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Abstract

Rational McNaughton functions may be implicitly represented by logical formulas in �Lukasiewicz Infinitely-
valued Logic by constraining the set of valuations to the ones that satisfy some specific formulas. This
work investigates this implicit representation called representation modulo satisfiability and describes a
polynomial algorithm that builds it — the representative formula and the constraining ones — for a given
rational McNaughton function.
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1 Introduction

The ability to represent any piecewise linear function with a logical formula allows

us to apply automated reasoning techniques to the study of real systems, whose

behavior is either modeled or approximated by such a function. However such an

ability will only be effective if there are efficient ways to generate a formula in a

target logic in which reasoning is not exceedingly complex. Classical logic with

its binary semantics, despite of being a natural target for representing Boolean

functions, may not be the natural way to represent continuous functions which

inevitably would require some encoding of rational or real numbers; so we follow

the path of electing some form of many-valued logic, whose semantics range over

rational numbers, as a more adequate representation framework. That path has

initially been explored by applications in fuzzy control [5].
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Neural network interpretability is a challenge to the development of artificial

intelligence and is also another motivation for the representation of piecewise linear

functions, as described by [4]. In fact, a neural network, depending on its class

of activation functions, can be seen either as a piecewise linear function or as a

continuous function that can be approximated by one [12].

The first candidate to consider as a target logic is �Lukasiewicz Infinitely-valued

Logic (�L∞), arguably one of the best studied many-valued logics [7]; it has sev-

eral interesting properties such as continuous truth-functional semantics, classical

logic as limit case, and well developed proof-theoretical and algebraic presentations.

Its formulas are known to represent exactly the so-called McNaughton functions,

consisting of [0, 1]-valued piecewise linear functions with integer coefficients over

[0, 1]n [13,15]. This restriction to integer coefficients fails to fulfill, for instance, the

hypotheses for the classic Stone-Weierstrass Approximation Theorem [16] and there

is no known analogous to Proposition 1.1 below for McNaughton functions.

This issue is circumvented by slightly modifying McNaughton functions to al-

low their linear pieces to have rational coefficients — the rational McNaughton

functions; such generalization is enough to perform Weierstrass-like approxima-

tions [5,2]. Figure 1 shows a continuous function f : [0, 1] → [0, 1] (a) with two

possible approximations by rational McNaughton functions: with two (b) and five

different linear pieces (c). Note that continuous functions with more general domain

and range might be normalized in order to perform such approximations.

Proposition 1.1 (Variation of Weierstrass Approximation Theorem [5])

Let f : [0, 1]n → [0, 1] be a continuous function and ε > 0. Then there is a rational

McNaughton function f̃ : [0, 1]n → [0, 1] such that |f(x) − f̃(x)| < ε, for all

x ∈ [0, 1]n.

In this context, the target logic must be a system, preferably based on �L∞,

with semantics that comprehends all rational McNaughton functions and, given

one such function, be endowed with an efficient algorithm that provides a formula

that represents it. Furthermore, we highlight that it would be of little practical use

if the reasoning complexity in such system is exceedingly high.

Esteva, Godo & Montagna propose logic �LΠ1
2 which extends �L∞ with a product

operator, its residuum, and a constant expressing the truth value 1
2 , not directly

expressible in �L∞ [8]. That logic not only allows for the expressivity of rational

McNaughton functions but also expresses piecewise polynomials; as a consequence

satisfiability over �LΠ1
2 requires finding roots of polynomials of n-degree rendering

its complexity extremely high. Aguzzoli & Mundici propose logic ∃�L which also

expresses rational McNaughton functions and has complexity Σp
2 for the satisfiability

problem [2,3]. Logic ∃�L extends �L∞ and introduces rational numbers by providing

restricted form of propositional quantification whose semantic counterpart is the

maximization of a set of �L∞-valuations of a formula.

Gerla introduces Rational �Lukasiewicz Logic by extending �L∞ with division

operators δn that induces division by n ∈ N∗ in its semantics [11]; its associated

tautology problem is coNP-complete, which is a reasonable complexity for this task.
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Fig. 1. Continuous one-variable function approximated by rational McNaughton functions.

This logic expresses all rational McNaughton functions however it was not provided

an algorithm to build the representative formulas, and an attempt to derive one

from the results in [11] would lead to the problem of representing McNaughton

functions in �L∞; it is known that this task may be done in polynomial time on the

coefficients of some specific functions [1], however these methods lead to exponential

time complexity if binary representation of the coefficients is used.

Finger & Preto provide a way to implicitly express rational McNaughton func-

tions in �L∞ called representation modulo satisfiability (�L∞-MODSAT) [10]. For

that, in addition to a representative formula, it is introduced a set of formulas

that constrains �L∞-valuations to those that satisfy all formulas in the set; a ra-

tional McNaughton function f is then represented by a pair 〈ϕ,Φ〉, where ϕ is a

formula that semantically acquires values f(x), for x ∈ [0, 1]n, from valuations in

{v(ψ) = 1 | ψ ∈ Φ}, where Φ is a set of formulas. Instead of an extension of the

logic, this proposal works in �L∞ itself, which has computational problems with rea-

sonable complexity — e.g., satisfiability over �L∞ is NP-complete [14]. Also, there
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already are available implementations of �L∞-solvers which are discussed in the liter-

ature and for which phase transition phenomenon is identified [6,9]. Unfortunately,

an attempt to derive a representation builder algorithm from results in [10] would

also lead to an exponential blow up, since the proposed pairs for representing only

truncated linear functions are already exponential in the binary representation of

their coefficients.

Our goal here is to provide an efficient algorithm that, given a rational Mc-

Naughton function, outputs a pair 〈ϕ,Φ〉 that represents it in the target system

�L∞-MODSAT. We show that all rational McNaughton functions may be represented

modulo satisfiability by a constructive proof from which we derive a polynomial al-

gorithm that builds such representation.

This paper is organized as follows: Section 2 introduces all necessary concepts

of �Lukasiewicz Infinitely-valued Logic and the definition of rational McNaughton

functions; Section 3 has the formalization of the concept of representation modulo

satisfiability; Section 4 provides a convention on rational McNaughton functions

encoding for computation purposes as well as some results about these functions;

Section 5 has a theoretical and algorithmic treatment of a particular case of represen-

tation modulo satisfiability of rational McNaughton functions which are truncated

linear functions; and Section 6 finally treats, also theoretically and algorithmically,

the representation modulo satisfiability of general rational McNaughton functions.

