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ABSTRACT. M. Daher [8] showed that if (Xo,X1) is a regular couple of uni-
formly convex spaces then the unit spheres of the complex interpolation spaces
Xg and X, are uniformly homeomorphic for every 0 < 6,7 < 1. We show that
this is a rather general phenomenon of the interpolation methods described by
the discrete framework of interpolation of [13].

1. INTRODUCTION

M. Daher showed in [8] that in many natural situations complex interpolation
generates uniform homeomorphisms between the unit spheres of the interpolated
spaces (this result was obtained by Kalton independently [2, page 216]). More
precisely:

Theorem 1.1 (M. Daher). Let (Xo,X1) be a regular compatible couple of uni-
formly convex Banach spaces. Then for any 6,n € (0,1) the spheres of the complex
interpolation spaces Xg and X, are uniformly homeomorphic.

Daher’s Theorem is not exclusive to the complex method. The reiteration the-
orem between the real and complex methods [3, Theorem 4.7.2] shows that the
interior of real interpolation scales are preserved by complex interpolation (at least
up to equivalence of norms). Therefore, if one starts with a regular compatible
couple (Xp, X1) of uniformly convex spaces and takes 0 < 6y < #; < 1 and
1 < py < p1 < o0, a uniform homeomorphism between the spheres of Xy, p,
and Xy, p, may be found by considering complex interpolation between Xy, ,» and
Xy pp with 0 < 0y <6 <61 <607 <1and0<py <po<p1 <py <oo. By [l3,
Example 6.6], we have similar results for the Rademacher, v and (sometimes) the
a methods.

General interpolation frameworks serve as unifying umbrellas under which var-
ious interpolation methods can be comprehensively described. This perspective is
valuable for demonstrating that results obtained in one method can be applied to
other ones. For example, using the Cwikel-Kalton-Milman-Rochberg framework
of pseudolattices [7], Ivtsan showed in [9] that Stafney’s Lemma holds in many
interpolation methods.
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Our goal is to show that one does not need to pass through complex interpolation
to obtain Daher’s Theorem, but, instead, that it is a general feature embedded into
the discrete framework of interpolation of Lindemulder and Lorist presented in [13].
So in principle one does not need a reiteration theorem with the complex method
to have uniform homeomorphisms between spheres of interpolation spaces.

The classical example is the couple (L, Ly, ) where 1 < py # p1 < oo, for
which the induced uniform homeomorphisms are the Mazur maps [15]. Extending
a result of Odell and Schlumprecht [16], Chaatit proved that the unit sphere of a
Banach lattice X with a weak unit which does not contain uniform copies of ¢2 is
uniformly homeomorphic to the unit sphere of a Hilbert space [5]. Daher’s Theorem
may be used to give a proof of Chaatit’s result: an extrapolation theorem of Pisier
[17] (extended by Kalton in [10]) ensures the existence of a regular compatible
couple (Xg,X7) of uniformly convex spaces such that for some 6,7 € (0,1) we
have Xg = X® (the 2-convexification of X) and X, is a Hilbert space. Daher’s
Theorem then gives a uniform homeomorphism between the spheres of X2 and
X, and all that is left to do is showing that the spheres of X (2) and X are uniformly
homeomorphic. See an exposition of these results in [2, Chapter 9]. See also [1] for
a finite-dimensional quantitative version of Daher’s Theorem with an application
to the Approximation Near Neighbor search.

In light of the facts of the previous paragraph, an extension of Daher’s Theo-
rem to other interpolation methods might be useful in the uniform classification of
spheres of Banach spaces. In particular, it would be interesting to obtain extrapo-
lation results akin to those obtained by Pisier’s, that could work for other methods
(or, for that matter, to obtain a Kalton Calculus [10] for other methods).

Our proof highlights an often neglected feature of the complex method of inter-
polation, namely, that associated to a couple (X, X1) one does not have simply
an interpolation scale (Xg)o<o<1, but an interpolation family (X )o<re(z)<1. Most
of the time the family is overlooked because X, = Xge(.) isometrically, but that
need not be true for other methods. Our proof of Daher’s Theorem attests that the
following comment from [6] does not only applies to the complex method:

“The current theory of interpolation involves the intermediate spaces between
two given Banach spaces (the ‘boundary’ spaces). It is our claim that the natural
setting for the complex method of interpolation involves a family of ‘boundary’
Banach spaces distributed on the boundary, 0D, of a domain in C.”

