algebra and as such

it is also a Hopf algebra with co-product coming from ∆a
bc. The maps antipode

S : A → A, unity e : C → A and co-unity ǫ : A → C can be described in terms of

tensors as S(φa) = Sb
aφb, e(1) = eaφa and ǫ(φa) = ǫa. For the case of Z2 we have

Sb
a = δba , ea = δ0a and ǫa = 1 . (28)

Notice that these tensors are essentially trivial and will not show up explicitly in the

calculations. For a non-Abelian case, for example, Sb
a is related to the orientation

but that will play no role in the Z2 case.
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3. Quasi-Topological Limits

We would like to explore the model (25) and look for points of the parameter

space (α0, α1) where the model has a topological or quasi-topological behavior.

The simplest case is the one considered in Refs. 4 and 5. It corresponds the point

(α0, α1) = (1, 0) in the parameter space Γ or, equivalently, to the choice in (16) of z

equals to the identity φ0 of the algebra. For this particular point of the parameter

space we can bring in the Hopf structure of A, follow4,5 and conclude that

Z
(

T (M), α0 = 1, α1 = 0
)

= 2NF+NL−NTZtop(M) , (29)

where NT , NF and NL are the number of tetrahedra, faces and links of T (M).

However, (α0, α1) = (1, 0) is not the only quasi-topological point. In this section,

we will show that there is a subset Γ0 ⊂ Γ with dimension one such that the

partition function is quasi-topological. In Fig. 4, we have the parameter space Γ

where the set Γ0 consists of four straight lines: the diagonals and the axis. We also

have included the models with weights W (1) and W (2) defined in (4) and (5). They

are curves parametrized by a single parameter β.

Let us consider (α0, α1) = (λ, 0). It corresponds to z = λφ0 ∈ A. The new weight

is simple Mabc(z) = λMabc(φ0). Therefore, the partition function is the same as for

(α0, α1) = (1, 0) multiplied by a factor. In other words

Z(T (M), λ, 0) = λNF 2NF+NL−NTZtop(M) . (30)

The tensor components Mabc(z) and ∆b1···bn depend on the choice of a basis

of the algebra A. Therefore, different choices of basis will lead to different weights

and therefore different models. However, the partition function Z(T (M), α0, α1)

has been written as a scalar and therefore is invariant under a change of basis.

Fig. 4. The set Γ0 consists of the two axes plus the dashed diagonal lines. The models W (1) and
W (2) are curves on Γ.
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This large invariance of Z(T (M), α0, α1) has been interpreted as dualities between

different models. This fact has been explored by us in Ref. 11 to show that the

classical Kramers and Wannier duality relations are special cases of these more

general dualities. In what follows, we will show that there is a duality relation

between the model at (α0, α1) = (λ, 0) and (α0, α1) = (0, λ). We will show that

Z(T (M), 0, λ) = Z(T (M), λ, 0) , (31)

which allow us to compute Z(T (M), 0, λ).

Let us start by recalling that at the topological point (α0, α1) = (1, 0) the

weights read

Mabc(φ0) = 2δ(a+ b+ c, 0) , (32)

∆b1···bn = δ(b1, bn)δ(b2, bn) · · · δ(bn−1, bn) . (33)

Consider the matrix

E =

(

0 1

1 0

)

, (34)

and a new basis {φ′0, φ
′
1} defined as φ′a = Eb

aφb. This transformation simply changes

an index a by ā, where 0̄ = 1 and 1̄ = 0. In the new basis we have

M ′
abc(1, 0) = Māb̄c̄(1, 0) = 2δ

(

ā+ b̄+ c̄, 0
)

= 2δ(a+ b+ c, 1) , (35)

∆′b1···bn = δ
(

b̄1, b̄n
)

δ
(

b̄2, b̄n
)

· · · δ
(

b̄n−1, b̄n
)

= δ
(

b1, bn
)

δ
(

b2, bn
)

· · · δ
(

bn−1, bn
)

. (36)

Note that

∆′b1···bn = ∆b1···bn . (37)

On the other hand, the tensor components Mabc(0, 1) on the original basis is

Mabc(0, 1) = δ(a+ b+ c, 1). Therefore

M ′
abc(1, 0) =Mabc(0, 1) . (38)

Equations (37) and (38) imply that Z(T (M), 0, λ) = Z(T (M), λ, 0) as announced.

