RT-MAT 2007 - 09

Ruled Weingarten surfaces in a 3-dimensional space form

Antonio C. Asperti and Barbara C. Valério

Abril 2007

Ruled Weingarten surfaces in a 3-dimensional space form

Antonio C. Asperti and Barbara C. Valério

Abstract. Let M^2 be a ruled surface in $S^3(1)$ or in $\mathbb{H}^3(-1)$, given locally by its natural parametrization X(s,t). We show that such a ruled surface with non-constant curvature, is a Weingarten surface if and only if K and H are constant along s. This is a well known fact for ruled surfaces in \mathbb{R}^3 .

Mathematics Subject Classification (2000). 53A35, 53B25.

Keywords. Ruled surfaces, Weingarten surfaces.

1. Introduction

Let $\mathbb{Q}^3(c)$ be a complete, simply connected Riemannian manifold of constant sectional curvature $c=\pm 1$. We can assume that $\mathbb{Q}^3(c)$ is the unity sphere $\mathbb{S}^3(1)=\{(x_1,x_2,x_3,x_4)\in\mathbb{R}^4:x_1^2+x_2^2+x_3^2+x_4^2=1\}$, if c=1, or the hyperbolic space $\mathbb{H}^3(-1)=\{(x_1,x_2,x_3,x_4)\in\mathbb{L}^4:-x_1^2+x_2^2+x_3^2+x_4^2=-1,x_1>0\}$, if c=-1, where \mathbb{L}^4 denotes the 4-dimensional Lorentz-Minkowski space, that is,the Euclidean space \mathbb{R}^4 endowed with the pseudo-metric $\langle \ , \ \rangle:=-dx_1^2+dx_2^2+dx_3^2+dx_4^2$.

We say that a 2-dimensional submanifold M^2 of $\mathbb{Q}^3(c)$ is a ruled surface if there exists a foliation of M^2 by geodesics of $\mathbb{Q}^3(c)$. It is known that any ruled surface in $\mathbb{Q}^3(c)$ can be locally parametrized by

$$X(s,t) = exp_{e_0(s)}(t e_1(s))$$

where exp is the exponential map of the space forms $\mathbb{Q}^3(c)$ and $e_0(s)$, $e_1(s)$ are suitably chosen curves in \mathbb{R}^4 or \mathbb{L}^4 , see the next section.

A surface is called a Weingarten surface or a W-surface, if the Gaussian curvature K and the mean curvature H satisfy a nontrivial relation $\phi(H,K)=0$. For any local parameters (s,t) on M^2 , this is equivalent to $H_sK_t-H_tK_s=0$. Surfaces with H or K constant are clearly Weingarten surfaces. Also a helicoidal

surface (that is, a surface $S \subset \mathbb{Q}^3(c)$ which is invariant by a helicoidal motions of $\mathbb{Q}^3(c)$), is also a Weingarten surface.

The ruled surfaces in \mathbb{R}^3 that are also W-surfaces are well understood and were classified independently by Beltrami [1] and Dini [2] around 1865. A short proof of their result is given in [3]. In the course of the proof it is shown that a non-developable $(K \neq 0)$ ruled surface in \mathbb{R}^3 , given locally by $X(s,t) = e_0(s) + te_1(s)$ where $e_0(s)$ is the striction line, is a Weingarten surface if and only if H and K are constant along the translational parameter s. In this work, we show that this is also true for ruled surfaces in $\mathbb{Q}^3(c)$, $c = \pm 1$.

2. Preliminaries

From now on we consider a ruled surface M^2 in $\mathbb{Q}^3(c)$. Then M^2 can be locally parametrized by

 $X(s,t) = \exp_{e_0(s)}(t e_1(s))$ $= e_0(s)\varphi_0(t) + e_1(s)\varphi_1(t),$ (1)

where

$$\begin{cases} \varphi_0(t) = cosht, & \varphi_1(t) = sinht, & if \quad c = -1, \\ \varphi_0(t) = cost, & \varphi_1(t) = sint, & if \quad c = 1, \end{cases}$$

 $e_0(s)$ is a curve in M^2 and $e_1(s)$ is a unit vector tangent to M^2 along $e_0(s)$ such that $\langle e_0, e_1 \rangle = 0$, $\langle e_1, e_1 \rangle = 1$ and $\langle \dot{e}_0, \dot{e}_1 \rangle = 0$. Moreover, we may choose the parameter s such that $\langle \dot{e}_1, \dot{e}_1 \rangle = 1$, where the dot means the derivative with respect to s.

