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We consider a two-parameter family of Zs gauge theories on a lattice discretization T'(M)
of a three-manifold M and its relation to topological field theories. Familiar models such
as the spin-gauge model are curves on a parameter space I'. We show that there is a
region I'g C I' where the partition function and the expectation value (Wg(v)) of the
Wilson loop can be exactly computed. Depending on the point of I'g, the model behaves
as topological or quasi-topological. The partition function is, up to a scaling factor, a
topological number of M. The Wilson loop on the other hand, does not depend on the
topology of v. However, for a subset of I'g, (Wg(7)) depends on the size of v and follows
a discrete version of an area law. At the zero temperature limit, the spin-gauge model
approaches the topological and the quasi-topological regions depending on the sign of
the coupling constant.

Keywords: Zs gauge theories; topological field theories; Wilson loops.

1. Introduction

A lattice gauge theory with gauge group Zs is the simplest example of a gauge
theory.! In dimension d = 2, the partition function for Zy (as for any other compact
gauge group) can be computed in various ways. In dimensions larger than two,
however, the simplicity of Zs does not help us to solve the model. Even without
matter, the relevant models are nontrivial and exact solutions are not known. Such
solutions would be a very important achievement. A Zy gauge theory on a cubic
lattice can be made dual to the 3D Ising model, an outstanding problem in statistical
mechanics.?3 Tt is clear that in d = 4, the problem is at least as difficult as in d = 3.
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In this paper, we will not have much to say about d = 4 since the tools we use are
peculiar to dimension three.

However difficult, 3D lattice models with local gauge symmetry are not always
beyond the reach of exact solutions. That depends on the dynamics, i.e. the choice
of an action for a lattice plaquette. Topological Quantum Field Theories (TQFTs)
are examples where one can perform exact computations. Examples have been
constructed on the lattice in dimensions d = 3*° as well as d = 4.5 Once the
topology on the manifold in question is fixed, the partition function does not depend
on the lattice size and can be trivially computed for a discretization with very
small number of sites, links and plaquettes. Such models are very simple from the
physical point of view. It follows from topological invariance that transfer matrices
are trivial.

Despite being trivial dynamically for a fixed topology, TQFTs are quite relevant
in physics. The reason being that TQFTs can come out as limits of ordinary field
theories in the continuum as well as in the lattice. The most celebrated example is
topological order in condensed matter physics” where the physics at large scales
is described by a TQFT. Something of similar nature also happens for lattice
theories in d = 2 that are quasi-topological.®” They are reduced to a TQFT at
the appropriate limits.

In order to understand the relationship between fully dynamical d = 2 models
and their possible topological limits, one can first look at quasi-topological models.
They are very easy to work with since we can compute all relevant quantities.
Quasi-topological models in d = 2 are a nice set of toy models for this purpose. In
particular, the relation between the original models and their topological limits is
made very explicit. As for d = 3, the situation is more complicated. We do not have
at our disposal toy models that are at the same time not topological and easily
computable. We have no choice but to work with fully dynamical theories where
no exact computations are available.

The focus of this paper is to investigate how lattice field theories with local
Zo gauge symmetry are related to topological theories. Before going any further
we need to say what we mean by a lattice model being topological. Let T'(M)
be a lattice triangulation of a fixed compact three-manifold M. We say that such
a model is topological if the partition function is the same for all triangulations
T(M). Actually, this is a weak definition since we may ask that not only the
partition function but the expectation value of all observables to be of a topological
nature. In any case, we have to go beyond the usual regular cubic lattices and take
into account arbitrary lattices.

In Ref. 10, we investigated the spin-gauge model in d = 3. We showed that in
the limit 8 — oo the partition function Z is given by

Z(T(M))]pso0 = ZP(M) 2VFHENE=NT (1)

1250132-2



Int. J. Mod. Phys. A 2012.27. Downloaded from www.worldscientific.com

by UNIVERSIDADE DE SAO PAULO on 02/13/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

Quasi-Topological Quantum Field Theories and Zgz Lattice Gauge Theories

where Np, Np and Ny, are the number of tetrahedra, faces and links of 7'(M) and
Z'"°P(M) is a topological number and as such does not depend on the discretization
T(M). Equation (1) tells us that at the limit 8 — oo the partition function is not
strictly speaking topological since it depends on the triangulation. However, it does
not depend on the details of the triangulation but only on its size. For this reason
we say that the partition function is quasi-topological. It follows from (1) that the
partition function can be computed for all triangulations. Let To(M) be a lattice
triangulation where the numbers Ny, N, and Ny, are very small such that Z(7Tp)
can be written down explicitly. For an arbitrary lattice T'(M) we have

Z(T)\ﬂ—m — Z(TO)|,8_>002(NF—NFO)"F(NL—NLO)—(NT—NTO). (2)

We will find it convenient to rewrite Z as a product of local Boltzmann weights,
in the form

7= IIwh). (3)

{ga} f

where the product is over all faces of the triangulation and sum is over all configu-
rations. Let a, b and ¢ be the links of a face f and (g4, g5, gc) a gauge configuration
at f. The corresponding local Boltzmann weight for the spin-gauge model can be
written as

W(l)(ga,gb, ge) = eP9agnge (4)
Another very common choice is to set the local Boltzmann weight to
W@ (Ga» 9b, ge) = e PB(1=gagnge) ; (5)

which corresponds to the usual gauge theories where flat holonomies will have the
highest weight.