2 Preliminaries

The basic language L of �Lukasiewicz Infinitely-valued Logic (�L∞) comprehends the

formulas built from a countable set of propositional variables P, and disjunction

(⊕) and negation (¬) operators. For the semantics, define a valuation as a function

v : L → [0, 1], such that, for ϕ, ψ ∈ L:

v(ϕ⊕ ψ) = min(1, v(ϕ) + v(ψ)); (1)

v(¬ϕ) = 1− v(ϕ). (2)

One may just give a function vP which maps propositional variables to a value in

the interval [0, 1] and extend this function to a valuation by obeying (1) and (2).

This extension is uniquely defined by such assignment to the variables in P given

by vP.

We denote by Val the set of all valuations; by Var(Φ) the set of all propositional

variables occurring in the formulas ϕ ∈ Φ; and by Xn the set of propositional

variables {X1, . . . , Xn} ⊂ P. A formula ϕ is satisfiable if there exists a v ∈ Val such

that v(ϕ) = 1; otherwise it is unsatisfiable. A set of formulas Φ is satisfiable if there

exists a v ∈ Val such that v(ϕ) = 1, for all ϕ ∈ Φ. We denote by ValΦ the set of

all valuations v ∈ Val that satisfies a set of formulas Φ.
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From disjunction and negation we derive the following operators:

Conjunction: ϕ	 ψ =def ¬(¬ϕ⊕ ¬ψ) v(ϕ	 ψ) = max(0, v(ϕ) + v(ψ)− 1)

Implication: ϕ → ψ =def ¬ϕ⊕ ψ v(ϕ → ψ) = min(1, 1− v(ϕ) + v(ψ))

Maximum: ϕ ∨ ψ =def ¬(¬ϕ⊕ ψ)⊕ ψ v(ϕ ∨ ψ) = max(v(ϕ), v(ψ))

Minimum: ϕ ∧ ψ =def ¬(¬ϕ ∨ ¬ψ) v(ϕ ∧ ψ) = min(v(ϕ), v(ψ))

Bi-implication: ϕ ↔ ψ =def (ϕ → ψ) ∧ (ψ → ϕ) v(ϕ ↔ ψ) = 1− |v(ϕ)− v(ψ)|

Note that v(ϕ → ψ) = 1 iff v(ϕ) ≤ v(ψ); similarly, v(ϕ ↔ ψ) = 1 iff v(ϕ) = v(ψ).

Let X be a propositional variable, then, v(X	¬X) = 0, for any v ∈ Val; we define

the constant 0 by X 	 ¬X. We also define 0ϕ =def 0 and nϕ =def ϕ ⊕ · · · ⊕ ϕ, n

times, for n ∈ N∗; and
⊕

i∈∅ ϕi =def 0.

Adapting the definition in [7], a rational McNaughton function f : [0, 1]n → [0, 1]

is a function that satisfies the following conditions:

• f is continuous with respect to the usual topology of [0, 1] as an interval of the

real number line;

• There are linear polynomials p1, . . . , pm over [0, 1]n with rational coefficients such

that, for each point x ∈ [0, 1]n, there is an index i ∈ {1, . . . ,m} with f(x) = pi(x).

Polynomials p1, . . . , pm are the linear pieces of f .

3 Representation Modulo Φ-Satisfiable

A McNaughton function is a rational McNaughton function whose linear pieces

have integer coefficients. Let ϕ be a �L∞-formula with Var(ϕ) ⊂ Xn, we inductively

associate to ϕ a function fϕ : [0, 1]n → [0, 1] by:

(i) fXj (x1, . . . , xn) = xj , for j = 1, . . . , n;

(ii) f¬ϕ(x1, . . . , xn) = 1− fϕ(x1, . . . , xn);

(iii) fϕ1⊕ϕ2(x1, . . . , xn) = min(1, fϕ1(x1, . . . , xn) + fϕ2(x1, . . . , xn)).

We have that fϕ is a McNaughton function such that

fϕ(v(X1), . . . , v(Xn)) = v(ϕ), for v ∈ Val. (3)

Reciprocally, McNaughton’s Theorem [13] states that, for any McNaughton function

f , there is a formula ϕ such that f = fϕ. We say that ϕ represents f .

Although formulas of �L∞ only represent (integer) McNaughton functions, we

take the strategy of restricting the set Val of valuations in order to implicitly

represent rational McNaughton functions. For that, we start by noting that value

of a formula ϕ according to some valuation v is determined only by the values

associated to a finite set of propositional variables X such that Var(ϕ) ⊂ X; this

very property is the crux for the possibility that logical formulas represent functions.

We next generalize this notion.
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Definition 3.1 Let ϕ be a formula and let Φ be a set of formulas. We say that a

set of variables Xn determines ϕ modulo Φ-satisfiable if:

• For any 〈x1, . . . , xn〉 ∈ [0, 1]n, there exists at least one valuation v ∈ ValΦ, such

that v(Xj) = xj , for j = 1, . . . , n;

• For any valuations v, v′ ∈ ValΦ, such that v(Xj) = v′(Xj), for j = 1, . . . , n,

v(ϕ) = v′(ϕ).

For instance, for any formula ϕ such that Var(ϕ) ⊂ Xn, Xn determines ϕmodulo

∅-satisfiable, by truth functionality and the fact that Val∅ = Val.

It is important to note that any set Xn can now represent a rational fraction
1
d by determining a propositional variable Z 1

d
modulo ϕ 1

d
= Z 1

d
↔ ¬(d − 1)Z 1

d

satisfiable, with d ∈ N∗. In fact, for any valuation v ∈ Val, if v(ϕ 1
d
) = 1, then

v(Z 1
d
) = 1

d . We define representation modulo satisfiability in a way that retrieves

property (3).

Definition 3.2 Let f : [0, 1]n → [0, 1] be a function, and 〈ϕ,Φ〉 be a pair where

ϕ is a formula and Φ is a set of formulas. We say that ϕ represents f modulo

Φ-satisfiable or that 〈ϕ,Φ〉 represents f in the system �L∞-MODSAT if:

• Xn determines ϕ modulo Φ-satisfiable;

• f(v(X1), . . . , v(Xn)) = v(ϕ), for v ∈ ValΦ.

Representation modulo satisfiability presented in [10] has a different approach,

which we call function-based and is more restrictive than the one presented here,

which we call formula-based. However, the representation methods and algorithms

we develop in this work apply to both approaches.

