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1 Introduction

CR-manifolds arise naturally as boundaries of complex spaces. The class
of strictly pseudoconvex CR-manifolds arise more specifically as boundaries
of Stein spaces. The question of whether an abstract CR-manifold is the
boundary of a complex manifold is still the object of research, and is best
understood in the strictly pseudoconvex case.

In [BM] Boutet de Monvel showed that any compact, orientable n-
dimensional , n > 5, strictly pseudoconvex CR-manifold is embeddable
in some C¥. On the other hand 3-dimensional compact orientable CR-
manifolds are not necessarily embeddable, the first example is attributed to
Andreotti in [R].

Nirenberg [N] constructed, for the first time, examples of locally non-
embeddable of 3-dimensional strictly pseudoconvex CR-manifolds. The situ-
ation was further clarified by Jacobowitz and Treves [JT1,2], toshow that, in
fact, non-embeddable CR-structures are dense in the space of CR-structures
over a J-dimensional manifold. See [F] for a different approach based on
pasting of structures. In the higher dimensional case, local embeddability
occurs always in dimensions greater than 5 [K],[A], but the 5-dimensional
case is not settled.

In this paper we construct global examples of open non-embeddable
strictly pseudoconvex CR-manifolds in any dimensions and use dilations
to get examples in small open sets. In dimension 3 we obtain, in a limit, lo-
cal non-embeddable examples, but in higher dimensions the limit structure
loses continuity at one point.

The author would like to thank Prof. M. Malinski for usefull discussions.



2 Global examples

We start collecting the following definitions. Let M be a real maaifold
of dimension 2n+1.

Definition 1 A CR-siructure over M is given by a subbundle A'® of the
complezified tangent bundle TcM such that

$)A'NAID =

ii)A'® is involutive, that is, if L and L’ are local sections of A'®, then
sois [L,L’).

Observe that if M is embedded in C™*! then naturally A'® = TcM n
Tlp(cn+l)_

If M is three dimensional, a CR-structure is given simply by a complex
vector field with linearly independent real and imaginary parts at every
point.tex

Consider a manifold M with CR-structure A0,

Definition 2 A CR-Junction on M is a function [ such that L{=0 for any
local section L of A'P.

Definition 3 A CR-structure A'® on M is embeddable if there exists an
embedding F : M — CN for some N, where F.(A'?) C T'9(CN),

A CR-structure on M is locally embeddable at p € M, if there exists a
neighborhood of p which is embeddable.

In [F] global examples of non-embeddable CR-structures are constructed
over the 3-dimensional sphere S3. The examples can be defined on suffi-
ciently large open subset of S3.

As a specific example, consider SU(2) acting on C? as a matrix group.
If G C SU(2) is a finite group, it is a classical result that G\C? can be given
a structure of an analytic space with one isolated singularity.

For instance, if

G=c:..={ (g g)esum) | g =1 }

then Ay, = G,\C? is isomorphic to the hypersurface defined by the
equation x)X; — X;* = 0 We have then the diagram



$ o
| !
G\S® — A

Let Ag_, = { (x1.x2,X3) € C?| x;x3 — x5 = ¢ } be a smoothing of the
singularity. Then M. = Af_, N S% is diffeomorphic to G, \S? for small c. As
M. is an hypersurface in A{_,, it has an induced CR-structure. Let the CR-
structure on S3 be given by the pull-back by a covering map x. : §* — M,.

Theorem 1 Consider S* with the CR-structure given by x-1{A'9(M.)}.
Then CR-functions on $° are pullbacks of CR-functions on M.

Rossi's example is contained in this list. Especifically we have: Let
(21,22) be coordinates on C? and S3 € C? given by |z, |* +|2z3)* = R.
Consider the smoothing V, = {(x,y,z) € C? | xy —z? = ¢} and the map
xe 1S3 — V_ given by

€
i3 5 2
X—Z]+R221

€.
y=21+ ﬁzlz
£ oo
Z=2%27 — i—znl;
It is a simple matter to verify that the vector field on S5

a d

Sk 7 ekl b
3Z| az:

L

defines the standard CR-structure induced by the standard imbedding in
Cz,
The CR-structure induced by the immersion x, is given by

€
Z=L+ﬁ—,E

In this CR-structure CR-functions are symmetric, that is, f(z;,2;) =
f(—21, —23). We will use the following generalization of this example:

Theorem 2 ([F]) Even if Z is only defined on a neighborhood of the equator
Rez) = 0, CR-functions are also symmetric on a smaller neighborhood of
the equator.



To get global higher dimensional examples, we will consider the (2n-1)-
dimensional sphere $2*~! C C®, §%3°~1 = { (24,...,2,) € C" | |2, + |z3|? +
-+ |mfF=1}.