It is convenient to introduce the following notation

$$\begin{cases}
A(s) &= |\dot{e}_{0}|^{2} - \langle \dot{e}_{0}, e_{1} \rangle^{2} \\
B(s) &= 1 - c \langle \dot{e}_{0}, e_{1} \rangle^{2} \\
P(s,t) &= A(s)\varphi_{0}^{2}(t) + B(s)\varphi_{1}^{2}(t) \\
Q(s,t) &= \langle \dot{e}_{0}, e_{1} \wedge \dot{e}_{1} \wedge e_{0} \rangle \\
h(s,t) &= F(s)\varphi_{0}^{2}(t) + D(s)\varphi_{1}^{2}(t) + (L(s) + G(s))\varphi_{0}(t)\varphi_{1}(t),
\end{cases}$$

$$(2)$$

where F(s), D(s), L(s) and G(s) are given by

$$\begin{cases}
F(s) &= \langle \ddot{e}_0, e_1 \wedge \dot{e}_0 \wedge e_0 \rangle, \\
D(s) &= \langle \ddot{e}_1, e_1 \wedge \dot{e}_1 \wedge e_0 \rangle, \\
G(s) &= \langle \ddot{e}_1, e_1 \wedge \dot{e}_0 \wedge e_0 \rangle, \\
L(s) &= \langle \ddot{e}_0, e_1 \wedge \dot{e}_1 \wedge e_0 \rangle,
\end{cases}$$
(3)

and $u \wedge v \wedge w$ denotes the vector in \mathbb{R}^4 or \mathbb{L}^4 characterized by $\langle z, u \wedge v \wedge w \rangle = c \det(z, u, v, w)$. We observe that $Q^2 = cAB$.

Let us take \tilde{X}_s and X_t tangents to M^2 and $\xi = X_t \wedge \frac{\tilde{X}_s}{|X_s|} \wedge X$ normal to M^2 , where $\tilde{X}_s = X_s - \langle X_t, X_s \rangle X_t$. The coefficients of the second fundamental form of the immersion are given by

$$e=0,$$
 $f=-\frac{Q}{|X_s|},$ $g=\frac{h+2<\dot{\epsilon}_0,\epsilon_1>Q}{|X_s|},$ (4)

and it follows that the Gaussian and mean curvature of the surface are

$$K = c - \frac{Q^2}{P^2}, \qquad H = \frac{(h+2Q(\dot{\epsilon}_0,\dot{\epsilon}_1))}{2P^2}. \tag{5}$$

From the Codazzi's equation we get that

$$\tilde{\nabla}_{X_t}\left(fX_t+g\frac{\tilde{X}_s}{|\tilde{X}_s|^2}\right) \quad = \tilde{\nabla}_{X_s}\left(f\frac{\tilde{X}_s}{|\tilde{X}_s|^2}\right) - < X_s, X_t > \tilde{\nabla}_{X_t}\left(f\frac{\tilde{X}_s}{|\tilde{X}_s|^2}\right).$$

Then

$$\begin{split} f_t X_t &\quad + f \tilde{\nabla}_{X_t} X_t + g_t \frac{\tilde{X}_s}{|\tilde{X}_s|^2} + g \tilde{\nabla}_{X_t} \frac{\tilde{X}_s}{|\tilde{X}_s|^2} = f_s \frac{\tilde{X}_s}{|\tilde{X}_s|^2} + \\ &\quad + f \tilde{\nabla}_{X_s} \frac{\tilde{X}_s}{|\tilde{X}_s|^2} - < X_s, X_t > \left(f_t \frac{\tilde{X}_s}{|\tilde{X}_s|^2} + f \tilde{\nabla}_{X_t} \frac{\tilde{X}_s}{|\tilde{X}_s|^2} \right) \end{split}$$

or equivalently

$$f_{t} = -f \frac{\langle X_{s}, X_{st} \rangle}{|\tilde{X}_{s}|^{2}},$$

$$g_{t} - f_{s} = f \frac{1}{|\tilde{X}_{s}|^{2}} (-\langle X_{ss}, X_{s} \rangle + \langle X_{s}, X_{t} \rangle) + g \frac{\langle X_{s}, X_{st} \rangle}{|\tilde{X}_{s}|^{2}}.$$
(6)

