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ABSTRACT

This work contains the classification of singular surfaces with two triple points,
ten Whitney umbrellas (cross-caps or pinch points) and simply connected self-
intersection curve. There are 89 topological types of such surfaces, one of
which is orientable.
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RESUMO

Este trabalho contém a classificagdo das superficies singulares com dois pontos
triplos, dez guarda-chuvas de Whitney (cross-caps ou pinch points) e auto-
intersec¢do simplesmente conexa. Existem 89 tipos topoldgicos de tais
superficies, uma das quais é orientavel.
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Semiregular surfaces with two triple points
and ten cross caps

W.L. Marar* J. J. Nuiio Ballesteros!

1 Introduction

In [9] Whitney introduces the concept of semiregular mappings, that is, mappings
f: M* = R*™! from an n-dimensional closed manifold M into IR*"~! which
are immersions with normal crossings except at a finite number of singular points
called cross caps or Whitney umbrellas. When n = 2 the image of f is locally
homeomorphic to one of the following:

[/ M
Figure 1

A semiregular surface is the hmage of a 2-manilold M by a semiregular map-
ping f: M — IR®. We call M the abstract surface of f(M). These objects have
been studied in many contexts (see [1},8]). In particular, in Singularity Theory
when studying stable perturbations of map germs {rom the plane to 3-space [0].

The semiregular surfaces with one triple point and six cross caps have been
classified in [3]. There arc seven topologically distinct surfaces with sell intersec-
tion curve simply connected as in Figure 2.(a). Among them we find Steiner’s
roman surface which is the image of the projective plane IP? in IR? [4]. Here we
classify semiregular surfaces with two triple points and ten cross caps whose self
intersection curve is simply counccted as in Figure 2.(b).

*Work partially supported by CClut-USP and CNDq.
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M

Figure 2.(a) Figure 2.

We show that there are only 89 topological types of such surfaces. They can
be built by means of a surgery of two of the seven types with one triple point.
Our method, as in [3] (see also [2]), is based on the study of the symmetries of all
possible surfaces of the type prescribed and for such we make use of Mathematica.

2 Combinatorial classification

As it happens with the Roman surface, which has been modelled on an octa-
hedron, the surfaces here will be modelled on the polyhedron H with vertices
dyy...,a5,01,...,bs as in Figure 3. This polyhedron H is the convex hull of the
two hexagons corresponding to ay, by, bs, b3, a3, as and ag, by, bs, by, a4, a5, and the
two squares corresponding to ay,aq,as, a4 and by, by, b3, by.
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Figure 3

To represent the cross caps at each of the vertices of the polyhedron H we add
a pair of small triangles, so that the faces of /1 are among the shaded patterns as
in Figure 4. If we consider the two hexagous and the two squares inscribed in 1/
and the ten pairs of small triangles we get a semiregular surface with boundary,
which will be called a partial surface. The boundary of this partial surface is
given by the union of the basis of the small triangles. Then, we can obtain a
polyhedral model for the closed surface by attaching a disc to cach boundary
component,

As an alternative method to construct these semiregular surlaces, we consider
the dual D of the polyhedron /I as in Figure 5.(c). Each lace of D correspouds
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Figure 4

to a vertex of H and we denote that face with the same letter assigned to the
vertex. Now, the cross caps will be represented by choosing a diagonal for each
of the ten faces of D. For instance, in Figure 5.(a), (b) and (c) we represent the
two constructions for a connected sum of two roman surfaces.
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Figure 5

From this point of view it is casy to sce that enumecrating the surfaces with
two triple points and ten pinch points is equivalent to the combinatorial problem
of enumerating the dual model with particular diagonals on its teu faces.

Given a partial surface ) we introduce a labelling by comparing the assigne-
ment of diagonals of S with the corresponding diagonals ol the reference model
R given in Figure 5.(c¢). We assign the label 0 if the diagounals agree and 1
otherwise. This delines a correspondence « from the ordered set of faces of D,



ay,...,as,by,...,bs, into the set {0,1}. The 2'° labellings of D correspond to
1024 possible partial surfaces.