The partition function corresponding to the diagonal line α0 = α1 in Fig. 4 can

be obtained by choosing zint = φ0 + φ1 in (16). One can see that zint is such that

φg · zint = zint. In a Hopf algebra, such element is called a co-integral.12 Therefore

Mabc(1, 1) = 〈T, zint〉 = 2 . (39)

The fact that the weight Mabc(1, 1) is independent of the configurations turns the

computation of Z(T (M), λ, λ) completely trivial. One can immediately see that

Z(T (M), λ, λ) = 2NF+NLλNF . (40)
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Note that Z(T (M), λ, λ) depends only on the size of the lattice T (M). In contrast

with (30), the topological invariant is trivial since the partition function does not

depend on the topology of the underlining manifold M.

To compute the partition function for α1 = −α0, it is enough to consider the

point (α0, α1) = (1,−1). That is the same as setting z = φ0 − φ1 on (16). The

weight Mabc(1,−1) reads

Mabc(1,−1) = 2(−1)a+b+c . (41)

Instead of computing Z(T (M), 1,−1) directly, we will make use of the duality re-

lated to change of basis. Let us choose another basis by applying the transformation

matrix Eb
a = (−1)aδba. In the new basis the weights are

M ′
abc = 2 ,

(∆′)a1a2···an = (−1)a1+a2+···+anδa1
an
δa2
an

· · · δ
an−1
an .

(42)

The resulting model has weights associated to the links only and the partition

function can be easily computed. After plugging (42) in (9) and taking into account

the scaling factor we have

Z(T (M), λ,−λ) = λNF

∏

l

(

1 + (−1)I(l)
)

, (43)

where the product runs over the links of the lattice and I(l) denotes the number of

faces that share the link l. Note that I(l) is not of topological nature. Furthermore,

the partition function vanishes whenever there is a link that is shared by a odd

number of faces. This is an indication that (α0, α1) = (λ,−λ) is a very peculiar

model.

It is clear from the computation of the partition function that the lines that make

up Γ0 are not all equivalent. Actually they are all different from each other. It is

true that Z(T (M), λ, 0) is the same as Z(T (M), 0, λ). However, the expectation

value of Wilson loops are not the same for these two models. As we will show in

the next section, only (λ, 0) is in fact a topological theory.

Before we conclude this section, we would like to point out the relation between

Γ0 and familiar models such as the ones defined by (4) (spin-gauge model) and (5)

(gauge theories). As we have discussed before, the spin-gauge model given in (17)

corresponds to the curve (α0, α1) = (1/2eβ, 1/2e−β). It is clear from Fig. 4 that

this curve approaches Γ0 as β goes to +∞ and −∞. Another point of contact with

Γ0 is when β → 0. As for the model (5), only the limits β → 0 and β → ±∞ are

part of Γ0.

4. Wilson Loops

The two-parameter gauge model (7) of last section have numerical quantities

〈WR(γ)〉 that are the natural generalization of the expectation value of Wilson loops

for a closed curve γ and irreducible representation R. The definition of 〈WR(γ)〉

1250132-12
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reduces to the familiar expression when restricted to the usual gauge models. In

this section, we will define and compute these observables for Γ0.

For simplicity, we will start by considering the loop γ to be unknotted. Knotted

loops will be considered in the last part of this section.