4 Rational McNaughton Functions

Our algorithm uses a lattice representation of rational McNaughton functions; be-

fore that we employ an encoding based in [17,18] as follows. Let Ω◦ be the interior

of a set Ω ⊂ Rn. A rational McNaughton function f : [0, 1]n → [0, 1] is given by m

(not necessarily distinct) linear pieces

pi(x) = γi0 + γi1x1 + · · ·+ γinxn, (4)

for x = 〈x1, . . . , xn〉 ∈ [0, 1]n, γij ∈ Q and i = 1, . . . ,m, with each linear piece pi
identical to f over a convex set Ωi ⊂ [0, 1]n called region such that:

• ⋃m
i=1 Ωi = [0, 1]n;

• Ω◦
i′ ∩ Ω◦

i′′ = ∅, for i′ �= i′′;
• Regions Ωi are given in such a way that there is a polynomial procedure to

determine whether or not a linear piece pk is above other linear piece pi over

region Ωi, that is whether or not pk(x) ≥ pi(x), for all x ∈ Ωi.

A rational McNaughton function as above is said to be in regional format. Note that
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Fig. 2. Graph of rational McNaughton function with three linear pieces over [0, 1]2.
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Fig. 3. Some possible region configurations for function f in Example 4.1.

in this format the number of linear pieces is equal to the number of regions; in this

case, the size of a function is the sum of the number of bits necessary to represent

its linear pieces coefficients as fractions a
b plus the space necessary for representing

its regions in some assumed encoding.

Example 4.1 Rational McNaughton function f with graph in Figure 2 may be

given by the linear pieces:

• p1(x1, x2) =
4
9 + 2

3x2;

• p2(x1, x2) =
5
6 − 1

2x2;

• p3(x1, x2) =
4
3 − x1.

Regions associated to each linear piece are depicted in Figure 3(a). Determining if

some linear piece pk is above other linear piece pi over Ωi is equivalent to determining

if the system of corresponding inequalities in Table 1 with added equation pk−pi = 0

has no solution and pk(x0) > pi(x0), for some point x0 ∈ Ω◦
i , a tractable process.

Let f : [0, 1]n → [0, 1] be a rational McNaughton function as defined in Section 2,
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Ω◦
1 Ω◦

2 Ω◦
3

8− 9x1 − 6x2 > 0
1
3 − x2 > 0

x1 > 0

x2 > 0

1− 2x1 + x2 > 0

−1
3 + x2 > 0

x1 > 0

1− x2 > 0

−8 + 9x1 + 6x2 > 0

−1 + 2x1 − x2 > 0

1− x1 > 0

x2 > 0

Table 1
Sets Ω◦

i for function f in Example 4.1.

with distinct linear pieces p1, . . . , pm. For each permutation ρ of the set {1, . . . ,m},
we define the polyhedron

Pρ = {x ∈ [0, 1]n | pρ(1)(x) ≥ · · · ≥ pρ(m)(x)}. (5)

Let C be the set of n-dimensional polyhedra Pρ, for some permutation ρ.

Proposition 4.2 The set C has the following properties:

(a)
⋃ C = [0, 1]n;

(b) For polyhedron P ∈ C and indexes i′, i′′ ∈ {1, . . . ,m} with i′ �= i′′, pi′(x) �=
pi′′(x), for any x ∈ P ◦;

(c) P ′◦ ∩ P ′′◦ = ∅, for P ′, P ′′ ∈ C such that P ′ �= P ′′;

(d) For each polyhedron P ∈ C, there is an index iP ∈ {1, . . . ,m} such that f(x) =

piP (x), for x ∈ [0, 1]n.

Proof.

(a) For any x ∈ P ∈ C, x ∈ [0, 1]n. On the other hand, for any x ∈ [0, 1]n, there is

a permutation ρ for which Pρ is n-dimensional and x ∈ Pρ.

(b) Let x ∈ P ◦ and let i′, i′′ ∈ {1, . . . ,m} be indexes such that i′ �= i′′. Since pi′

and pi′′ are linear pieces, if pi′(x) = pi′′(x), for some x ∈ P ◦, there would be

points x1,x2 ∈ P ◦ in a neighborhood of x such that pi′(x1) < pi′′(x1) and

pi′′(x2) < pi′(x2), contrary to the definition of P .

(c) Let x ∈ P ′◦∩P ′′◦. Then, by definitions of P ′ and P ′′, there are i′, i′′ ∈ {1, . . . ,m}
such that pi′(x) = pi′′(x), contrary to item (b).

(d) Let {i1, . . . , ik} ⊂ {1, . . . ,m} be a non-singleton set of indexes such that, for

any x ∈ P ◦, there is l ∈ {1, . . . , k}, such that f(x) = pil(x) and Uil = {x ∈
P ◦ | f(x) = pil(x)} �= ∅, for l = 1, . . . , k. We have that ∪k

l=1Uil = P ◦ and, by

item (b), Uil′ ∩Uil′′ = ∅, for l′ �= l′′. As P ◦ is a connected set, there are distinct

i′, i′′ ∈ {i1, . . . , ik} and b ∈ P ◦ such that b ∈ ∂Ui′ and b ∈ Ui′′ . As pi′ restricted

to Ui′ ∪ {b} is continuous, for any sequence {bn} ⊂ Ui′ such that limbn = b

(which exists since b ∈ ∂Ui′), we have that lim f(bn) = lim pi′(bn) = pi′(b).

However, f(b) = pi′′(b) �= pi′(b), by item (b), contrary to the continuity of f .

�
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Polyhedra in C may play the role of regions since they are convex sets with the

properties above; determining whether a linear piece pk is above other linear piece

pi over P ∈ C comes down to comparing their values for some point x ∈ P ◦. Note

that the same linear piece pi may be associated to many distinct polyhedra. Thus,

any rational McNaughton function may be encoded in regional format. Figure 3(b)

shows the polyhedra-based configuration C for the function in Example 4.1.

The setback with describing a rational McNaughton function using the set C of

polyhedra is that in the worst case |C| = m!. However, in general there are smaller

sets of regions that comply with representation restrictions above [18].

5 A Particular Case: Truncated Linear Functions

Let us show the possibility of representing a rational McNaughton function modulo

satisfiability and develop a polynomial algorithm for computing such representation

in the particular case that function is a truncated linear polynomial with rational

coefficients.