As we will see in this paper, the relationship between gauge models and TQFTs
can be better understood if we depart from a specific example as in Ref. 10 and
consider a more general class of gauge models. In order to have a gauge theory, the
local weight should depend only on the product of the gauge variables around an
oriented plaquette:

W(gas b, 9c) = M (gagvge) - (6)

Gauge invariance means that M(g) is a class function or, in other words
M(hgh~') = M(g), Vh € G. The character expansion for the group Zs is very
simple and implies that

M (ga, 9v, 9c) = m1(gagsge) + Mo, (7)

where m; € R. The original spin-gauge model with one parameter 5 can be re-
covered by restricting the model to a curve (mg, m1) = (cosh(5),sinh(3)) in this
two-dimensional parameter space. We will refer to the parameter space as I'.
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The first question to be addressed is the generalization of Eq. (2). We will show
that there is a subset I'g of the parameter space I' such that the partition function
Z(mo,m1,T(M)) can be written as a product of a topological invariant Z*P (M)
times a known function depending on the numbers N, Ng and N, of tetrahedra,
faces and links. Again, an easy consequence is that at I'g the partition function
Z(mg,m1, T (M)) can be computed for any lattice T'(M). The subset Ty is made of
two pairs of lines, namely, m; = 0, ¢ = 0,1 and m; = +myg. It turns out that these
two regions of I'y have different properties. For instance, the topological invariant
that appears in the first pair is trivial and Z'*P(M) =1 for all compact manifolds
M. As for second pair, Z*°P(M) depends on the first group of co-homology of M.10
The two pairs of solutions are also related to high and low temperature limits as it
will be clear from the discussion on Sec. 2.

As in any gauge theory, one would be interested in more observables than just the
partition function. In particular it is important to calculate the expectation value
(Wgr(v)) of Wilson loops for arbitrary representations R of the gauge group and
closed curves «. In our previous work,'? we considered only the partition function.
In the present paper, we would like to go further and ask whether (Wg(v)) can
be computed for some points of I". As it happens for the partition function, such
computation can be performed for all points of I'y. Note that, in a truly topological
gauge theory such as Chern—Simons, (Wg(v)) is a topological invariant of v. That
is not true for all points of T'g. It turns out that (Wgr()) depends on the size of
for points of Ty of the form (mg,m1) = (A, —A). Since there is no dependence on
the details of v we say that the observables (Wg (7)) are quasi-topological.

Our approach is based on the fact that a large class of lattice models, topological
or otherwise, can be described by a set of algebraic data on a vector space V. These
data comprises of a multiplication m, a co-multiplication A and an endomorphism
S such that S? = 1. It is also assumed that there is a unity e and a co-unity e. It
has been shown in Refs. 4 and 5 that when the data (m, A, S, e, ¢) defines a Hopf
algebra, one can construct a lattice topological field theory. We observed in Ref. 10
that the same data can be used to describe an ordinary Zy gauge theory. In Ref. 10,
however, (m, A, S,e,¢€) is not a Hopf algebra. In particular, the co-multiplication
is not an algebra morphism as it happens for Hopf algebras. Another important
difference is that instead of a fixed algebraic data, we had a one parameter family
m(f) of multiplications where /3 is the coupling constant of the model. It turns out
that a Hopf algebra is recovered in the limit 8 — oo and the model becomes quasi-
topological. It is also possible to have examples with matter fields via a family of
co-multiplications A(A\) where ) is the corresponding coupling constant.!! In this
paper, however, we will be limited to pure gauge theories. As stated before, we
will consider gauge theories with two coupling constants given by (7). If we were to
follow the formalism of Ref. 10, that would be encoded in a two parameter family of
multiplications m(mg, m1). The model considered in Refs. 4 and 5 corresponds to
the unique point (mg,m1) = (1,1) where m(1, 1) together with A, S, e and ¢ define
a Hopf algebra. For the present paper, however, the Hopf structure is less important.
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What matter are the points where the model is quasi-topological. That happens
for (mg,m1) belonging to the region I'g described above. The data m(mg, m1), A, S
and e defines a Hopf algebra only at a single point of I'y. Just as the topological
model of Refs. 4 and 5, the limit § — oo of Eq. (1) also corresponds to a point in
the set I'g.