Since $P(s,t) = |\tilde{X}_s|^2$, by (4) it follows that

$$f_{t} = \frac{QP_{t}}{2P^{3/2}},$$

$$f_{s} = -\left(\frac{2\dot{Q}P - P_{s}Q}{2P^{3/2}}\right),$$

$$g_{t} = \frac{2h_{t}P - P_{t}(h + 2 < \dot{e}_{0}, e_{1} > Q)}{2P^{3/2}}.$$

Using that

$$P_t = 2 < X_{st}, X_s >$$

and

$$P_s = 2(\langle X_{ss}, X_s \rangle - \langle X_s, X_t \rangle (\langle X_{ss}, X_t \rangle + \langle X_s, X_{st} \rangle)$$

we have that (6) can be written as

$$h_t P - P_t(h + \langle \dot{e}_0, e_1 \rangle Q) + \dot{Q}P - P_s Q = 0.$$
 (7)

It follows by (3) and (7) that M^2 verifies

$$\begin{cases}
-Q\dot{A} + A(G + L + \dot{Q}) = 0 \\
-Q\dot{B} - B(G + L - \dot{Q}) = 0 \\
-B(F + \langle \dot{e}_0, e_1 > Q) + A(D + c \langle \dot{e}_0, e_1 > Q) = 0
\end{cases}$$
(8)

3. Main result

Lemma 3.1. Let $M^2 \subset \mathbb{Q}^3(c)$, $c=\pm 1$, be a ruled connected surface parametrized as in (1) and such that the Gaussian curvature is not constant. If $K_tH_s-K_sH_t=0$, then $K_s\equiv 0$ and $H_s\equiv 0$.

Proof. By hypothesis, there exists a point $p \in M^2$ such that $Q(s_0) \neq 0$, where $p = (s_0, t_0)$. Therefore there exists an interval $\tilde{V} \subset \mathbb{R}$ with $s_0 \in \tilde{V}$, such that $Q(s) \neq 0 \ \forall s \in \tilde{V}$, that is, there exists a neighbourhood $V \subset M^2$ of p such that the Gaussian curvature of M^2 it is not constant. In this neighbourhood it holds that

$$H_sK_t - H_tK_s = 0 \Leftrightarrow \frac{1}{2}QP\mathcal{J}(s,t) = 0$$

 $\Leftrightarrow \mathcal{J}(s,t) = 0,$

where

$$\mathcal{J}(s,t) = g_1(s)\varphi_1(2t) + g_2(s)\varphi_1(4t) + g_3(s)\varphi_0(2t) + g_4(s)\varphi_0(4t) + g_5(s),$$

with

$$\begin{array}{lll} g_1(s) & = & 2Q(\ (F-cD)(\dot{A}+c\dot{B})-(A-cB)(4Q<\ddot{e}_0,e_1>+\dot{F}+c\dot{D})) + \\ & + & (-cB\ (5F+cD+4<\dot{e}_0,e_1>Q)+A(F+5cD+4<\dot{e}_0,e_1>Q))\dot{Q}, \end{array}$$

$$g_2(s) = 2Q(-c(F-cD)(\dot{A}-c\dot{B})-(A-cB)(\dot{F}-c\dot{D})) + (A-cB)(-cF+D)\dot{Q},$$

$$g_3(s) = 4(G+L)(Q(\dot{A}+c\dot{B})-c(cA+B)\dot{Q}),$$

$$g_4(s) = 2Q((G+L)(\dot{A}-c\dot{B})-(A-cB)(\dot{G}+\dot{L}))+(A-cB)(G+L)\dot{Q},$$

$$g_5(s) = 2Q(A-cB)(\dot{G}+\dot{L})+(G+L)(2Q(\dot{A}-c\dot{B})+5c(-cA+B)\dot{Q}).$$

Therefore

$$H_s K_t - H_t K_s = 0 \Leftrightarrow \mathcal{J}(s,t) = 0$$

 $\Leftrightarrow g_1(s) = g_2(s) = g_3(s) = g_4(s) = g_5(s) = 0.$

It is not difficulty to verify that these equations satisfy the matricial relation [X]. [Y] = [W] where

$$[X] = \begin{bmatrix} -2Q(A-cB) & -2cQ(A-cB) & 0 & 2Q(F-cD) & a \\ 2cQ(A-cB) & -2Q(A-cB) & 0 & -2cQ(F-cD) & 0 \\ 0 & 0 & 0 & Q(G+L) & b \\ 0 & 0 & -2Q(A-cB) & 2Q(G+L) & 0 \\ 0 & 0 & 2Q(A-cB) & 2Q(G+L) & 0 \end{bmatrix},$$