Let p : [0, 1]n → R be a nonzero linear polynomial given by

p(x) =
a0

b0
+

a1

b1
x1 + · · ·+ an

bn
xn, (6)

for x = 〈x1, . . . , xn〉 ∈ [0, 1]n, aj ∈ Z, and bj ∈ Z∗
+. We want to build a representa-

tion for the function p# : [0, 1]n → [0, 1] given by

p#(x) = min
(
1,max

(
0, p(x)

))
. (7)

We have that p#(x) = 0, if p(x) < 0; p#(x) = 1, if p(x) > 1; and p#(x) = p(x),

otherwise.

In order to rewrite expression (6), we define:

αj = aj , for j ∈ P ;

αj = −aj , for j ∈ N ;

βj = β · bj , for j = 0, . . . , n;

where j ∈ P , if aj > 0, and j ∈ N , if aj < 0, with P ∪N ⊂ {0, . . . , n}, and β is the

least integer greater than or equal to

max

⎧⎨
⎩
∑
j∈P

aj
bj
, −

∑
j∈N

aj
bj

⎫⎬
⎭ .

We have that αj ∈ Z+ and βj ∈ Z∗
+, for j = 0, . . . , n. Let x0 = 1 and define

functions pP : [0, 1]n → R and pN : [0, 1]n → R, for x = 〈x1, . . . , xn〉 ∈ [0, 1]n, by:

pP (x) =
∑
j∈P

αj

βj
xj ; pN (x) =

∑
j∈N

αj

βj
xj . (8)
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Lemma 5.1 Functions p, pP , and pN in (6) and (8) have the following properties,

for x ∈ [0, 1]n:

(a) p(x) = β · (pP (x)− pN (x)
)
;

(b) 0 ≤ pP (x), pN (x) ≤ 1.

Proof. By elementary algebraic manipulation. �

Lemma above decomposes function p in terms of pP and pN , let us represent

the latter ones. Let Zp
j , Z 1

βj

∈ P. For a set of indexes J ∈ {P,N}, define:

ϕ̃J =
⊕

j∈J\{0}
αjZ

p
j ; Φ̃J =

⋃
j∈J\{0}

{
ϕ 1

βj

, βjZ
p
j ↔ Xj , Zp

j → Z 1
βj

}
.

And then, define:

ϕ̄J = ϕ̃J ; Φ̄J = Φ̃J , if 0 /∈ J ;

ϕ̄J = α0Z 1
β0

⊕ ϕ̃J ; Φ̄J = Φ̃J ∪ {ϕ 1
β0

}, otherwise.
(9)

Lemma 5.2 Functions pP and pN in (8) may respectively be represented by

〈ϕ̄P , Φ̄P 〉 and 〈ϕ̄N , Φ̄N 〉 in (9).

Proof. Let J ∈ {P,N}. If J = ∅, then 〈ϕ̄J , Φ̄J〉 = 〈0,∅〉 represents pJ . For

〈x1, . . . , xn〉 ∈ [0, 1]n, define a valuation v ∈ Val such that v(Xj) = xj and v(Zp
j ) =

xj

βj
, for j ∈ J \ {0}, and v(Z 1

βj

) = 1
βj
, for j ∈ J . We have that v ∈ ValΦ̄J

.

Now, let v, v′ ∈ ValΦ̄J
such that v(Xj) = v′(Xj), for j = 1, . . . , n. By rational

constant representation, v(Z 1
βj

) = v′(Z 1
βj

) = 1
βj
, for j ∈ J . Thus v(Zp

j ) ≤ 1
βj

and v′(Zp
j ) ≤ 1

βj
, which implies that βj · v(Zp

j ) = v(βjZ
p
j ) = v(Xj) = v′(Xj) =

v′(βjZ
p
j ) = βj · v′(Zp

j ) and, then, v(Zp
j ) = v′(Zp

j ), for j ∈ J \ {0}. Therefore,

v(ϕ̄J) = v′(ϕ̄J) and Xn determines ϕ̄J modulo Φ̄J -satisfiable. Finally, suppose

v ∈ ValΦ̄J
. In the case where 0 ∈ J ,

pJ(v(X1), . . . , v(Xn)) = α0 · v(Z 1
β0

) +
∑

j∈J\{0}
αj · v(Zp

j ) = v(ϕ̄J),

by Lemma 5.1 and aforementioned equations v(Z 1
β0

) = 1
β0

and βj · v(Zp
j ) = v(Xj).

The case where 0 /∈ J is similar. �

For the final step towards a representation for p#, we define:

ϕ̄p = β[¬(ϕ̄P → ϕ̄N )]; Φ̄p = Φ̄P ∪ Φ̄N . (10)

Theorem 5.3 Function p# in (7) may be represented by 〈ϕ̄p, Φ̄p〉 in (10).

Proof. For 〈x1, . . . , xn〉 ∈ [0, 1]n, there exists v ∈ ValΦ̄p
such that v(Xj) = xj as

in the proof of Lemma 5.2 with J = P ∪ N . Now, let v, v′ ∈ ValΦ̄p
such that
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v(Xj) = v′(Xj), for j = 1, . . . , n. In particular, v, v′ ∈ ValΦ̄J
and, by Lemma 5.2,

v(ϕ̄J) = v′(ϕ̄J), for J ∈ {P,N}. Therefore, v(ϕ̄p) = v′(ϕ̄p) and Xn determines ϕ̄p

modulo Φ̄p-satisfiable. Finally, suppose v ∈ ValΦ̄p
. In particular, v ∈ ValΦ̄P

and

v ∈ ValΦ̄N
. If p(v(X1), . . . , v(Xn)) ≤ 0, by Lemma 5.1, pP (v(X1), . . . , v(Xn)) ≤

pN (v(X1), . . . , v(Xn)). Therefore, by Lemma 5.2, v(ϕ̄P ) ≤ v(ϕ̄N ) and, then,

v(ϕ̄p) = 0. On the other hand, if p(v(X1), . . . , v(Xn)) ≥ 0, by Lemma 5.1,

pP (v(X1), . . . , v(Xn)) ≥ pN (v(X1), . . . , v(Xn)). Therefore, by Lemma 5.2, v(ϕ̄P ) ≥
v(ϕ̄N ) and, then, v(¬(ϕ̄P → ϕ̄N )) = 1−min(1, 1−v(ϕ̄P )+v(ϕ̄N )) = v(ϕ̄P )−v(ϕ̄N ).

Finally, by Lemmas 5.1 and 5.2, p(v(X1), . . . , v(Xn)) = β · (v(ϕ̄P )− v(ϕ̄N )), hence

p#(v(X1), . . . , v(Xn)) = v(ϕ̄p) in any case. �

Table 2 shows how functions in Example 4.1 can be represented as in Theorem

5.3.