The group of symmetries G, of the reference model R is generated by the
following: 1) a mirror symmetry with respect to the plane which separates the a;
faces from the b; faces;-2) a single axis of 2-fold rotation; 3) a mirror symmetry
with respect to the plane that contains the diagonal of the face as and the axis
of 2-fold rotation.

For the dual model D, the group of symmetries G, includes one more gener-
ator: the mirror symmetry with respect to the plane perpendicular to the plane
described in 3) above and containing the axis of 2-fold rotation.

Any symmetry of G, acting on a labelled dual model permutes the faces
but leaves their corresponding labels unchanged. The other symmetries of G,
permute the faces swapping the labels 0 and 1.

Definition 2.1 Two labellings a; and a; of the faces of the dual imodel D are
equivalent if there is some ¢ € G; wich carries «; to a, such that for every face

f of D we have

a;(f), if o€ G,

ay(f) = a(o(f)) =
1-— O’l(f), if o ¢ GQ.

Under this equivalence relation the 1024 partial surfaces fall into 89 orbits.
In order to simplify the notation, we shall write a labelling in decimal form. For
instance, the reference labelliug will be written with the number 0.

Proposition 2.2 The eighty-nine partial surfaces are generated by the labellings:

1 30 46 74 85 103 117 216
2 31 47 75 86 105 118 217
3 33 62 76 87 106 120 231
6 34 66 77 88 107 121 234
7 35 67 78 89 108 124 235
10 38 G8 79 90 109 198 236
11 39 69 80 92 110 199 249
12 42 70 81 93 113 202 330
13 43 71 82 99 114 203 331
14 44 72 83 101 115 204 340
15 45 73 84 102 116 205 341

3 Topological classification

Theorem 3.1 There are cighly-nine lopologically distinet scinircgular closed sua-
faces having two triple poinls and len cross caps. Only one of them is orientable.



Proof. Given a semiregular surface with two triple points and ten cross caps S,
we describe a well defined way to associate a labelled dual model.

Looking only at the singular part of S (given by the double point curve, the
two triple points and the ten cross caps), we find a graph structure in which five
cross caps are adjacent with one of the triple points and the other five cross caps
with the other triple point. Then we reserve the vertices ay,...,as for one group
of cross caps and the rest by,...,bs for the other group. Note that the choice
of which group we assign the a;’s or the l;’s is not important, because different
choices would give equivalent labellings through the first symmetry of the group
G,.

However, the graph structure of the singular part of S is not enough for looking
at the relative position of the cross caps in each group. We need more information
in order to assign each cross cap to one vertex «; or b;. We remove the cross caps
from the singular graph and then we take a small “tubular” neighbourhood in S.
This neighbourhood is composed by strips that would connect the removed cross
caps (Figure G6). This process introduces a new adjacency relation among the
cross caps of S: two cross caps are adjacent if they can be connected by one of
these strips. Thus, we find that in each group there is a special cross cap, namely
the one that is adjacent exactly to the other four cross caps of the same group.
We assign to it the vertex us and bs respectively. The adjacency for the rest of
the cross caps is similar: each cross cap is adjacent exactly to one cross cap of
the other group (called the homologous cross cap), to the special cross cap «s or
bs of the same group and to two more cross caps of the same group. There is only
one cross cap in the same group that is not adjacent to it, called the opposite
cross cap. Then we will choose the assignemeunt of the vertices so that: «; is the
homologous cross cap of h; for 2 =1,2,3,4 and the opposite cross cap of a; is s,
the opposite cross cap ol «y is a4 and the same lor the b;.

)

Iigure 6

In this way, the position ol one of the vertices ay, ay, by, by determines au-



tomatically the position of the other three and the same thing can be said for
ay, a4, by, bs. Note that there are four possibilities for the position of one of the
vertices a, a3, b1, b3 and, once this position is fixed there are only two possibilities
for the position of one of the vertices a,,aq,bs,bs. These eight possibilities to-
gether with the exchange between a; and J; respectively gives sixteen possibilities
for locating all the vertices.

Now, to construct the labelled model it is enough to look at the relative
position of each cross cap in S with respect to the reference model R (Figure 5).
Each one of the sixteen possibilities for locating the vertices gives an equivalent
labelled model under the group action.