It is worth noting that the Lindemulder-Lorist framework for interpolation of
[13] is at the same time more general and more restrictive than the Cwikel-Kalton-
Milman-Rochberg framework of [7]: more general because it does not necessarily
define interpolation functors; and more restrictive because all the sequence struc-
tures admit differentiation, in the language of [7]. Our results may be adapted to
the framework of [7].

2. THE DISCRETE FRAMEWORK FOR INTERPOLATION

For background on interpolation spaces we refer the reader to [3]. The authors of
[13] provided a general framework that encompasses many interpolation methods.
We describe it now with some adaptations: first, instead of restricting our interpo-
lation parameter 6 to (0, 1) we allow it to be any complex number with real part in
(0,1). Second, instead of taking a maximum for the norm of intersection spaces we
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take an fo-norm. It is clear that this last change will give the same interpolation
spaces up to equivalence of norms, which in turn will not impact the existence of
uniform homeomorphisms with respect to the original norms.

Let X be a complex Banach space, and let £°(Z; X) be the space of X-valued
sequences. A sequence structure on X is Banach space & contained in ¢9(Z; X)
which is translation invariant and for which we have norm 1 inclusions

MZ; X) C & C (2 X)

The couple X = [X, &] is called a sequentially structured Banach space. If a € C*
we let &(a) be the space of all ¥ = (x,) € (°(Z, X) such that

17| s(a) = (a"ap) |l < o0

A couple X = (X, X;) of Banach spaces is called compatible if we are given a
Hausdorff topological vector space V' and continuous linear injections ig : Xg — V
and 71 : X7 — V. Notice that there are many ways one can see a given couple as
compatible, but the terminology means that we have fixed one such choice of V', ig
and ¢;. Usually one replaces V' by the so called sum space

E(X) =Xo+ X1 = {’Lo(xo) + il(xl) txg € Xo,x1 € Xl}
endowed with the complete norm
[z]l = inf{||lzol[x, + lz1llx, : @ = io(wo) +i1(z1)}

and treat ip and i; as inclusions. Eventually we will need to consider the equivalent
norm

. 1 . .
/I, = nf{(lzoll%, + lz1[l%,)? @ = io(x0) + ir (1)}

and we denote Xo +2 X1 = (X0 + X1, - [|5,)-

Suppose we have a compatible couple (Xg, X;) of Banach spaces such that each
X; is a sequentially structured Banach space, i.e., we have sequence structures
X; = [X;,6,]. The couple (Xy, X) is called a compatible couple of sequentially
structured Banach spaces.

For a compatible couple (Xy, X7) we denote by Xy Ny X7 the space Xo N X3
with the norm [|z||x,n,x, = ([|z]/%, + ||SC||§(1>% The couple (Xo, X7) is said to be
regular if Xo N X7 is dense in Xy and in X;.

Let S={z € C:0<Re(z) <1} and let z € S. For x € X+ X; we let

= . S " 1
z]l. = inf [#]leq(e-2)nme:(e1-2) = nf (11, =) + [12]E, @1-5))
where the infimum is over all sequences 7 = () € Gp(e™?) N &S1(e!~7) such that
x =Y. x in Xo + X;. Define
kEZ

(XO,Xl)z == Xz = {SU S XO +X1 : Hx”Z < OO}

This definition recovers the spaces (Xp, X1)g of [13] for 0 < 8 < 1 (with an equivalent
norm). One may check that the spaces (Xp, X1), satisfy an interpolation estimate
like the one of [13, Theorem 5.2], substituting e? by efe(2),
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3. OPTIMAL REPRESENTATIONS

One important step in the proof of Daher’s Theorem for the complex method is
the following result on optimal representations [8, Proposition 3]:

Theorem 3.1. Let (Xo,X1) be a regular compatible couple of reflexive Banach
spaces. Let 6 € (0,1).

(1) If x € Sx, then there is g in the Calderdn space H*>(Xo, X1) such that
g(0) = x and ||g(j +it)|[x, = 1 for almost every t, j = 0,1. In particular,

gl = llzllo-
(2) If Xy is strictly convex then g is unique with the property that g(8) = x and
lgll = [l=le-

Let (X, X1) be a compatible couple of sequentially structured Banach spaces,
z € S, and consider the map

Y :Go(e )Ny Gy ™) = X + X,

given by X(Z) = >, ., 73 Following [13, Remark 3.2], it is possible to prove that
¥ is well-defined and bounded. It follows directly from the definitions that we have
an induced isometry

5 Go(e™?) N2 Gy (e'™7) [ker ¥ — (Xo, &1).

Definition 3.2. A sequentially structured Banach space X = [X, &] will be called
reflexive (resp. strictly convex, uniformly convez) if so is &. A compatible couple
(Xo, X1) of sequentially structured Banach spaces is called regular if so is (Xg, X1).