Let γ be a loop made of a set of links ω(γ) = {ω1, . . . , ωp}. For such a loop we

introduce the tensor Wa1a2···ap
with p indices given by

WR
a1···ap

=
〈

T, φa1 · · ·φap
· zR

〉

, (44)

where ak is the configuration at link lk and zR is the unique element in the center

of A such that
〈

T, φg · zR
〉

= TrR(g) , (45)

where R denotes an irreducible representation of the group.

The group Z2 has only two irreducible representations labeled R = 0 and R = 1,

such that

Tr0(φa) = 1 ,

Tr1(φa) = (−1)a .

We only need to consider the nontrivial representation. In other words, we will set

zR = 1
2 (φ0 − φ1) since that will give us 〈T, φa · zR〉 = (−1)a. For now on we will

omit the index R indicating the representation simply write (44) as

Wa1···ap
= (−1)a1+···+ap . (46)

We would like to construct 〈W (γ)〉 as a scalar in the same way it has been done

for the partition function (10). As before, we make use of the contra-variant tensors

∆b1···bn associated to the links. Consider a link l shared by I(l) faces. If l does

not belong to the loop γ, the corresponding tensor is the same as for the partition

function and will be written as ∆b1···bI(l) . If, however, the link in question is one of

the links of γ (l = ωj ∈ ω(γ)), the corresponding tensor will be ∆b1···bI(l)aj . Note

that the new tensor has an extra contra-variant index aj . The expectation value of

the Wilson loop is defined to be

〈W (γ)〉 =
1

Z

∏

f∈{F}

Mabc(f)
∏

l/∈ω(γ)

∆b1···bI(l)(l)
∏

ωj∈ω(γ)

∆b1···bI(l)ajWa1···ap
, (47)

where we are using the simplified notation of (10). The contraction of indices are as

follows: each covariant index of Wa1···ap
is to be contracted with the extra index aj

in ∆b1···bI(l)aj as explicitly indicated. The indexes from the product
∏

f∈{F}Mabc

follows the same rule as for the partition function when contracting with the bk
indexes in ∆b1···bI(l) and ∆b1···bI(l)aj . An interpretation of (47) in terms of gluing

of hinges (Hm) and faces (Fk) that is analogue to the partition function can also

be given. To each link l we associate a hinge Hl. If the link is not part of the loop

γ, the corresponding hinge has exactly I(l) flaps that will connect to I(l) faces in

the usual way (see Fig. 3). For links ωj ∈ ω(γ), the corresponding hinge Hωj
has
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Extra flap coming

from a Wilson loop

(a) (b)

Fig. 5. A small region of the lattice with a Wilson loop γ is illustrated in (a). Figure (b) shows
the corresponding decomposition. For a link of γ, the corresponding hinge has an extra flap as
indicated.

Fig. 6. Wilson loops can be thought as an extra face which is not part of the lattice.

(I(ωj) + 1) flaps. After gluing the I(ωj) faces to Hωj
, we are left with extra flaps,

one for each link of ω(γ) as illustrated in Fig. 5. The contraction of indices aj in (47)

can be seen as the attachment of a polyhedral face Wγ with p edges. An example of

such attachment is shown in Fig. 6. This special face Wγ has weight Wa1···ap
and is

not to be thought as part of the lattice. In general, it will not be possible to embed

Wγ in 3D space.

The expectation value of the Wilson loop will be a function 〈W (γ)〉(α0, α1). As

a consequence of (26), one can see that

〈W (γ)〉
(

λα0, λα1
)

= 〈W (γ)〉
(

α0, α1
)

. (48)

Therefore, we only need to compute 〈W (γ)〉(α0, α1) for one point on each straight

line of Γ0.
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We now proceed with the computation of 〈W (γ)〉 when the parameters (α0, α1)

belongs to Γ0. That can be divided in three cases as follows.