It is clear from the above that this construction does not depend on the
topological type of S and so defines a one-to-one correspondence hetween the
topological classes of semiregular surfaces S and equivalence classes of labelled
dual models.

To show that only one surface is orientable, we can assuine without loss of
generality that we have our basic polyhedron oriented as follows: we fix an ori-
entation for the pair of hexagons and squares (Figure 7.(a), (b)).
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Figure 7
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When we add to the polyhedron a pair of small triangles representing the
cross cap, the resulting surface can be orientable ouly if the orientation are as
shown in Figure 7.(c).

Using the planar model of the oriented polyhedron and the process above,
we abtain only one possible orientable surface (Figure 8), being the one indexed
by the number 231 (sce Proposition 2.2). There are three more elements in the
equivalence class of the clement 231 which can be obtained by choosing the other

orientations of I1. =]

The [ollowing two lemimas will be uselul to decide the topological type of the

abstract surfaces.
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Lemma 3.2 [5] Let f : M — R? le a semircgular map with T(f) triple points
and C(f) cross caps. Then x(f(M)) = x(M)+T(f)+ C(f)/2, where x denotes

the Euler characteristic.

Figure 8

Lemma 3.3 [7] Let f : M — IR? be a semiregular map and let A C M be the
double point curve of f. Then the number of connected components of R*\ f(M)
is equal to 2 + dimg, ker(i.) N ker(fla)., where in 2 Hi(A,Zy) — Hi(M,Z;) and
(fla)s: Hi(A,Zp) — Hy(f(A),Z;) are the induced maps in homology.

Proposition 3.4 If M is an abstract closed surface associated to a semirvegular
closed surfuces having two triple points and ten cross caps, then M is homeomor-
phic to T*#T? in the oricutable case, or —5 < x(M) < 0 otherwise.

Proof. Note that the semiregular surface f(A) is homotopy equivalent to a
wedge of w spheres, therelore w + 1 is the number of connected components of
IR?*\ f(M). Since in this case f(A) is contractible, by the previous lemma it is
enough to show that dimy ker(in) <5, where i (A, Zy) — H (M, 7,) is the
induced map.

(<> () =
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Figure 9

The double point curve A looks like the one in Figure 9.(a) and can be obtained

as a counected sum of two copies of the corresponding double point curve lor a

T



semiregular surface with a single triple point (Figure 9.(b)). Indeed, the whole
surface M can be obtained as a connected sum of two surfaces M; and Mj. This
corresponds to obtaining f(Af) as a surgery of f(Af;) and f(A1;) as described in
[3]). Let A; and A, denote the double point curves of M; and MM, respectively.
In Figure 10, we have the connected sum of two projective planes.

Figure 10

Then the map i. : H,(A,Z,;) — H,(M,Z,;) is the same as . : H1(A1,Z,) @
H\(A2,Z5) — Hi(M,Z,) ® Hi\(M2,2,). So, to show that dimg ker(i.) < 5 is
the same as to show that dimg, ker(j.) < 3, where j. : Hi(A1,Z,) — Hi(My,Z,)
is the induced map for the surface with a single triple point. To see that, first
observe that I1,(A,,7Z,;) has rank 4. Now, we cannot have the four generators
homologous to zero, since that would imply to be able to have the Figure 9.(b)
in a two-cell, with only three self-intersection points (pre-image of the triple
point), which is impossible. Finally, three of the generators of H,(A,,%;) can he
homologous to zero, as it is the case in the projective plane (Figure 11).

Figure 11

Therclore, the number w of spheres composing the semiregular surface f(A)
satisfics 1 < w <6, which means 2 < y(f(M)) < 7. Now, the result follows from
Lemma 3.2. Note that in the orientable case M ois homeomorphic to T?#T?,
since it is the surgery ol 1wo copies of 77, the only orientable semiregular surlace

with a single triple point and six cross caps [3] (Fignre 12). ad



Figure 12

Remark 3.5 Semiregular surfaces with several triple points can be classified in
an analogous way. For instance the reader may find 2235 topological types of
surfaces with three triple points and 14 cross caps so that the self-intersection set
is simply connected. Again, only one of tliem is orientable and its abstract type
is homeomorphic to a three torus.
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