In order to set up a polynomial algorithm for computing a representation 〈ϕp,Φp〉
for p#, we analyze more closely expressions nψ, which show up in ϕ̄p and in formulas

in Φ̄p. These expressions are exponential in the binary representation of n since

it denotes an n-fold repetition of formula ψ. We deviate from this situation by

using �log n�+ 1 new propositional variables ξ0
ψ, ξ

1
ψ, . . . , ξ

�logn	
ψ and replacing every

occurrence of nψ, where n ∈ N \ {0, 1}, with the formula

ξnψ =def

�logn	⊕
k=0
nk=1

ξkψ, (11)

where nk ∈ {0, 1} comes from the binary representation
∑�logn	

k=0 2knk of n, and by

adding the following formulas to Φ̄p:

ξ0
ψ ↔ ψ;

ξkψ ↔ ξk−1
ψ ⊕ ξk−1

ψ , for k = 1, . . . , �log n�.
(12)

These formulas define the propositional variables ξkψ and we call Ξnψ the set that

comprehends them. In this way we avoid exponential blow up as shown in Theorem

5.5.

Lemma 5.4 Let n ∈ N \ {0, 1}, ψ be a formula, and ξnψ and Ξnψ be respectively

a formula as in (11) and a set as in (12) built from n and ψ. For any valuation

v ∈ ValΞnψ
, v(nψ) = v(ξnψ).
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ϕ̄p1 :
¬
(
Z 1

18
⊕ Z 1

18
⊕ Z 1

18
⊕ Z 1

18
⊕ Zp1

2 ⊕ Zp1
2 → 0

)

⊕¬
(
Z 1

18
⊕ Z 1

18
⊕ Z 1

18
⊕ Z 1

18
⊕ Zp1

2 ⊕ Zp1
2 → 0

)

Φ̄p1 :
Z 1

18
↔ ¬

(
Z 1

18
⊕ Z 1

18
⊕ Z 1

18
⊕ Z 1

18
⊕ Z 1

18
⊕ Z 1

18
⊕ Z 1

18
⊕ Z 1

18
⊕ Z 1

18

⊕ Z 1
18

⊕ Z 1
18

⊕ Z 1
18

⊕ Z 1
18

⊕ Z 1
18

⊕ Z 1
18

⊕ Z 1
18

⊕ Z 1
18

)

Z 1
6
↔ ¬

(
Z 1

6
⊕ Z 1

6
⊕ Z 1

6
⊕ Z 1

6
⊕ Z 1

6

)

Zp1
2 ⊕ Zp1

2 ⊕ Zp1
2 ⊕ Zp1

2 ⊕ Zp1
2 ⊕ Zp1

2 ↔ X2

Zp1
2 → Z 1

6

ϕ̄p2 : ¬
(
Z 1

6
⊕ Z 1

6
⊕ Z 1

6
⊕ Z 1

6
⊕ Z 1

6
→ Zp2

2

)

Φ̄p2 : Z 1
6
↔ ¬

(
Z 1

6
⊕ Z 1

6
⊕ Z 1

6
⊕ Z 1

6
⊕ Z 1

6

)

Z 1
2
↔ ¬Z 1

2

Zp2
2 ⊕ Zp2

2 ↔ X2

Zp2
2 → Z 1

2

ϕ̄p3 : ¬
(
Z 1

6
⊕ Z 1

6
⊕ Z 1

6
⊕ Z 1

6
→ Zp3

1

)
⊕ ¬

(
Z 1

6
⊕ Z 1

6
⊕ Z 1

6
⊕ Z 1

6
→ Zp3

1

)

Φ̄p3 : Z 1
6
↔ ¬

(
Z 1

6
⊕ Z 1

6
⊕ Z 1

6
⊕ Z 1

6
⊕ Z 1

6

)

Z 1
2
↔ ¬Z 1

2

Zp3
1 ⊕ Zp3

1 ↔ X1

Zp3
1 → Z 1

2

Table 2
Representations as in (10) for functions p#1 , p#2 and p#3 , where functions p1, p2 and p3 are from Example

4.1.
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Proof. For v ∈ ValΞnψ
and k = 0, . . . , �log n�, v(ξkψ) = min(1, 2kv(ψ)). Then,

v(nψ) = min

⎛
⎝1,

�logn	∑
k=0

2knkv(ψ)

⎞
⎠

= min

⎛
⎝1,

�logn	∑
k=0

v(ξkψ)nk

⎞
⎠ = v

⎛
⎝⊕

nk=1

ξkψ

⎞
⎠ = v(ξnψ),

where nk ∈ {0, 1} in the binary representation n =
∑�logn	

k=0 2knk. �

Theorem 5.5 Let n ∈ N \ {0, 1}, ψ be a formula, and 〈ϕp,Φp〉 be a pair defined

from representation 〈ϕ̄p, Φ̄p〉 in (10) by replacing any occurrence of nψ in ϕ̄p and Φ̄p

with ξnψ in (11) and by adding formulas in set Ξnψ in (12) to Φ̄p. Then, 〈ϕp,Φp〉
is also a representation for p# in (7). Furthermore, 〈ϕp,Φp〉 is a representation

for p# even if it is defined by multiple suitable replacements of expressions nlψl, for

l = 1, . . . , L.

Proof. For 〈x1, . . . , xn〉 ∈ [0, 1]n, define a valuation v such that v(Xj) = xj and

v(Zp
j ) =

xj

βj
, for j = 1, . . . , n, v(Z 1

βj

) = 1
βj
, for j = 0, . . . , n, v(ξ0

ψ) = v(ψ), and

v(ξkψ) = min(1, v(ξk−1
ψ ) + v(ξk−1

ψ )), for k = 1, . . . , �log n�. Note that v ∈ ValΦ̄p

and v ∈ ValΞnψ
, then, by Lemma 5.4, as Ξnψ ⊂ Φp, we have that v ∈ ValΦp .

Still, for any v ∈ Φp, we have that v ∈ ValΞnψ
and, by Lemma 5.4, v ∈ Φ̄p.