The organization of the paper goes as follows: In Sec. 2, we explain how the
algebraic data can be used to encode the model and how familiar models, such as the
spin-gauge model, fit into the parameter space I'. In Sec. 3, we determine the subset
T'yp where the model is quasi-topological. The computation of the expectation value
for Wilson loops is investigated on Sec. 4. We show that (Wr()) can be computed
for I'g. The model is not topological for all I'g. We show that for a particular region
of Ty, (WRr(7)) depends on the size of v and follows a discrete version of an area law.

We close the paper with some final remarks on Sec. 5.

2. The Partition Function

In this section, we introduce the formalism we will use to describe the partition
function of a Zs gauge theories. We will follow Refs. 4, 5 and 10, but we will make
a few modifications to suit our purpose.

Let T (M) be a triangulation of a compact three-dimensional manifold M. For
the description of a pure gauge theory, what is relevant in a discretization is the set
of faces and how they are interconnected. To encode the connectivity information
we will split T (M) into individual faces and record the information on how they
should be put back together. This process can be described as follows. For each
face fr € T(M), we associate a disjoint face Fj and for each link I; € T (M), we
associate a hinge object H; with n; flaps as illustrated in Fig. 1. The number n;

fz 1

f |

(a) (b)

Fig. 1. In (a) we have a small piece of a triangulation. Figure (b) shows its corresponding de-
composition into flaps and faces.
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of flaps is equal to the number I(l;) of faces of T'(M) that share the link /. To
reconstruct 7'(M) from the disjoint faces F}, we can use the hinges H; to determine
which faces are to be joint together. This is illustrated by Fig. 1. The faces Fj and
the hinges H; are to be given an extra structure called orientation. For the case of Zy
gauge theories, this orientations are not relevant but we will mention them as they
help to organize the model. We will call the set {F}, H;} and its interconnections
a decomposition of T'(M).

We will use the decomposition {Fy, H,,}, plus some extra data, to define a
partition function. The first step is to choose a vector space V of dimension n.
The edges of a face I}, have to be enumerated from 1 to 3. That amounts to a
choice of orientation of the face and a choice of the starting point [see Fig. 2(a)].
The edges of 1, € F) carry configurations (af,ak,a%), with af € {1,...,n}. A
statistical weight Mx,x,x will be associated to the face FJ,. Note that Mk ke can
be viewed as the components of a tensor M € V®V @ V. Furthermore, it should be
invariant by cyclic permutations of its indices since we do not care which edge is to
be numbered as the first one. On the other hand, a change in orientation can affect
the corresponding weight since My, may not be the same as Mp,. In a similar
fashion, the flaps of a hinge H,, can be cyclically numbered from 1 to ¢ = I(l,,).
Once more, this is equivalent to give H,, an orientation, as illustrated by Fig. 2(b).
The flaps of Hy, carry configurations (ai*,...,ay"), ai* € {1,...,n} just like the
edges of a face. That will correspond to a statistical weight A% %",

Such numbers can be interpreted as the components of a tensor A € V*®---V*
and have to be invariant by cyclic permutations of the indices. As before, change
in orientation of H,, will change the statistical weight to A% %101

Once we fix an orientation for each Fj and an orientation for each H,,, we
produce a tensor My, a,a,(F) for each face and a tensor AP %«(H,,), ¢ = I(l,,)

m

J
<

(a) (b)

Fig. 2. The links on a triangular face are numbered from 1 to 3. The orientation is indicated in
(a). Figure (b) shows a hinge with four flaps and its orientation.
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az

as

Fig. 3. In terms of tensor, we interpret the gluings as contractions of the corresponding indices.

for each hinge. One can see that the product

HMak ear (Fr) [T A% (H) (8)

m

has one covariant index for each edge and one contra-variant index for each flap
of {Fy, Hy,}. The partition function will be the scalar constructed by contracting
all indices. A covariant index a is to be contracted to a contra-variant index b}
whenever the corresponding edge F} and flap H,, are to be glued together. In other
words, we define the scalar Z as

Z =TI Maogapas (FO TT A0 (H0)  TT 052 0), (9)
k m

be{gluings}

where the last product is responsible for contracting indices. There will be a 6ZT (b)

J
for each paring edge-flap (F;., H,) that are glued together, as illustrated by Fig. 3.
We can simplify the notation of (9) by eliminating the Kronecker deltas and writing

Z = H Mabc(f) H Abl.“bNL(l)v (10)
fe{F} le{L}

where {F'} and {L} are the set of faces and links of the triangulation. A contraction
on the indices corresponding to gluings is understood.

As of now, the partition function (9) is not very useful. We need to be more
precise about the weights My, 4y, (F)) and A2 (H,) if we want Z to be related
to physical models like the spin-gauge model. Note that Z depends on the choice
of orientations of individual faces and hinges. This dependence on the orientation
should not be present in the final model. Furthermore, the weight function should
be the same for all faces Fj and hinges H,,,. To go any further we need to constraint
the tensors Mpe(Fy) and AP« (H, ). That can be done with the help of some
algebraic data that we will now introduce.