Notice that if X = [X, ] is a sequentially structured Banach space then X is
a subspace of &, and therefore if X is reflexive (resp. strictly convex, uniformly
convex) then so is X. We at once get the following result:

Theorem 3.3. Let (X, X1) be a compatible couple of sequentially structured Ba-
nach spaces and let z € S.
(1) If Xy and Xy are reflexive then given x € Sx. there is & € Ggpe™%) Ny
S1(er™#) of norm 1 such that ¥(T) = .
(2) If Xy and Xy are strictly convex then the previous element T is unique.

To continue, Daher uses properties of the function g of Theorem 3.1. We shall
therefore use the complex description of the discrete framework of interpolation. If
X is a Banach space let H(S, X) be the space of analytic X-valued functions on S.
We will say that f € H(S, X) is 2n-periodic if f(z + 27i) = f(2) for every z € §
and let f,(t) = f(z +it) be defined for ¢ € R..

Let us consider the space H,(S, X) of 2m-periodic functions in H(S, X). For
those functions it makes sense to take Fourier coefficients:

f2(k)

1 2 .
= — f(z+it)e *dt

21 Jo
for k € Z. According to [13, Lemma 4.1], the sequence (e =% f,(k))rez is indepen-
dent of s € (0,1). Similarly, we have:

Lemma 3.4. If z,w € S then the sequences (e ** f.(k))rez and (% fo,(k))rez
are equal, i.e., (e ¥ f,(k))rez is independent of z € S.
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The lemma above implies that the following definition is independent of zy € S.
Let (Xy, X1) be a compatible couple of sequentially structured Banach spaces and
define H2 (S, Xo, X1) as the space of all f € H.(S, Xo + X;) such that

1£ll22 = (2ol &g e-s0) + 120l 1-20))F < 00

As in [13, Lemma 4.2], the map f — fZO is an isometric isomorphism from
H2(S, Xy, X1) onto Sg(e™20) Ny &1 (el ~20). Its inverse is given by

I f(z) = Z ekFz=20) g,
keZ

It follows at once that
(3'1) ||xHZO = lnf{”fH?-lfr : f € ,H?r(Sv‘XO?Xl)a f(Zo) = x}
Let &, : H2(S, Xy, X1) — X + X; be given by 8., (f) = f(20)-

Lemma 3.5. 6., is bounded and X,, = HZ(S, Xp, A1) /ker Oz tsometrically.

Proof. The first part follows from the commutative diagram

H?T(S’ XO7 Xl) —_— 60(6720) Mo 81(617’20)

T
Xo+ Xy =——X0+ X

where the horizontal arrow is the isometry described above. The second part of the
result is simply (3.1). O

We get at once:

Theorem 3.6. Let (Xy, X1) be a compatible couple of sequentially structured Ba-
nach spaces and zy € S.
(1) If Xy and Xy are reflexive, then given x € Sk, there is f € HE(S, Xy, X1)
of norm 1 such that f(zy) = x.
(2) If Xy and Xy are strictly convex then the previous element f is unique, and
we denote it by T, (x) and call it the optimal function associated to x.

Our goal is to show that, for any z € S, z — T',,(x)(z) is a uniform homeo-
morphism between the unit spheres of &, and X,. For that we need to show that
IT., (x)(2)]|lx, = 1, what will be done via duality.

4. DUALITY

In [13] the dual of the interpolation spaces is described up to equivalence of
norms. We will need an isometric description. With that purpose in mind, we will
have consider more properties of sequence structures. A sequentially structured
Banach space X = [X, &] is called reflection invariant if for every (xx)rez € & we
have ||(zg)rezlle = |(@—k)rezlle. I lim, o Cp@ = T for every & € &, where C,,
is the Cesaro operator

1

C,% =
v n+1

Zn:(... 0,2 s T, 0,00

m=0
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space. If X is a ¢g-sequentially structured Banach space and a € C then X (a)* =
X*(a1) isometrically (see the commentary after [13, Lemma 3.13]).

and sup,, ||Crlle < ||7]le then X is called a co-sequentially structured Banach

Definition 4.1. A regular couple (X, X1) of cg-sequentially structured Banach
spaces which are reflection invariant will be called a star couple. A star couple of
reflexive sequentially structured Banach spaces is called a reflexive star couple.