Our construction will be on a neighborhood of the z;z; — equator. Let
Es = { (21,.-22a) € $% ! | [23]2 + ... + |20]® < 6 } The standard structure
is generated by the fields:

L=zl _5 0
L 'Bi,- J(’Ji;
For instance on the z,z; — equator we have the vector field

Tl 2 Pyl i
N =% T oz,
To construct the non-embeddable example, define the action Z, x C® —
oL
(lh eeey Zn) — (—Zh eesy —Zn)

As in the two dimensional case we obtain

Z\Ca = Vo = { (x,5,2,W3, e, W) | xy =22 = 0 }
And if we define the smoothing

Ve={(x,y,2,W3,..,Wn) | xy =22 = ¢ )
and the map x,: E; — V, given by
€ _
i

€.
Y=l§+§5‘zlz

€ _
=223 — Flllz

W3 =23

x =12} +

Wp = 2g



where R = 1 = (|z32 + ... + |za)?).
Using theorem 1 we obviously get the following:

Theorem 3 The CR-structure on Eg induced by x, is nol embeddable.

The CR-structure is generated by the vector fields:

a /]
Z; = z;a—ij - z,-a—i;
if i and j are different from 1 and 2 and
8
Z = z.(zla_ + zgazz) R 7,

and ¢
Zn =L+ ﬁ-{f where L =Ly,

Observe that, as in the case of the 3-dimensional sphere, we need this
structure defined only in a sufficiently large open subset of E;. Also the

deformation of the CR-structure is reflected only in the field Z,.

3 Dilations and local examples

We will work out the formulas for the three dimensional case.

higher dimensional case is similar. The simplest way to describe a dilation
is using the quadric instead of the sphere. We relate them using the Cayley

transform.
Q={(x2)eC|Imz=|x*)
S ={(z122)€C? | [P +|za|* =1}
we define 3 ol o
-1.9_, 63 = o
C1':Q—-8" as 7y +lz; s
The inverse transform is
.1+2 . I2
. 3—0 = - = -
C:§ Q as z lzl_]x o1

The standard vector field over Q is given by

d _(z-i)? i)

B2 - ixg)
”az z'(’)z )= z+i1 '20% 0z

C.(



The non-embeddable structure constructed in the previous section is
therefore the vector field on the quadric given by

(z—l) 18
z4+1 '20x

a

Yoo+

As in the case of the sphere, this structure is not embeddable even if it is
defined on a small neighborhood of the image of the equator (Imz,)? 4|z3|% =
1, that is, |x|* + (Rez)? = 1.

We will construct now a local example by bringing this non-embeddable
structure arbitrarily close to the origin using dilations.

A dilation in the quadric is the map T\(x,z) = (tx,t?z) where t € R*.
If we suppose that t is a function of (x,z) then we obtain after some compu-
tation T;1(Z,) = L 4 ¢L where

C.(Ly + En) = a%]'*'

i

(22 - i)? .8 19— ix$ .0 a

@ 7t 5)
4 7 %2 42
L=+n 2ax T T ARG+ xG + 220 + 228 (xa' nt 2% e ]

If t is constant we obtain the vector field

_(t=-i2a ixa]
Ttz i) [20% F73
Therefore the CR-structure defined by L + (L. is the same as the one
defined by the vector field

19 ix (t?z4i)3 1 a

~20x + (t’z 1)3[55 . *o:

Let t(x,z) be a function which is constantly equal to t, = n on the
annulus A, = {(x,z) € Q | ﬁﬁ)" < |x|* 4+ (Rez)? < T;\—}m}. By using
the dilation Ty, we obtain a CR-structure which is not embeddable on this
annulus. Observe that it is a tubular neighborhood of the image of the
equator |x|*+(Rez)? = 1 by the inverse dilation T;;'. We find now a function
€(x,z), constant on those annuli, which makes the field Z! differentiable at
the origin. For instance, we can choose the function

t2 + )3 '_ +)
(tz: :)3 Z‘"(x’ (lzf :):\

where ¢,(x,z) has compact support on

G



TEYaL < [x|* + (Rez)* < a5y
and is constant on the annuli A, with 0 < § < & and such that the
C® — norm decreases fast enough. We obtained the following

Theorem 4 Z! is not locally embeddable at the origin (z,2)=(0,0).

Observations:

1)Z! can be made arbitrarily close to the standard field Z by making ¢
arbitrarily small.

2)We didn't use the formula for the pull-back with variable t(x,z). If we
had used it, we would lose continuity of the structure at the origin. In the
higher dimensional case we are obliged to use that formula, to garantee the
integrability of the CR-structure, and therefore we get a CR-structure on
the neighborhood of the origin which is not continuous at the origin.
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