The first algebraic structure we need is a product on V' defined by

¢a : d)b = Mabcd)ca (11)

where we are using a tensorial notation with the usual convention of sum over re-
peated indices. We will use the symbol A to refer to the vector space V' to emphasize
that we are now working with an algebra.
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In this paper, we will choose A to be the group algebra of Z. The group elements
are written as (—1)%, a = 0,1 and a basis for A is {¢g, ¢1 }. The product is defined by

ba - Pb = Patb - (12)

Whenever a sum a + b of indices appear, as in (12), it will always denote sum
module 2. This product can also be given in terms of the tensor M,;° as

My =6(a+0b,c¢). (13)

It is also convenient to define the dual vector space A*, the dual base {¢'} and
the usual pairing

(Vo) = by - (14)
We then define the trace 7' € A* as
T = Ma" 9" (15)
Given a face Fy, as in Fig. 3, we define the associated weight Mg, 4,0, as
Ma,azas (2) = (T, bay * Pag - bas - 2) 5 (16)

where z = a%y + a'¢; is a generic element of A. Since the underlining group is
Abelian, the weight My, 4,4, (2) is automatically cyclic and gauge invariant. Further-
more, My, a,a5(2) does not depend on the orientation of Fy.

The choice of z in (16) will determine the model we are describing. For example,

consider the curve (%, al) = (%eﬁ, %6*5) parametrized by (. The corresponding
weight
]- ]- _ _1\a1+as+a
My, ayas <§eﬁ,§e B> — B=1nTe2 3’ (17)

corresponds to the spin-gauge model. We can also choose the curve (a®,al) =

(3, 2¢727) and that will give

Mayaza; (57 56_%) = e Py (18)

describing yet another model.
The second algebraic information is a co-product A : A - A ® A defined by

A(¢c) = Acab(j)a ® d)b . (19)

The tensor A, defines also a product on the dual space A*. Using the dual basis
{¥*} we define

wa . ,(/Jb _ Acabwc ) (20)
In analogy with (15) and (16) we define the co-trace T* € A as
T* = A ¢, (21)
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and the tensor Ab1bn ag

Abrbn — (1 2 o T (22)
It turns out that the co-product that we will need is very simple. We will set
A = 5250. (23)
Therefore,

Abrba { 1 ifall in.dices are equal , (24)
0 otherwise.
Note that the orientations of hinges do not affect the corresponding statistical
weight.
The tensors My,¢ and A,% given in (13) and (23) together with the weights
Mape and A* % defined by (16) and (22) completely specify our model. It is a
simple exercise to show that the partition function (9) reduces to

Z H Ma,aza; (f (25)

{o1} fET(M)

where the sum {0y} is over the configurations on the links [ € T (M) and Mgp.(f)
is the weight of a configuration (a1, as, as) on the face f € T(M). Notice that

Z(Aa®, \at) = )\NFZ(aO,al) . (26)

AS My, aya, depends on z = %y + al¢; € A, the model depends on two
parameters (a’,a'). We will denote the parameter space by I'. The parameters

(@, al) are related to the parameters (mg,m;) of (7) as

mo = a’ +al,
(27)
m; =a’ —al.
Let us recall that the algebra defined in (12) is a group algebra and as such
it is also a Hopf algebra with co-product coming from A,%¢. The maps antipode
S:A— A, unity e : C — A and co-unity € : A — C can be described in terms of
tensors as S(¢,) = S2¢p, e(1) = e?¢, and €(p,) = €,. For the case of Zy we have
Sl =62 e, =0° and ¢, =1. (28)
Notice that these tensors are essentially trivial and will not show up explicitly in the
calculations. For a non-Abelian case, for example, S? is related to the orientation
but that will play no role in the Zsy case.
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3. Quasi-Topological Limits

We would like to explore the model (25) and look for points of the parameter
space (a’,a') where the model has a topological or quasi-topological behavior.
The simplest case is the one considered in Refs. 4 and 5. It corresponds the point
(a®,a') = (1,0) in the parameter space I" or, equivalently, to the choice in (16) of 2
equals to the identity ¢g of the algebra. For this particular point of the parameter

45

space we can bring in the Hopf structure of A, follow*° and conclude that

Z(T(M),0° = 1,01 = 0) = 2V HNLNr Z10p () (29)

where Np, Np and Ny, are the number of tetrahedra, faces and links of T'(M).
However, (a®,a!) = (1,0) is not the only quasi-topological point. In this section,
we will show that there is a subset I'y C I' with dimension one such that the
partition function is quasi-topological. In Fig. 4, we have the parameter space I'
where the set I'g consists of four straight lines: the diagonals and the axis. We also
have included the models with weights W (") and W(2) defined in (4) and (5). They
are curves parametrized by a single parameter 3.