$$[Y] = \begin{bmatrix} \dot{F} \\ \dot{D} \\ \dot{G} + \dot{L} \\ |\dot{e_0}|^2 \\ \langle e_1, \dot{e_0} \rangle \end{bmatrix} \quad [W] = \begin{bmatrix} d \\ -\dot{Q} \left((A - cB)(D - cF) \\ c\dot{Q} \left(G + L \right)(cA + B) \\ -\dot{Q} \left(G + L \right)(A - cB) \\ -5c\dot{Q} (G + L)(-cA + B) \end{bmatrix},$$

with $a = -8Q(\langle \dot{e}_0, e_1 \rangle (F - cD) + Q(A - cB)), b = -4Q \langle \dot{e}_0, e_1 \rangle (G + L)$ and $d = -\dot{Q} (4 \langle \dot{e}_0, e_1 \rangle Q(A - cB) + A(F + 5cD) - B(5cF + D)).$

Lets $[X](s_j)$ be the matrix [X] evaluated in the point s_j . Suppose that there exists a point $s_1 \in \tilde{V}$ such that $\det [X](s_1) \neq 0$. Then there exists an interval $\tilde{U} \subset \tilde{V}$ with $s_1 \in \tilde{U}$ such that $\det [X](s) \neq 0$, $\forall s \in \tilde{U}$. In \tilde{U} , $[X]^{-1}$ is well defined, and then from $[Y] = [X]^{-1}$. [W] it follows that

$$\operatorname{rom} [Y] = [X]^{-1}. [W] \text{ it follows that}$$

$$\begin{cases}
\dot{F} &= \frac{cB\dot{Q}}{\langle \dot{e}_{0}, e_{1} \rangle} + \langle \dot{e}_{0}, e_{1} \rangle \dot{Q} + \frac{3F\dot{Q}}{2Q}, \\
\dot{D} &= \frac{B\dot{Q}}{\langle \dot{e}_{0}, e_{1} \rangle} + c \langle \dot{e}_{0}, e_{1} \rangle \dot{Q} + \frac{3D\dot{Q}}{2Q}, \\
(\dot{G} + \dot{L}) &= \frac{3(G + L)\dot{Q}}{2Q}, \\
|\dot{e}_{0}|^{2} &= \frac{(A - cB)\dot{Q}}{Q}, \\
\langle e_{1}, \dot{e}_{0} \rangle &= \frac{-cB\dot{Q}}{2Q \langle \dot{e}_{0}, e_{1} \rangle}.
\end{cases} \tag{9}$$

In order to determine which conditions M^2 have to satisfy such that the equation $K_tH_s-K_sH_t=0$ is verified, we just have to solve the system (9). The last equation of the system is equivalent to $\frac{B}{Q}$ be constant, but in this case, its follows by (8) that G+L=0, which is a contradiction, since $\det [X]=256\ Q^5\ (\dot{e}_0,e_1)\ (A+-cB)^3(G+L)^2$. Then $\det [X]\equiv 0$ in \bar{V} .

Using (8) it is not difficult to verify that $\det[X] \equiv 0 \Leftrightarrow G+L=0$, and consequently, $\frac{A}{Q}$ and $\frac{B}{Q}$ are constant. By (5) and (2) it follows that $K_s \equiv 0$ in V. Now using this and the equation $K_tH_s-K_sH_t=0$ it follows easily that $H_s \equiv 0$ in V.

We have proved the following result

Theorem 3.2. Let $M^2 \subset \mathbb{Q}^3(c)$ be a ruled connected surface parametrized as in (1) and such that the Gaussian curvature is not constant. Then the following are equivalent:

M² is a Weingarten surface;

ii) The mean and Gaussian curvatures are constant along the parameter s.

References

- E. Beltrami, Risoluzione di un Problema relativo alla teoria Delle Superficie Gobbe, Ann. Mat. Pura Appl. 7, 139-150 (1865).
- [2] U. Dini, Sulle Superficie Gobbe nelle quali Uno Dei Due Raggi di Curvatura Principale e una funzione dell'altro. Ann. Mat. Pura Appl. 7, 205-210 (1865).
- [3] W. Kühnel, Ruled W-surfaces. Arch. Math. (Basel) 62, 475-480 (1994).