Let (Xp, A1) be a star couple. Recall that we have
XZ = 60(€7z) ﬂ2 61(6172) /ker b

Notice that Sg(e™*) Ny S1(e!™?) is a closed subspace of Gg(e™*) By S1(e! 7).
Under this identification,

ker ¥ = {(#,%) € Sg(e *) @y G1(e' %) : XF =0}
and from the continuity of ¥ on Sy(e™*) Ny &1(e!~%) we have that ker ¥ is closed
in Go(e %) @y &1(e!~?). It follows that
* 1
X = (ker %) /(60(67'2) Ny &1 (el2))L

isometrically, where the annihilators are taken inside (Sg(e™*) ®2 &1 (et 7%))*. We
have:

(So(e™) @2 G1(e' ™))" = Gj(e) @2 67(e*7)
and by reflection invariance
&j(e?) @2 61 (") = &j(e77) @2 &i(e' )
The sum operator ¥ does not care about reflection, therefore (ker )= is still the
same.

Lemma 4.2. (ker )+ = {(2*,y%) : Fa* € X§ + X; : 2} +yi = a* Vk}.

Proof. Let (z*,4*) € (ker £)*, and let € XN X;. Let j € Z*. Consider the
sequence Z = (z)rez such that zp = x, 2_; = —z, and 2z = 0 otherwise. Then
Zecker ¥, and 0 = (2%, 9%)(2) = (x5 +v5 — x} — yj)(w). Since Xo N X; is dense
in Xy and X3, it follows that zj + y5 = x§ + yj for every j. The other inclusion is
clear. (I

Lemma 4.3. (Sg(e™%) Ny &1 (e!2))t = {(z%, —2%) : 2% € &j(e %) N &L (e )}
Proof. Let (z*,y*) € (Sg(e?)N2G; (e 7))L, Given any 2 € XoNX; and j € Z, let
Z be the sequence such that z_; = x, and z; = 0 otherwise. Then 0 = (z*, y*)(?) =
(z7 +y;)(x). It follows that x* = —y*. The other inclusion is clear. O
Motivated by the previous results, for z € S we let
X;n = {{I? € Xo+ Xy : ||( LT, L, T, )||60(e—z)+261(51—z) < OO}

We notice that X! already appears in [13, Section 3.3] for z € (0,1), with an
equivalent norm.

Theorem 4.4. Let (Xy, X1) be a star couple. Then X = (X*)T* isomelrically.

z
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Proof. We have seen that

e = (ke D) fgy(e) & (1))
By Lemmas 4.2 and 4.3, X} is the quotient of
{(@%, %) : Ja* € Xg+ X7 :af +yp = 2" VE} C &j(e™) @y &% (e 77)
by
{(z*, —2*) : 2% € Gp(e ?)* NGy (e %)}

The pairs (2%, y*) and (r*, %) are equivalent if and only if there is z* € X + X}
such that 2™ =z} + y; = ri + t}, for every k. Therefore

. - = 1
12" e = (¥ (1G5 (o= + 157 ]1&5 e1-5))?

where the infimum is over all 2*, y* in the indicated spaces such that =} 4y = 2*
for every k. That is the norm of z* in (X™*)7". O

We at once get existence of an optimal representation for elements of X7

Lemma 4.5. Let (Xp, X1) be a reflexive star couple and let z € S. Then every
element x of X7 admits a representation (x*,y*) such that z* = xy + yp for every

k and

- - 1
o e = (111 oy + 15715 e1--)

5. DAHER’S EXTENDED THEOREM

To prove Daher’s Extended Theorem, we will use optimal representations to
associate to an element r* € X7 an analytic function g on the strip such that
g(z0) = 2" and [|g(2)| x> < ||x"‘||;(z0 for every z € S. That is, g will play the role of
the optimal function of Theorem 3.6.

Lemma 5.1. Let (Xo, X1) be a reflexive star couple. Let x* € X7 and take o,y
such that x* = x}, + y;, for every k. Define Ax* by (Ax*)p =} —zf_, = —(y} —
yi ) € X§NX;. Then SAz* = z* and Az* € &j(e™*0) N &;(e!~%).