Let us consider (o, al) = (X, 0). It corresponds to z = Mgy € A. The new weight
is simple Mupe(2) = AMape(¢o). Therefore, the partition function is the same as for

(% al) = (1,0) multiplied by a factor. In other words
Z(T (M), \,0) = \NroNrtNL=Nr Ztop( () (30)

The tensor components Mgp.(z) and Ab1bn depend on the choice of a basis
of the algebra A. Therefore, different choices of basis will lead to different weights
and therefore different models. However, the partition function Z(T'(M),a?, al)

has been written as a scalar and therefore is invariant under a change of basis.

ozlA

Fig. 4. The set Ty consists of the two axes plus the dashed diagonal lines. The models W (1) and
W) are curves on T'.
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This large invariance of Z(T (M), a’, a!) has been interpreted as dualities between
different models. This fact has been explored by us in Ref. 11 to show that the
classical Kramers and Wannier duality relations are special cases of these more
general dualities. In what follows, we will show that there is a duality relation
between the model at (a®,at) = (A,0) and (a®,at) = (0, \). We will show that

Z(T(M),0,A) = Z(T(M), \0), (31)

which allow us to compute Z(T'(M),0, ).
Let us start by recalling that at the topological point (a’,a') = (1,0) the
weights read

Mabc(¢0) = 2(5(& +b+ C, O) 5 (32)
AP = 5(by b)) (b, by) - 8(bp_1,by) - (33)

E= (? é) , (34)

and a new basis {¢}, #;} defined as ¢/, = E%¢;,. This transformation simply changes
an index a by @, where 0 = 1 and 1 = 0. In the new basis we have

Consider the matrix

2pe(1,0) = Mgp2(1,0) =26(a+b+¢,0) =28(a+b+c,1), (35)
APt = (b1, b, )8 (s by) -+ 0 (b1, bn)
= 3(b1,b1)3 (b2, b)) - -6 (bp—1,by) . (36)
Note that
A = AbLbn (37)

On the other hand, the tensor components Myp.(0,1) on the original basis is
Mabe(0,1) = §(a + b+ ¢, 1). Therefore

. (1a O) = Mabc(oa 1) . (38)

abce

Equations (37) and (38) imply that Z(T'(M),0,\) = Z(T (M), \,0) as announced.

The partition function corresponding to the diagonal line a® = o' in Fig. 4 can

be obtained by choosing zin = ¢o + ¢1 in (16). One can see that zj,¢ is such that
by * Zint = Zint- In a Hopf algebra, such element is called a co-integral.'?> Therefore

Mabc(]-; 1) = <T, Zint> =2. (39)

The fact that the weight Myp.(1,1) is independent of the configurations turns the
computation of Z(T (M), \, \) completely trivial. One can immediately see that

Z(T(M),\,\) = 2NrTNL\Nr (40)
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Note that Z(T' (M), A\, \) depends only on the size of the lattice T'(M). In contrast
with (30), the topological invariant is trivial since the partition function does not
depend on the topology of the underlining manifold M.

To compute the partition function for a' = —a?, it is enough to consider the
point (a®,al) = (1,—1). That is the same as setting 2 = ¢9 — ¢1 on (16). The
weight Mape(1, —1) reads

Mape(1, —1) = 2(—1)2+bte, (41)

Instead of computing Z(T'(M), 1, —1) directly, we will make use of the duality re-
lated to change of basis. Let us choose another basis by applying the transformation
matrix E = (—1)%6%. In the new basis the weights are

M/

abc

(A/)al(lQ"'(ln _ (_1)a1+az+---+an53711/535 . 532*1 .

=2,
(42)

The resulting model has weights associated to the links only and the partition
function can be easily computed. After plugging (42) in (9) and taking into account
the scaling factor we have

Z(T(M), A, =2) = A7 TT (1 + (1)), (43)
1
where the product runs over the links of the lattice and I(l) denotes the number of
faces that share the link I. Note that I(l) is not of topological nature. Furthermore,
the partition function vanishes whenever there is a link that is shared by a odd
number of faces. This is an indication that (a’,a') = (A, —)) is a very peculiar
model.

It is clear from the computation of the partition function that the lines that make
up I'p are not all equivalent. Actually they are all different from each other. It is
true that Z(T(M), \,0) is the same as Z(T'(M),0, ). However, the expectation
value of Wilson loops are not the same for these two models. As we will show in
the next section, only (A,0) is in fact a topological theory.