Therefore, again by Lemma 5.4, for v, v′ ∈ Φp such that v(Xj) = v′(Xj), for j =

1, . . . , n, it follows that v(ϕp) = v′(ϕp), Xn determines ϕp modulo Φp-satisfiable,

and p#(v(X1), . . . , v(Xn)) = v(ϕp). This argument still holds when considering

multiple replacements. �

We set 〈ϕp,Φp〉 from 〈ϕ̄p, Φ̄p〉 in (10) by properly replacing all occurrences of

nlψl as stated in the above theorem. By construction, 〈ϕp,Φp〉 is given by

ϕp = β[¬(ϕP → ϕN )]; Φp = ΦP ∪ ΦN ; (13)

where ϕP , ϕN , ΦP , and ΦN are properly defined from their barred correspondents in

(9). Table 3 shows how functions in Example 4.1 can be represented as in Theorem

5.5.

Algorithms 1 and 2 compute the representation modulo satisfiability of nψ.

Algorithm 1 returns 0 and ψ in the limit cases n = 0 and n = 1 (lines 1 to 5);

when n ∈ N \ {0, 1}, it returns formula ξnψ in (11) by building it in line 6 plus a

�log n�+1 iteration loop (lines 7 to 13) where the nk’s in the binary representation

of n are calculated by the routine in lines 8 and 9. Algorithm 2 returns ∅ in the

limit cases n = 0 and n = 1 (lines 1 to 3); when n ∈ N \ {0, 1}, it returns set Ξnψ

that comprehends formulas (12) by building it in line 4 plus a �log n� iteration loop

(lines 5 to 7). Both algorithms terminate in time O(log n) assuming propositional

variables are all represented with a constant size.
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ϕp1 :ξ
1
¬(ξ2Z 1

18

⊕ξ1
Z
p1
2

→0)

Φp1 :Z 1
18

↔ ¬
(
ξ4
Z 1

18

⊕ ξ0
Z 1

18

)
ξ0
Z

p1
2

↔ Zp1
2

ξ0
Z 1

18

↔ Z 1
18

ξ1
Z

p1
2

↔ ξ0
Z

p1
2

⊕ ξ0
Z

p1
2

ξ1
Z 1

18

↔ ξ0
Z 1

18

⊕ ξ0
Z 1

18

ξ2
Z

p1
2

↔ ξ1
Z

p1
2

⊕ ξ1
Z

p1
2

ξ2
Z 1

18

↔ ξ1
Z 1

18

⊕ ξ1
Z 1

18

ξ0
Z 1

6

↔ Z 1
6

ξ3
Z 1

18

↔ ξ2
Z 1

18

⊕ ξ2
Z 1

18

ξ1
Z 1

6

↔ ξ0
Z 1

6

⊕ ξ0
Z 1

6

ξ4
Z 1

18

↔ ξ3
Z 1

18

⊕ ξ3
Z 1

18

ξ2
Z 1

6

↔ ξ1
Z 1

6

⊕ ξ1
Z 1

6

Z 1
6
↔ ¬

(
ξ2
Z 1

6

⊕ ξ0
Z 1

6

)
ξ0
¬(ξ2Z 1

18

⊕ξ1
Z
p1
2

→0)
↔ ¬

(
ξ2
Z 1

18

⊕ ξ1
Z

p1
2

→ 0

)

ξ2
Z

p1
2

⊕ ξ1
Z

p1
2

↔ X2 ξ1
¬(ξ2Z 1

18

⊕ξ1
Z
p1
2

→0)
↔ ξ0

¬(ξ2Z 1
18

⊕ξ1
Z
p1
2

→0)
⊕ ξ0

¬(ξ2Z 1
18

⊕ξ1
Z
p1
2

→0)

Zp1
2 → Z 1

6

ϕp2 :¬
(
ξ2
Z 1

6

⊕ ξ0
Z 1

6

→ Zp2
2

)

Φp2 :Z 1
6
↔ ¬

(
ξ2
Z 1

6

⊕ ξ0
Z 1

6

)
ξ1
Z 1

6

↔ ξ0
Z 1

6

⊕ ξ0
Z 1

6

Z 1
2
↔ ¬Z 1

2
ξ2
Z 1

6

↔ ξ1
Z 1

6

⊕ ξ1
Z 1

6

ξ1
Z

p2
2

↔ X2 ξ0
Z

p2
2

↔ Zp2
2

Zp2
2 → Z 1

2
ξ1
Z

p2
2

↔ ξ0
Z

p2
2

⊕ ξ0
Z

p2
2

ξ0
Z 1

6

↔ Z 1
6

ϕp3 :ξ
1
¬(ξ2Z 1

6

→Z
p3
1 )

Φp3 :Z 1
6
↔ ¬

(
ξ2
Z 1

6

⊕ ξ0
Z 1

6

)
Zp3

1 → Z 1
2

ξ0
Z 1

6

↔ Z 1
6

ξ0
Z

p3
1

↔ Zp3
1

ξ1
Z 1

6

↔ ξ0
Z 1

6

⊕ ξ0
Z 1

6

ξ1
Z

p3
1

↔ ξ0
Z

p3
1

⊕ ξ0
Z

p3
1

ξ2
Z 1

6

↔ ξ1
Z 1

6

⊕ ξ1
Z 1

6

ξ0
¬(ξ2Z 1

6

→Z
p3
1 )

↔ ¬
(
ξ2
Z 1

6

→ Zp3
1

)

Z 1
2
↔ ¬Z 1

2
ξ1
¬(ξ2Z 1

6

→Z
p3
1 )

↔ ξ0
¬(ξ2Z 1

6

→Z
p3
1 )

⊕ ξ0
¬(ξ2Z 1

6

→Z
p3
1 )

ξ1
Z

p3
1

↔ X1

Table 3
Representations as in (13) for functions p#1 , p#2 and p#3 , where functions p1, p2 and p3 are from Example

4.1.
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Algorithm 1 BINARY-F: computes formula ξnψ in (11) or 0 or ψ

Input: A natural number n and a formula ψ.

Output: Formula ξnψ.

1: if n = 0 then

2: return 0;

3: else if n = 1 then

4: return ψ;

5: end if

6: q := n, nk := 0, ξnψ := 0;

7: for k = 0, . . . , �log n� do

8: nk := remainder from division of q by 2;

9: q := quotient from division of q by 2;

10: if nk = 1 then

11: ξnψ := ξkψ ⊕ ξnψ;

12: end if

13: end for

14: return ξnψ;

Algorithm 2 BINARY-S: computes set Ξnψ in (12) or ∅

Input: A natural number n and a formula ψ.

Output: Set Ξnψ.