Case 1 (z = φ0 + φ1):

The first case correspond to (α0, α1) = (1, 1). As we have seen, Mabc = 2. All

the sums on b indices in (47) are straightforward due to the Kronecker deltas in

∆b1···bI(l) and ∆b1···bI(l)aj . We are then left with

〈W (γ)〉 ∝

p
∏

i=1

∑

ai

(−1)ai = 0 . (49)

This result does not depend on the loop γ.

Case 2 (z = φ0 − φ1):

For this particular case we have Wa1···ap
= (−1)a1+···+ap . Notice that, this is the

same function as the weights Mabc = 2(−1)a+b+c for the faces. Therefore, the

numerator in (47) is the same thing as a partition function with an extra face

determined by the loop γ (see Fig. 6). Using (43) we can write

〈W (γ)〉 =
1

∏

l

[

1 + (−1)I(l)
]

∏

l/∈ω(γ)

[

1 + (−1)I(l)
]

∏

l∈ω(γ)

[

1 + (−1)I(l)+1
]

. (50)

This region of the parameter space is quite peculiar. Notice that the denominator

of 〈W (γ)〉 vanish if I(l) is odd for some l and 〈W (γ)〉 is not well defined. When

I(l) is even for all links, 〈W (γ)〉 is well defined but it is equal to zero due to the

factors [1 + (−1)I(l)+1].

Case 3 (z = φg, g = 0, 1):

The points with coordinates (α0, α1) given by (1, 0) and (0, 1) in Γ0 correspond to

z = φg with g = 0 and g = 1, respectively. We know from previews sections that

the partition function is the same for these two cases. However, this is not true

for 〈W (γ)〉.

We will show that 〈W (γ)〉 is quasi-topological in the sense that it does not

depend strongly on the geometry of γ. The idea is to investigate the behavior of

〈W (γ)〉 under small deformations. In a triangulation, it is natural to define a small

deformation of a loop γ as follows. Let ω(γ) be the set of links of γ. A small

deformation of γ is a local move that replaces one link ω1 ∈ ω(γ) by a pair of links

ω2, ω3 such that ω1, ω2 and ω3 belong to the same face. There is also the reverse

move where a pair of links ω1 and ω2 is replaced by ω3 provided they belong to the

same face. A small deformation is shown in Fig. 7. With this definition of a small

deformation we now establish how 〈W (γ)〉 changes under small deformations for

z = φg and g = 0, 1.

Consider Fig. 8(a) where we have single out a small part of the partition

(Fk, Hj). Only the elements connected to the link ω1 are relevant. In Fig. 8(b)
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(a) (b)

Fig. 7. The loop γ′ in (b) is a small deformation of the loop γ in (a).

extra flap

extra flaps

(a) (b) (c)

(d)

Fig. 8. In (a)–(b) we represent a small deformation of a loop γ in a lattice and in (c)–(d) we
represent the same deformation in a lattice decomposition.
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we have performed a small deformation of γ by replacing ω2 and ω3 by ω1. The

weights associated to Fig. 8(c) and 8(d) are the tensors A and B given by

A
a2···apb2···bqc2···cr
α1···αs

= Ma1b1c1∆
a1···apω1∆b1···bq∆c1···crWω1α1···αs

=
∑

a1,b1,c1

Ma1b1c1∆
a1···ap∆b1···bq∆c1···crWa1α1···αs

, (51)

and

B
a2···apb2···bqc2···cr
α1···αs

= Ma1b1c1∆
a1···ap∆b1···bqω2∆c1···crω3Wω2ω3α1···αs

=
∑

a1,b1,c1

Ma1b1c1∆
a1···ap∆b1···bq∆c1···crWb1c1α1···αs

, (52)

where we have performed the sums on ω1, ω2 and ω3. We also have explicitly written

the sums on a1, b1 and c1. Note that, Wa1α1···αs
= (−1)a1Wα1···αs

, Wb1c1α1···αs
=

(−1)b1+c1Wα1···αs
and Ma1b1c1 = 2δ(a1 + b1 + c1, g). That is enough to show that

Ma1b1c1Wb1c1α1···αs
= (−1)gMa1b1c1Wa1α1···αs

, (53)

therefore

A
a2···apb2···bqc2···cr
α1···αs

= (−1)gB
a2···apb2···bqc2···cr
α1···αs

. (54)

We see that 〈W (γ)〉 is invariant under small deformations for g = 0 that cor-

respond to (α0, α1) = (1, 0). As for g = 1 or (α0, α1) = (0, 1), the number 〈W (γ)〉

flips sign each time we perform a small deformation on γ.