Before we conclude this section, we would like to point out the relation between
Iy and familiar models such as the ones defined by (4) (spin-gauge model) and (5)
(gauge theories). As we have discussed before, the spin-gauge model given in (17)
corresponds to the curve (a,a') = (1/2¢%,1/2e77). It is clear from Fig. 4 that
this curve approaches I'y as 3 goes to 400 and —oo. Another point of contact with
Iy is when 8 — 0. As for the model (5), only the limits 5 — 0 and 5 — +oo are
part of T'g.

4. Wilson Loops

The two-parameter gauge model (7) of last section have numerical quantities
(Wr(7)) that are the natural generalization of the expectation value of Wilson loops
for a closed curve v and irreducible representation R. The definition of (Wg(7))
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reduces to the familiar expression when restricted to the usual gauge models. In
this section, we will define and compute these observables for T'y.

For simplicity, we will start by considering the loop 7 to be unknotted. Knotted
loops will be considered in the last part of this section.

Let v be a loop made of a set of links w(y) = {w1,...,wp}. For such a loop we
introduce the tensor Wy, 4,...q, with p indices given by
WE oy = (T, -y - 21}, (a4)

where ay, is the configuration at link /; and zg is the unique element in the center
of A such that

(T.¢g - 2r) = Trr(9), (45)

where R denotes an irreducible representation of the group.
The group Zs has only two irreducible representations labeled R = 0 and R = 1,
such that

Tro(¢a) =1,
Try () = (—1)°.

We only need to consider the nontrivial representation. In other words, we will set
ZR = %((ﬁo — ¢1) since that will give us (T, ¢, - zr) = (—1)*. For now on we will
omit the index R indicating the representation simply write (44) as

Wal---ap _ (_1)a1+-..+ap. (46)

We would like to construct (W («)) as a scalar in the same way it has been done
for the partition function (10). As before, we make use of the contra-variant tensors
Ab1-bn associated to the links. Consider a link [ shared by I(1) faces. If [ does
not belong to the loop 7, the corresponding tensor is the same as for the partition
function and will be written as APt Pr . If, however, the link in question is one of
the links of v (I = w; € w(y)), the corresponding tensor will be A0z Note
that the new tensor has an extra contra-variant index a;. The expectation value of
the Wilson loop is defined to be

W=7 T1 Macts) I] A2to@) ] avbonw, ., @)
fe{r} I¢w(v) wj€w(7y)

where we are using the simplified notation of (10). The contraction of indices are as
follows: each covariant index of Wa,...a, 18 to be contracted with the extra index a;
in Abrb105 a5 explicitly indicated. The indexes from the product er{F} M ape
follows the same rule as for the partition function when contracting with the by
indexes in Ab1%10 and Abrb1w% . An interpretation of (47) in terms of gluing
of hinges (H,,) and faces (F}) that is analogue to the partition function can also
be given. To each link [ we associate a hinge H;. If the link is not part of the loop
7, the corresponding hinge has exactly I(l) flaps that will connect to I(l) faces in
the usual way (see Fig. 3). For links w; € w(y), the corresponding hinge H,,, has
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Extra flap coming
from a Wilson loop

<,

(@) (b)

Fig. 5. A small region of the lattice with a Wilson loop 7 is illustrated in (a). Figure (b) shows
the corresponding decomposition. For a link of «, the corresponding hinge has an extra flap as
indicated.

Fig. 6. Wilson loops can be thought as an extra face which is not part of the lattice.

(I(wj;) + 1) flaps. After gluing the I(w;) faces to H,,,, we are left with extra flaps,
one for each link of w(+y) as illustrated in Fig. 5. The contraction of indices a; in (47)
can be seen as the attachment of a polyhedral face W, with p edges. An example of
such attachment is shown in Fig. 6. This special face W, has weight W, ..., and is
not to be thought as part of the lattice. In general, it will not be possible to embed
W, in 3D space.

The expectation value of the Wilson loop will be a function (W (7))(a®,al). As
a consequence of (26), one can see that

(W) (Aa®, xa') = (W(7))(a”,a'). (48)

Therefore, we only need to compute (W (v))(a?, ol

line of T'y.

) for one point on each straight
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We now proceed with the computation of (W (7)) when the parameters (a’, ')
belongs to I'g. That can be divided in three cases as follows.

Case 1 (z = ¢po + ¢1):

The first case correspond to (a®,al) = (1,1). As we have seen, My, = 2. All
the sums on b indices in (47) are straightforward due to the Kronecker deltas in
Abrbrwy and Ab1broi We are then left with

W) o[]S (-1 =o. (49)

=1 a;

This result does not depend on the loop 7.

Case 2 (z = ¢po — ¢1):

For this particular case we have Wy, ..., = (—=1)*T T Notice that, this is the
same function as the weights My, = 2(—1)?TP*¢ for the faces. Therefore, the
numerator in (47) is the same thing as a partition function with an extra face
determined by the loop « (see Fig. 6). Using (43) we can write

W) = +1(_1)m)] T [0+ 0@ T 1+ (009 (s0)
! 1¢w(v) lew(v)

This region of the parameter space is quite peculiar. Notice that the denominator
of (W(y)) vanish if I(I) is odd for some [ and (W(y)) is not well defined. When
I(1) is even for all links, (W (7)) is well defined but it is equal to zero due to the
factors [1 + (—1)7(O+1].