1: if n = 0 or n = 1 then

2: return ∅;

3: end if

4: Ξnψ := {ξ0
ψ ↔ ψ};

5: for k = 1, . . . , �log n� do

6: Ξnψ := Ξnψ ∪ {ξkψ ↔ ξk−1
ψ ⊕ ξk−1

ψ };
7: end for

8: return Ξnψ;

Algorithm 3 computes a representation modulo satisfiability for p#. It returns

〈0,∅〉 in the limit case a0 = · · · = an = 0 (lines 1 to 3); otherwise it returns

representation 〈ϕp,Φp〉 given in (13). From line 4 to line 15, the algorithm sets all

P , N , αj , βj , and β, for j = 0, . . . , n, which are used to rewrite function p in terms

of pP and pN as in Lemma 5.1. From line 16 to line 26, it writes formulas ϕP and

ϕN and adds formulas in ΦP and ΦN to Φp. For J ∈ {P,N}, it works throughout
a |J | iteration loop where each iteration takes a coefficient

aj
bj

into account, where

it treats a0
b0

(lines 18 to 21) separately from the others (lines 22 to 25). In lines 27

and 28 it finally writes formula ϕp and completes set Φp.

Theorem 5.6 Given a rational linear function p by its coefficients, a representation

〈ϕp,Φp〉 for p# may be computed in polynomial time by Algorithm 3.

Proof. Algorithm 3 builds representation 〈ϕp,Φp〉 in (13). So, its correctness fol-

lows from Theorem 5.5. Let [0, 1]n be the domain of p and M the maximum size
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Algorithm 3 REPRESENT-TL: computing representations for truncated linear

functions
Input: A linear function p given by its rational coefficients a0

b0
, a1b1 , . . . ,

an
bn
.

Output: A representation 〈ϕp,Φp〉 for the truncated function p#.

1: if a1 = · · · = an = 0 then

2: return 〈0,∅〉;
3: end if

4: P := ∅, N := ∅;

5: for j := 0, . . . , n do

6: if aj > 0 then

7: P := P ∪ {j}, αj := aj ;

8: else if aj < 0 then

9: N := N ∪ {j}, αj := −aj ;

10: end if

11: end for

12: β := least integer greater than or equal to max{∑j∈P
aj
bj
, −∑

j∈N
aj
bj
};

13: for j ∈ P ∪N do

14: βj := β · bj ;
15: end for

16: ϕP := 0, ϕN := 0, Φp := ∅;

17: for J = P,N do

18: if 0 ∈ J then

19: ϕJ := ϕJ ⊕ BINARY-F(α0, Z 1
β0

);

20: Φp := Φp ∪ {Z 1
β0

↔ ¬BINARY-F(β0 − 1, Z 1
β0

)} ∪ BINARY-S(α0, Z 1
β0

) ∪
BINARY-S(β0 − 1, Z 1

β0

);

21: end if

22: for j ∈ J \ {0} do

23: ϕJ := ϕJ ⊕ BINARY-F(αj , Z
p
j );

24: Φp := Φp ∪ {Z 1
βj

↔ ¬BINARY-F(βj − 1, Z 1
βj

), BINARY-F(βj , Z
p
j ) ↔

Xj , Zp
j → Z 1

βj

} ∪ BINARY-S(αj , Z
p
j ) ∪ BINARY-S(βj − 1, Z 1

βj

) ∪
BINARY-S(βj , Z

p
j );

25: end for

26: end for

27: ϕp := BINARY-F(β,¬(ϕP → ϕN ));

28: Φp := Φp ∪ BINARY-S(β,¬(ϕP → ϕN ));

29: return 〈ϕp,Φp〉;

of a binary representation for numbers among aj and bj ; then the input size of p

is at most 2(n + 1)M . The algorithm first calculates in polynomial time all β, αj

and βj ; let μ be the maximum size of a binary representation for numbers among β,

αj and βj . Then, it proceeds to writing the representation which is made up of at

most 3(n+1) propositional variables of the type Xj , Z
p
j and Z 1

βj

, and 2(n+1)μ+μ
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propositional variables of the type ξkψ, a quantity polynomially proportional to the

size of the input. Thus, the size of the representation for each propositional variable

may be assumed to be a constant π also polynomially proportional to the size of

the input. Next, the algorithm calculates formulas ϕP and ϕN and sets ΦP and ΦN

in n+ 1 steps; in each one it calculates the part associated to a coefficient αi
βi
. For

each part, computation takes polynomial time on π and at most three executions

of routines BINARY-F (Algorithm 2) and BINARY-S (Algorithm 1) with argument

〈ν, P 〉, where ν is αi, βi or βi−1, which are already or may be quickly computed, and

P is a propositional variable. In these cases BINARY-F and BINARY-S run in poly-

nomial time on μ and π. The algorithm finishes calculating ϕp and Φp by running

BINARY-F and BINARY-S with argument 〈β,¬(ϕP → ϕN )〉. Now, BINARY-F

runs in polynomial time on μ and π and BINARY-S runs in polynomial time on μ,

π and the size of ¬(ϕP → ϕN ). After all, Algorithm 4 terminates in polynomial

time. �

We call REPRESENT-TL-F and REPRESENT-TL-S the routines that sepa-

rately compute ϕp and Φp, respectively. Both may be easily derived from routine

REPRESENT-TL in Algorithm 3.

6 The General Case

Given a rational McNaughton function formatted as in Section 4, we now compute

a logical representation for it. Let f : [0, 1]n → [0, 1] be a rational McNaughton

function in regional format with linear pieces:

pi(x) =
ai0
bi0

+
ai1
bi1

x1 + · · ·+ ain
bin

xn, (14)

for x = 〈x1, . . . , xn〉 ∈ [0, 1]n, aij ∈ Z, bij ∈ Z∗
+ and i = 1, . . . ,m, with each piece

identical to f in region Ωi, for i = 1, . . . ,m. We call ABOVE(pk,pi) the polynomial

routine that decides if linear piece pk is above a different linear piece pi over Ωi.

Let 〈ϕpi ,Φpi〉 be the representation for p#
i given by Theorem 5.5, for i =

1, . . . ,m. We define:

ϕ =
m∨
i=1

ϕΩi
, with ϕΩi

=
∧
k∈K

ϕpk ; Φ =
m⋃
i=1

Φpi ; (15)

where k ∈ K if pk(x) ≥ pi(x), for all x ∈ Ωi. We are able to state the following

representation result which is adapted from [17,18].

Lemma 6.1 Let f be a rational McNaughton function in regional format with linear

pieces given by (14), and let ϕΩi be a formula and Φ a set as in (15). Then,

v(ϕΩi) ≤ f(v(X1), . . . , v(Xn)), for v ∈ ValΦ and i = 1, . . . ,m.