Proof. Tt is similar to the case zyp € (0,1), which is in the proof of [13, Theorem
3.12]. O

Lemma 5.2. Let (Xo, X1) be a reflexive star couple. Let x* € X7 and take &yt
- - 1
such that v = o+ i for every k and |2z, = (1% [3 ooy + 157 [ (1--00)-
Define Ax* as in Lemma 5.1 and
g(z) =Y _ (A7),
keZ

Then for every z € S we have
lg()lle: < ll2% (|2,
Proof. We have
g(z) =Y T (At) = Y TN af —af ) = = YT (g i)

kEZ keZ keZ
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n &)
Let a, = >, eFGE=#)(zf —27 Yandb, = > eFe=20)(zf — 2} ). Then
k=—oc0 k=n-+1
ap, + by, = g(z) for every n and

n

ldlese-s = 10D e (@) —zi_))nlls;
k=—o0
n
= 10 @k —2i))allss o)
k=—o00

= |[(@)nllese—=o0)
Similarly, HB’HGI(SFZ) = ||(y;;)n”6»{(61720). Therefore [[g(2) x> < Hx”xz*o. O

Definition 5.3. A Daher couple is a star couple of uniformly convex sequentially
structured Banach spaces.

Theorem 5.4. Let (Xp, X1) be a Daher couple and zo € S. Let Ty, @ X,, —
H2(S, Xo, X1) be the application that sends x to its optimal function (see Theorem
3.6). Then for every z € S we have [T, ()(2)|l: = [|2||2 -

Proof. Let x € X,,. Take z* € X} = (X*)]" such that ||x*||(X*);'5 = |zlla., =
2*(x) = 1 and an optimal representation x*, y* of 2*, that is, z* = 2} +y; for every
k and
1= Jl2*(las, = (l2*]18 + 1y I8 )?
- Xz, T UIF leg(e=0) T 1Y Nl 1 (et—20)

Let Az* be as in Lemma 5.1 and g be as in Lemma 5.2. Consider the function
F :S — C given by

F(z) = (9(2), T (2)(2))

Since the series that defines F'(z) converges uniformly on compact subsets of S,
F is analytic (see the proof of [13, Lemma 4.2]). Also, F'(zp) = 1 and for every
z€S

[F(2)]

{9(2), T2 () (2))
lg()ll 2z, Tz (2) (2) | 2.,
1

IAIA

because of Lemma 5.2. By the Maximum Modulus Principle, F = 1. The result
follows. 0

Observation: For the previous result we only needed reflexivity and strict
convexity, not uniform convexity.

Our goal now is to show that the map I', from Theorem 5.4 is uniformly contin-
uous, and that the induced map I, ,, : ¢ — I',(z)(w) is a uniform homeomorphism
between the spheres of X, and X, for z,w € S.

Theorem 5.5. Let (Xp, X1) be a Daher couple and let z € S. Let T', : Sy, —
H2(S, Xy, X1) be the application that sends x to its optimal function. Then T, is
uniformly continuous.
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Proof. Let 6 be the modulus of convexity of HZ(S, Xy, X1). For z,y € Sx. let
fo =T(z) and f, =T.(y). It follows that

‘ w N <1=6(1fe = fyllrzs.x0.21))
So
x;yxms1aw;@mﬁ@%xm
Therefore
z—y 1_||* Y
2 X, 2 X
> 1-— (1 = 0(|[fz — fyllﬂa(s,xo,%)))

= 0(lfe = fyllmz s,x0,20))
If we let B(t) = sup{u > 0:6(u) <t} then

1o = fullrz oy < BNz = lla, /2)
Since lim;_,o 8(t) = 0, it follows that T', is uniformly continuous. ]

Theorem 5.6 (Daher’s Extended Theorem). Let (Xy, X1) be a Daher couple and
let z,w € S. Let T, : Sy, — HZ(S, Xy, X1) be the application that sends x to
its optimal function. Then T, ., : Sx, — Sx, given by I'; ,,(z) = T'.(z)(w) is a
uniform homeomorphism.