Case 3 (z = ¢pg,9 =0,1):

The points with coordinates (o, al) given by (1,0) and (0,1) in I'y correspond to
z = ¢4 with g = 0 and g = 1, respectively. We know from previews sections that
the partition function is the same for these two cases. However, this is not true
for (W (x).

We will show that (W (7)) is quasi-topological in the sense that it does not
depend strongly on the geometry of «. The idea is to investigate the behavior of
(W (7)) under small deformations. In a triangulation, it is natural to define a small
deformation of a loop v as follows. Let w(vy) be the set of links of . A small
deformation of «y is a local move that replaces one link wq € w(7) by a pair of links
wo,ws such that wi,ws and ws belong to the same face. There is also the reverse
move where a pair of links w; and ws is replaced by ws provided they belong to the
same face. A small deformation is shown in Fig. 7. With this definition of a small
deformation we now establish how (W (7)) changes under small deformations for
z=¢gand g=0,1.

Consider Fig. 8(a) where we have single out a small part of the partition
(Fy, Hj). Only the elements connected to the link wq are relevant. In Fig. 8(b)
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/-y/

(a)

(b)

Fig. 7. The loop 7 in (b) is a small deformation of the loop v in (a).

AN
/

(d)

Fig. 8. In (a)—(b) we represent a small deformation of a loop ~ in a lattice and in (¢)—(d) we

represent the same deformation in a lattice decomposition.
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we have performed a small deformation of v by replacing ws and w3z by wi. The
weights associated to Fig. 8(c) and 8(d) are the tensors A and B given by
= MalblclAalmapUJ1Ab1mbq AClmCTWunar"as

Aa2"'apb2"'bq62"'c'r'
a1 Qs

Z Ma1b1c1AalmapAblmquClmCTWG«lOél"'Ots ) (51)

a1,b1,c1

and

az-apbay--bgea-cp aj---ap A bi---bgw C1Crw
Bz arbabaczen o NG ap AbUebgwr e ey

- Z Ma1b101Aalm%AblmbqAClmCTWblmalmas7 (52)

ai,bi,c1

where we have performed the sums on wy, we and w3. We also have explicitly written
the sums on aj, by and ¢;. Note that, Wy, 010, = (=) Wayans Woicrar o, =
(=) + Wy, ... and My, p,e, = 26(a1 + by + c1,g). That is enough to show that

Ma117101Wb101a1"'a5 = (_1)gMa117161Wa1a1"'a5 ’ (53)
therefore
Agi......((lf;b?”quQIHCr _ (—1)ng?......Zibz.”chzmcw. (54)

We see that (W (7)) is invariant under small deformations for ¢ = 0 that cor-
respond to (a?,al) = (1,0). As for g = 1 or (a®,al) = (0, 1), the number (W (7))
flips sign each time we perform a small deformation on ~.

The simplest loop 7o is made of a single triangular face with links w(y) =
{w1, wa, w3 }. If we recall that Mup. = 26(a+b+c, g) and Wy, pw, = (—1)«1Hw2ztes
it becomes a straightforward computation to show that (W (o)) = (—1)7. We can
now deform the smallest loop vy by adding (N — 1) triangles and arriving at a
planar loop . For such a loop we get

W) =(=1)"; g=0,1. (55)

Equation (55) for g = 1 shows (W (yn)) as a function of the number of triangles
swept in the process of stretching vy into 7. This function is a very simple “area
law.” It depends only on the parity of N. Notice that, each time we add a triangle
to 70, the number of links of the loop also changes by one unity. Therefore, we could
have written

(W(yn)) = (=1)7, (56)

where N is the number of links of the loop . We could interpret this formula as
a “perimeter law.” The fact that there is no distinction between area or perimeter
law is peculiar to the gauge group Zs and the fact that we are using triangular
lattices. For square lattices the variation in the number of links is even and (56)
does not hold, but (55) is still true.

So far we have considered only planar loops. For knotted loops, the expecta-
tion value (W (yn)) for g = 0 may depends on the class of isotopy of the loop 7.
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Equation (55) is valid for loops v that can be deformed to the trivial knot. If ~ is a
nontrivial knot, Eq. (55) may not hold. We will show that (W (vyy)) actually does
not depend on the class of isotopy of v and therefore (55) is still correct.

Let v be a knotted loop and its knot diagram as illustrated in Fig. 9(a). We
can produce a new knot diagram by flipping under-crossing into over-crossings and
vice versa. This flips are local moves that only affect the knot in a small region. It
is a well known result from knot theory that any + can be made into the trivial
knot if we perform a number of flips, as we can see in Fig. 9(b). We will show that
(W (yn)) is invariant by flips and therefore does not depend on the isotopy class
of .