Proof. Let v ∈ ValΦ and x0 = 〈v(X1), . . . , v(Xn)〉. In particular, v ∈ ValΦpi
, for
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ϕ: (ϕp1 ∧ ϕp2 ∧ ϕp3) ∨ (ϕp1 ∧ ϕp2 ∧ ϕp3) ∨ (ϕp1 ∧ ϕp2 ∧ ϕp3)

Φ: Φp1 ∪ Φp2 ∪ Φp3

Table 4
Representation as in (15) for function f from Example 4.1.

i ∈ K and, by Theorem 5.5,

v(ϕΩi) = min
k∈K

p#
k (x0).

If x0 ∈ Ωi, then v(ϕΩi) ≤ p#
i (x0) = pi(x0) = f(x0). On the other hand, if x0 /∈ Ωi,

there is some k0 such that x0 ∈ Ωk0 . In the case pk0(x) ≥ pi(x), for all x ∈ Ωi,

then k0 ∈ K and v(ϕΩi) ≤ p#
k0
(x0) = pk0(x0) = f(x0). In the case there is x′ ∈ Ωi

such that pk0(x
′) < pi(x

′), continuity of f yields that there is t ∈ K such that

pt(x) ≥ pi(x), for all x ∈ Ωi and pt(x) ≤ pk0(x), for all x ∈ Ωk0 . Therefore,

v(ϕΩi) ≤ p#
t (x0) ≤ pt(x0) ≤ pk0(x0) = p#

k0
(x0) = f(x0). �

Theorem 6.2 Any rational McNaughton function may be represented by 〈ϕ,Φ〉
in (15).

Proof. First note that any rational McNaughton function may be put in regional

format as showed in Section 4. For 〈x1, . . . , xn〉 ∈ [0, 1]n, define a valuation v ∈ ValΦ
such that v(Xj) = xj and v(Zpi

j ) =
xj

βij
, for i = 1, . . . ,m, j = 1, . . . , n, v(Z 1

βij

) = 1
βij

,

for i = 1, . . . ,m, j = 0, . . . , n, v(ξ0
ψ) = v(ψ), and v(ξkψ) = min(1, v(ξk−1

ψ ) + v(ξk−1
ψ )),

for k = 1, . . . , �log n�, for any nψ that occurs in ϕ and Φ. Now, let v, v′ ∈ ValΦ
such that v(Xj) = v′(Xj), for j = 1, . . . , n. In particular, v, v′ ∈ ValΦpi

, for

i = 1, . . . ,m, and, by Theorem 5.5, v(ϕpi) = v′(ϕpi), for i = 1, . . . ,m. Therefore,

v(ϕ) = v′(ϕ) and Xn determines ϕ modulo Φ-satisfiable. Finally, suppose v ∈ ValΦ.

There is some k0 ∈ K such that 〈v(X1), . . . , v(Xn)〉 ∈ Ωk0 . Note that v(ϕΩk0
) =

f(v(X1), . . . , v(Xn)). Therefore,

f(v(X1), . . . , v(Xn)) = max
i=1,...,m

v(ϕΩi) = v(ϕΩk0
),

by Lemma 6.1. �

Table 4 shows how function f in Example 4.1 can be represented as in Theo-

rem 6.2.

Algorithm 4 returns representation 〈ϕ,Φ〉 for function f with linear pieces given

in (14). From line 1 to line 13, the algorithm writes formulas ϕΩi and the set Φ: it

first computes formulas ϕpi (lines 2 to 5) by means of routine REPRESENT-TL-F

and then it writes ϕΩi (lines 7 to 11) by means of routine ABOVE. It writes set Φ

computing each Φpi by means of routine REPRESENT-TL-S (line 12). In line 14

it writes formula ϕ.
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Algorithm 4 REPRESENT: computing representations for rational McNaughton

functions
Input: A rational McNaughton function f in regional format given by its linear

pieces coefficients a10
b10

, . . . , a1nb1n
,. . . , am0

bm0
, . . . , amn

bmn
and regions Ω1, . . . ,Ωm.

Output: A representation 〈ϕ,Φ〉 for the rational McNaughton function f .

1: Φ := ∅;

2: for i = 1, . . . ,m do

3: ϕpi := REPRESENT-TL-F(ai0bi0
, . . . , ainbin

);

4: ϕΩi := ϕpi ;

5: end for

6: for i = 1, . . . ,m do

7: for k = 1, . . . , i− 1, i+ 1, . . . ,m do

8: if ABOVE(pk, pi) = true then

9: ϕΩi = ϕΩi ∧ ϕpk ;

10: end if

11: end for

12: Φ := Φ ∪ REPRESENT-TL-S(ai0bi0
, . . . , ainbin

);

13: end for

14: ϕ := ϕΩ1 ∨ · · · ∨ ϕΩm ;

15: return 〈ϕ,Φ〉;

Theorem 6.3 Given a rational McNaughton function f in regional format, a log-

ical representation for it may be computed in polynomial time on the size of f by

Algorithm 4.

Proof. Algorithm 4 builds representation 〈ϕ,Φ〉 in (15). So, the algorithm correct-

ness follows from Theorem 6.2. The size of f is the space necessary to storage the

coefficients of its m linear pieces p1, . . . , pm and the regions Ω1, . . . ,Ωm. The algo-

rithm first calculates m representative formulas ϕpi by REPRESENT-TL-F, which

takes polynomial time on the size of f by Theorem 5.6. Then, it builds formulas ϕΩi

from the already built representative formulas in m2 steps; in each of these steps it

runs routine ABOVE in assumed polynomial time. Along with the above computa-

tion, the algorithm also builds set Φ in m steps; in each one it calculates set Φpi by

REPRESENT-TL-S, which takes polynomial time on the size of f by Theorem 5.6.

Finally, the algorithm calculates ϕ from formulas ϕΩi already computed. After all,

Algorithm 4 terminates in polynomial time. �

7 Conclusions

We introduced a way to represent functions by logical formulas in �Lukasiewicz

Infinitely-valued Logic — the representation modulo satisfiability —, and we showed

by a constructive proof that all rational McNaughton functions can be represented

this way. Moreover, we derive an algorithm that builds such a representation in

polynomial time on the size of the function. For the future, we hope to couple this

algorithm with algorithms that approximate (normalized) continuous functions by
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rational McNaughton functions; also, apply these approximations to the study of

real systems such as neural networks through automated reasoning techniques.
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