Proof. The map I', ,, is surjective because its inverse is I'y, .. Since

ITw(2) = Tz w(y)llx, = [IT-(2)(w) = T2 (y)(w)]

it follows from Theorem 5.5 that I'; ,, is uniformly continuous. Similarly, I'y, . is
uniformly continuous. O

xw S T(2) = T (W) ll22 5.20.20)

Notice that the interpolation space X, is a quotient of H2 (S, Xy, X1) for every z €
S, and therefore we are using the same space of functions to define all interpolation
spaces. In turn, in Daher’s formulation the complex interpolation space X, is a
quotient of a distinct space F, for each z € S. The use of different spaces of functions
is responsible for the following in Daher’s work: in principle one may only bound
the modulus of continuity of the maps I', ., for 0 < a < Re(z),Re(w) < b < 1 (see
[2, Proposition 9.13]). Since in the discrete formulation all interpolation spaces are
defined through the same function space, we get:

Proposition 5.7. Let (X, X1) be a Daher couple. Then there is a map v satisfying
lim._,oy(e) = 0 such that the modulus of continuity of I', ,, is bounded by ~ for
every z,w € S.

Of course, the previous result is isometric in nature, and therefore depends on
the particular representation of the discrete framework of interpolation.

Through the rest of this section we let (X, X1) be a regular compatible couple
of uniformly convex Banach spaces.
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5.1. Real method. Let pg,p1 € (1,00) and consider the sequence structures &; =
i (Z,X;). The corresponding couple of sequentially structured Banach spaces
(Xo, X1) is Daher, and therefore Daher’s Extended Theorem applies. We have that
(Xb, X1). equals the interpolation space s(pg, — Re(z), Xo;p1,1 — Re(z), X1) given
by the Lions-Peetre mean method of [14] with equivalence of norms. Therefore,
(Xp, A1) is a renorming of the real interpolation space (Xo, X1)ge(z),p given either

by the J- or the K-method, where % = %j(z) + R;—(lz).

5.2. Complex method. Since we are dealing with reflexive spaces, the lower and
upper complex methods agree, so we only need to describe the lower method.
Let po,p1 € (1,00) and consider the sequence structures &; = Lps (T, X,) of
Fourier coefficients f = (f(k))rez of functions in LPs (T, X;), with Hf“LPJ (T,X;) —

(27r)%||f||ij (T,x,)- Again, (Xp, A1) is a Daher couple. We have that (Xp, A1),
equals (Xo, X1)Re(z), the complex interpolation space of Calderén [4], with equiva-
lence of norms. We therefore recover Daher’s theorem.

5.3. Rademacher and 7 methods. We now describe the Rademacher method
of [11]. Fix p € (1,00) and let (ex)rez be a sequence of independent Rademacher
random variables on a probability space (€2, P). Consider the sequence structures
S, = €eP(Z, X;) of all & € (°(Z, X;) given by

|Zler z.x,) = | Y enullLrix,) < o0
keZ
The couple (Xp, X;) is Daher, and the interpolation space (Xy, X1) . is the Rademacher
interpolation space (Xo, X1)z.-

The ~ interpolation method is defined similarly to the Rademacher method, but
instead of Rademacher variables we take Gaussian ones, and Daher’s Extended
Theorem also applies. It is worth noting that the Rademacher and the v methods
agree for spaces of finite cotype ([12], see also the comments after Definition 10.17
and Proposition 10.39 of [18]).

5.4. a-method. The a-method is defined in [12] through the notion of Euclidean
structures. Whether the a-method gives Daher couples or not depends on the Eu-
clidean structure being considered. For example, the Gaussian Euclidean structure
gives the v-method, and therefore Daher’s Extended Theorem applies. However, if
we take the operator norm Euclidean structure on ¢; uniform convexity is lost.

As mentioned in the introduction, all the methods above satisfy a reiteration
theorem with the complex method, as follows: if (X, X1) is a compatible couple
of Banach spaces let us denote by [Xj, X1]p its complex interpolation space at
6 € (0,1). According to [13, Example 6.6], if (X, A1) is a star couple such that
there is a constant C' > 0 for which ||(e“‘”'sa:k)H6J < C|@|g, for every ¥ € &,

7 =0,1and s € R, then we have
[(Xo, X1),, (Xo, X1)e,]0 = (X0, X1)w

with equivalence of norms for every 0 < 6y < 61 < 1 and 6 € (0,1) with w =
(1—-0)0g+00;. As such, we could have already obtained uniform homeomorphisms
between the unit spheres of interpolation spaces generated by such methods by
passing through complex interpolation. Examples that do not satisfy the hypothesis
of [13, Example 6.6] may be built using a variation of James’ space.
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