Let us consider a 3D ball B around a crossing in a knot K. That will give us
curves v, and 7.q connecting the points (a,b) and (c,d) at the surface B = 5>
of B as in Fig. 10(a). After a flip move, we have a new knot K and new curves are
Fab and F.q as illustrated in Fig. 10(b). Before analyzing the general case, we will

(a)

Fig. 9. In (a) we have a knotted loop that can be made trivial by two flip moves, as illustrated

in (b).

d b d b
Yab Yed :}/ab ?cd
a C a C

Fig. 10. The situation shown in (a) represents a flip move of one shown in (b) and vice versa.
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d

C

(a) (b)

Fig. 11. Here we can see how a flip move acts on curves in a surface 9B = S? of a ball.

look at a simple example where B is a cube inside the triangulation and the curves,
before and after the flip move, are the ones given in Figs. 11(a) and 11(b). In this
figure, we used the interpretation of the expectation value of the Wilson loop as an
extra flap as was explained in Sec. 4.

One can see that the sequence of extra flaps can be deformed into the sequences
given by Figs. 12(a) and 12(b). After we perform these deformations, the computa-
tion of (W (K)) and of (W (K)) differ only at a single link. The difference is that the
flaps coming from the two curves are swaped. In one case, the curves will contribute
to (47) with a factor

Ay w 1 2
Amaneenyy (D WL (57)
and in the other case the factor is
a1y waw 1 2
Avranwzeyy () WL (58)

The tensor A% n@2@1 ig ipvariant by permutation of the indices wy and ws and
these two factors are the same. Therefore, when comparing (W (K)) and (W (K))
we can use a sequence of small deformations to arrive at the configuration on
Figs. 10(a) and 10(b). The flip itself will not give any contribution and we can use
the result for planar loops given in (55).

As for the generic case, we can proceed as follows. Choose curves 71, 72 and
3 connecting the pairs (a,d), (d,b) and (c,b) as in Fig. 13. Since the three-ball is
simple connected, 4 is isotopic to 1 0 72 and 7.4 can be deformed to vz o v4 L
In a similar way, we have 7, is isotopic to v o 72 and 7.4 can be deformed to
Y3095 . In a similar fashion as for the particular case of Fig. 10(a), there will be
two sequence of flaps along 2. One comes from the deformation of v,; and the other
comes from the deformation ~.4. That has to be compared with a similar sequence
of flaps coming from the deformation of 44, and F.q. As in the case of Figs. 12(c)
and 12(d), these sequences of pair of flaps along v2 can only differ by a permutation.
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C
(c) (d)

Fig. 12. The pictures (a) and (b) differs from each other only by the link (d, b), as we can see in
(c) and (d).

M V3

a C

Fig. 13. The paths y1, 72 and ~3 are some paths that connect the vertices (a, d), (d,b) and (b, c).

Since A% %n is symmetric by permutation of indices we can conclude that flips do
not give any contribution and we can use the result for the planar loops given in
(55) for any knot K.
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5. Final Remarks

Topological field theories are among the simplest lattice models we can have. From
the physics point of view they are peculiar models. Partition function and corre-
lations can be computed but the dynamics is too simple. Rather than considering
TQFTs in isolation, we have looked at the problem from a broad perspective and
investigated a two-parameter family of models where TQFTs can arise at certain
points of the parameter space. We have considered gauge theories with Zs sym-
metry since it is the simplest gauge group but can still accommodate nontrivial
models, such as the 3D spin-gauge model. These more familiar models appear as
one parameter curves in the 2D parameter space I'.

We have found several limits that we can loosely call topological or quasi-
topological comprising a subset 'y of I'. On I'y both partition function and expec-
tation value of Wilson loops were computed. The partition function points on I'y are
topological numbers up to an overall scale factor. One could think that Iy contain
only topological models but the expectation value of the Wilson reveals something
else. First of all, (Wg(v)) does not depend on the isotopy class of the curve ~.
Furthermore, for a subset of T'g, (Wgr(v)) depends on the size of v and follows a
discrete version of an area law.

In the parametrization (a’, ') of T' used in the paper, the subset I'y is made
of four straight lines passing through (0,0). By looking at the gauge Ising model,
we can see that it approaches three of these lines for f — 4+o0o0 and 5 — 0. There is
an extra line given by o' = —a® that, as far as we know, does not relate directly
to any physical model.

The existence of a set I'y in the parameter space where the model behaves in a
topological way can be seen as an Euclidean version of topological order. It seems
that, rather than a special case, the same phenomena will happen for gauge theories
with any compact gauge group G. For Zy and non-Abelian groups, the analysis is
much more involved and it will be reported in a separated paper.
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