The simplest loop γ0 is made of a single triangular face with links ω(γ) =

{ω1, ω2, ω3}. If we recall thatMabc = 2δ(a+ b+ c, g) and Wω1ω2ω3 = (−1)ω1+ω2+ω3 ,

it becomes a straightforward computation to show that 〈W (γ0)〉 = (−1)g. We can

now deform the smallest loop γ0 by adding (N − 1) triangles and arriving at a

planar loop γN . For such a loop we get

〈W (γN )〉 = (−1)gN ; g = 0, 1 . (55)

Equation (55) for g = 1 shows 〈W (γN )〉 as a function of the number of triangles

swept in the process of stretching γ0 into γN . This function is a very simple “area

law.” It depends only on the parity of N . Notice that, each time we add a triangle

to γ0, the number of links of the loop also changes by one unity. Therefore, we could

have written

〈W (γN )〉 = (−1)gNL , (56)

where NL is the number of links of the loop γ. We could interpret this formula as

a “perimeter law.” The fact that there is no distinction between area or perimeter

law is peculiar to the gauge group Z2 and the fact that we are using triangular

lattices. For square lattices the variation in the number of links is even and (56)

does not hold, but (55) is still true.

So far we have considered only planar loops. For knotted loops, the expecta-

tion value 〈W (γN )〉 for g = 0 may depends on the class of isotopy of the loop γ.
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Equation (55) is valid for loops γ that can be deformed to the trivial knot. If γ is a

nontrivial knot, Eq. (55) may not hold. We will show that 〈W (γN )〉 actually does

not depend on the class of isotopy of γ and therefore (55) is still correct.

Let γ be a knotted loop and its knot diagram as illustrated in Fig. 9(a). We

can produce a new knot diagram by flipping under-crossing into over-crossings and

vice versa. This flips are local moves that only affect the knot in a small region. It

is a well known result from knot theory that any γ can be made into the trivial

knot if we perform a number of flips, as we can see in Fig. 9(b). We will show that

〈W (γN )〉 is invariant by flips and therefore does not depend on the isotopy class

of γ.

Let us consider a 3D ball B around a crossing in a knot K. That will give us

curves γab and γcd connecting the points (a, b) and (c, d) at the surface ∂B = S2

of B as in Fig. 10(a). After a flip move, we have a new knot K̃ and new curves are

γ̃ab and γ̃cd as illustrated in Fig. 10(b). Before analyzing the general case, we will

flip
flip

(a)

(b)

Fig. 9. In (a) we have a knotted loop that can be made trivial by two flip moves, as illustrated
in (b).

a c

bd

a

b

c

d

(a) (b)

Fig. 10. The situation shown in (a) represents a flip move of one shown in (b) and vice versa.
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a

b

c

d

(a) (b)

Fig. 11. Here we can see how a flip move acts on curves in a surface ∂B = S2 of a ball.

look at a simple example where B is a cube inside the triangulation and the curves,

before and after the flip move, are the ones given in Figs. 11(a) and 11(b). In this

figure, we used the interpretation of the expectation value of the Wilson loop as an

extra flap as was explained in Sec. 4.