Antonio C. Asperti
Universidade de São Paulo
Instituto de Matemática e Estatística - IME
Departamento de Matemática
Caixa Postal 66281
CEP 05311-970
São Paulo, Brazil
e-mail: asperti@ime.usp.br

Barbara C. Valério Universidade de São Paulo Escola de Artes, Ciências e Humanidades - EACH Av. Arlindo Bettio, 1000. Ermelino Matarazzo CEP 03828-000 São Paulo, Brazil

e-mail: barbarav@usp.br

TRABALHOS DO DEPARTAMENTO DE MATEMÁTICA

TÍTULOS PUBLICADOS

2006-01	MIRANDA, J. C. S. Adaptive maximum probability estimation of multidimensional Poisson processes intensity function. 9p.
2006-02	MIRANDA, J. C. S. Some inequalities and asymptotics for a weighted alternate binomial sum. 7p.
2006-03	BELITSKII, G., BERSHADSKY, M., SERGEICHUK, V. and ZHARKO, N. Classification of 2 x 2 x 2 matrices; criterion of positivity. 16p.
2006-04	FUTORNY, V. and SERGEICHUK, V. Classification of sesquilinear forms whit the first argument on a subspace or a factor space. 25p.
2006-05	DOKUCHAEV, M. A., KIRICHENKO, V. V., NOVIKOV, B.V. and PETRAVCHUK, A. P. On incidence modulo ideal rings. 41p.
2006-06	DOKUCHAEV, M., DEL RÍO, Á. and SIMÓN, J. J. Globalizations of partial actions on non unital rings. 10p.
2006-07	DOKUCHAEV, M., FERRERO, M. and PAQUES, A. Partial actions and Galois theory. 20p.
2006-08	KIRICHENKO, V. V. On semiperfect rings of injective dimension one. 25p.
2006-09	SHESTAKOV, I. and ZHUKAVETS. N. The free alternative superalgebra on one old generator. 30p.
2006-10	MIRANDA, J. C. S. Probability density functions of the wavelet coefficients of a wavelet multidimensional poisson intensity estimator. 7p.
2006-11	ALEXANDRINO, M. M and GORODSKI, C. Singular Riemannian foliations with sections, transnormal maps and basic forms. 17p.
2006-12	FERNANDEZ, J. C. G. On right-nilalgebras of index 4. 21p.
2006-13	FUTORNY, V. and OVSIENKO, S. Galois Algebras I: Structure Theory. 52p.
2006-14	FUTORNY, V. and OVSIENKO, S. Galois Algebras II:

Representation Theory. 36p.

2006-15	DRUCK, I. O. Frações: uma análise de dificuldades conceituais. 16p.
2006-16	FUTORNY, V, HORN, R. A. and SERGEICHUK V. V. Tridiagonal canonical matrices of bilinear or sesquilinear forms and of pairs of symmetric, skew-symmetric, or Hermitian forms. 21p.
2006-17	MIRANDA, J. C. S. Infinite horizon non ruin probability for a non homogeneous risk process with time-varying premium and interest rates. 4p.
2007-01	GREBENEV, V. N., GRISHKOV, A. N. and OBERLACK, M. Lie algebra methods in Statistical Theory of Turbulence. 29p.
2007-02	FUTORNY, V. and SERGEICHUK, V. Change of the congruence canonical form of 2 x 2 and 3 x 3 matrices under perturbations. 18p.
2007-03	KASHUBA, I. and PATERA, J. Discrete and continuous exponential transforms of simple Lie groups of rank two. 24p.
2007-04	FUTORNY, V. and SERGEICHUK, V. Miniversal deformations of matrices of bilinear forms. 34p.
2007-05	GONÇALVES, D. L., HAYAT, C., MELLO, M.H.P.L. and ZIESCHANG, H. Spin-structures of bundles on surfaces and the fundamental group. 22p.
2007-06	GOODAIRE, E. G. and MILIES, C.P. Polynomial and group identities in alternative loop algebras.7p.
2007-07	GOODAIRE, E. G. and MILIES, C.P. Group identities on symmetric units in alternative loop algebras. 8p.
2007-08	ALEXANDRINO, M. M. Singular holonomy of singular Riemannian foliations with sections. 16p.
2007.00	ACDEDTI A C and VAI ÉDIO B C Buled Weinggeten surfaces in

a 3-dimensional space form. 6p.