One can see that the sequence of extra flaps can be deformed into the sequences

given by Figs. 12(a) and 12(b). After we perform these deformations, the computa-

tion of 〈W (K)〉 and of 〈W (K̃)〉 differ only at a single link. The difference is that the

flaps coming from the two curves are swaped. In one case, the curves will contribute

to (47) with a factor

∆a1···anω1ω2W
(1)
ω1α1···αs

W
(2)
ω2β1···βr

, (57)

and in the other case the factor is

∆a1···anω2ω1W
(1)
ω1α1···αs

W
(2)
ω2β1···βr

. (58)

The tensor ∆a1···anω2ω1 is invariant by permutation of the indices ω1 and ω2 and

these two factors are the same. Therefore, when comparing 〈W (K)〉 and 〈W (K̃)〉

we can use a sequence of small deformations to arrive at the configuration on

Figs. 10(a) and 10(b). The flip itself will not give any contribution and we can use

the result for planar loops given in (55).

As for the generic case, we can proceed as follows. Choose curves γ1, γ2 and

γ3 connecting the pairs (a, d), (d, b) and (c, b) as in Fig. 13. Since the three-ball is

simple connected, γab is isotopic to γ1 ◦ γ2 and γcd can be deformed to γ3 ◦ γ
−1
2 .

In a similar way, we have γ̃ab is isotopic to γ1 ◦ γ2 and γ̃cd can be deformed to

γ3 ◦ γ
−1
2 . In a similar fashion as for the particular case of Fig. 10(a), there will be

two sequence of flaps along γ2. One comes from the deformation of γab and the other

comes from the deformation γcd. That has to be compared with a similar sequence

of flaps coming from the deformation of γ̃ab and γ̃cd. As in the case of Figs. 12(c)

and 12(d), these sequences of pair of flaps along γ2 can only differ by a permutation.
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(a) (b)

(c) (d)

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

Fig. 12. The pictures (a) and (b) differs from each other only by the link (d, b), as we can see in
(c) and (d).

a

b

c

d

Fig. 13. The paths γ1, γ2 and γ3 are some paths that connect the vertices (a, d), (d, b) and (b, c).

Since ∆a1···an is symmetric by permutation of indices we can conclude that flips do

not give any contribution and we can use the result for the planar loops given in

(55) for any knot K.
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5. Final Remarks

Topological field theories are among the simplest lattice models we can have. From

the physics point of view they are peculiar models. Partition function and corre-

lations can be computed but the dynamics is too simple. Rather than considering

TQFTs in isolation, we have looked at the problem from a broad perspective and

investigated a two-parameter family of models where TQFTs can arise at certain

points of the parameter space. We have considered gauge theories with Z2 sym-

metry since it is the simplest gauge group but can still accommodate nontrivial

models, such as the 3D spin-gauge model. These more familiar models appear as

one parameter curves in the 2D parameter space Γ.

We have found several limits that we can loosely call topological or quasi-

topological comprising a subset Γ0 of Γ. On Γ0 both partition function and expec-

tation value of Wilson loops were computed. The partition function points on Γ0 are

topological numbers up to an overall scale factor. One could think that Γ0 contain

only topological models but the expectation value of the Wilson reveals something

else. First of all, 〈WR(γ)〉 does not depend on the isotopy class of the curve γ.

Furthermore, for a subset of Γ0, 〈WR(γ)〉 depends on the size of γ and follows a

discrete version of an area law.

In the parametrization (α0, α1) of Γ used in the paper, the subset Γ0 is made

of four straight lines passing through (0, 0). By looking at the gauge Ising model,

we can see that it approaches three of these lines for β → ±∞ and β → 0. There is

an extra line given by α1 = −α0 that, as far as we know, does not relate directly

to any physical model.

The existence of a set Γ0 in the parameter space where the model behaves in a

topological way can be seen as an Euclidean version of topological order. It seems

that, rather than a special case, the same phenomena will happen for gauge theories

with any compact gauge group G. For ZN and non-Abelian groups, the analysis is

much more involved and it will be reported in a separated paper.
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