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Abstract

Rational McNaughton functions may be implicitly represented by logical formulas in Lukasiewicz Infinitely-
valued Logic by constraining the set of valuations to the ones that satisfy some specific formulas. This
work investigates this implicit representation called representation modulo satisfiability and describes a
polynomial algorithm that builds it — the representative formula and the constraining ones — for a given
rational McNaughton function.

Keywords: Lukasiewicz Infinitely-valued Logic, Rational McNaughton Functions, Piecewise Linear
Functions.

1 Introduction

The ability to represent any piecewise linear function with a logical formula allows
us to apply automated reasoning techniques to the study of real systems, whose
behavior is either modeled or approximated by such a function. However such an
ability will only be effective if there are efficient ways to generate a formula in a
target logic in which reasoning is not exceedingly complex. Classical logic with
its binary semantics, despite of being a natural target for representing Boolean
functions, may not be the natural way to represent continuous functions which
inevitably would require some encoding of rational or real numbers; so we follow
the path of electing some form of many-valued logic, whose semantics range over
rational numbers, as a more adequate representation framework. That path has
initially been explored by applications in fuzzy control [5].
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Neural network interpretability is a challenge to the development of artificial
intelligence and is also another motivation for the representation of piecewise linear
functions, as described by [4]. In fact, a neural network, depending on its class
of activation functions, can be seen either as a piecewise linear function or as a
continuous function that can be approximated by one [12].

The first candidate to consider as a target logic is Lukasiewicz Infinitely-valued
Logic (L), arguably one of the best studied many-valued logics [7]; it has sev-
eral interesting properties such as continuous truth-functional semantics, classical
logic as limit case, and well developed proof-theoretical and algebraic presentations.
Its formulas are known to represent exactly the so-called McNaughton functions,
consisting of [0, 1]-valued piecewise linear functions with integer coefficients over
[0,1]™ [13,15]. This restriction to integer coefficients fails to fulfill, for instance, the
hypotheses for the classic Stone-Weierstrass Approximation Theorem [16] and there
is no known analogous to Proposition 1.1 below for McNaughton functions.

This issue is circumvented by slightly modifying McNaughton functions to al-
low their linear pieces to have rational coefficients — the rational McNaughton
functions; such generalization is enough to perform Weierstrass-like approxima-
tions [5,2]. Figure 1 shows a continuous function f : [0,1] — [0,1] (a) with two
possible approximations by rational McNaughton functions: with two (b) and five
different linear pieces (c). Note that continuous functions with more general domain
and range might be normalized in order to perform such approximations.

Proposition 1.1 (Variation of Weierstrass Approximation Theorem [5])
Let f:[0,1]" — [0,1] be a continuous function and € > 0. Then there is a rational
McNaughton function f : [0,1]" — [0,1] such that |f(x) — f(x)| < e, for all
x € [0,1]™.

In this context, the target logic must be a system, preferably based on L,
with semantics that comprehends all rational McNaughton functions and, given
one such function, be endowed with an efficient algorithm that provides a formula
that represents it. Furthermore, we highlight that it would be of little practical use
if the reasoning complexity in such system is exceedingly high.

Esteva, Godo & Montagna propose logic LH% which extends L, with a product
operator, its residuum, and a constant expressing the truth value %, not directly
expressible in Ly [8]. That logic not only allows for the expressivity of rational
McNaughton functions but also expresses piecewise polynomials; as a consequence
satisfiability over LH% requires finding roots of polynomials of n-degree rendering
its complexity extremely high. Aguzzoli & Mundici propose logic 3£ which also
expresses rational McNaughton functions and has complexity ¥ for the satisfiability
problem [2,3]. Logic 3L extends Lo and introduces rational numbers by providing
restricted form of propositional quantification whose semantic counterpart is the
maximization of a set of Lo.-valuations of a formula.

Gerla introduces Rational Lukasiewicz Logic by extending L., with division
operators 0, that induces division by n € N* in its semantics [11]; its associated
tautology problem is coNP-complete, which is a reasonable complexity for this task.
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Fig. 1. Continuous one-variable function approximated by rational McNaughton functions.

This logic expresses all rational McNaughton functions however it was not provided
an algorithm to build the representative formulas, and an attempt to derive one
from the results in [11] would lead to the problem of representing McNaughton
functions in L.; it is known that this task may be done in polynomial time on the
coefficients of some specific functions [1], however these methods lead to exponential
time complexity if binary representation of the coefficients is used.

Finger & Preto provide a way to implicitly express rational McNaughton func-
tions in Ly called representation modulo satisfiability (£..-MODSAT) [10]. For
that, in addition to a representative formula, it is introduced a set of formulas
that constrains FL..-valuations to those that satisfy all formulas in the set; a ra-
tional McNaughton function f is then represented by a pair (p, ®), where ¢ is a
formula that semantically acquires values f(x), for x € [0, 1], from valuations in
{v(vp) =1 | ¢ € &}, where ® is a set of formulas. Instead of an extension of the
logic, this proposal works in £, itself, which has computational problems with rea-
sonable complexity — e.g., satisfiability over Lo, is NP-complete [14]. Also, there
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already are available implementations of L..-solvers which are discussed in the liter-
ature and for which phase transition phenomenon is identified [6,9]. Unfortunately,
an attempt to derive a representation builder algorithm from results in [10] would
also lead to an exponential blow up, since the proposed pairs for representing only
truncated linear functions are already exponential in the binary representation of
their coefficients.

Our goal here is to provide an efficient algorithm that, given a rational Mc-
Naughton function, outputs a pair (@, ®) that represents it in the target system
Loo-MODSAT. We show that all rational McNaughton functions may be represented
modulo satisfiability by a constructive proof from which we derive a polynomial al-
gorithm that builds such representation.

This paper is organized as follows: Section 2 introduces all necessary concepts
of Lukasiewicz Infinitely-valued Logic and the definition of rational McNaughton
functions; Section 3 has the formalization of the concept of representation modulo
satisfiability; Section 4 provides a convention on rational McNaughton functions
encoding for computation purposes as well as some results about these functions;
Section 5 has a theoretical and algorithmic treatment of a particular case of represen-
tation modulo satisfiability of rational McNaughton functions which are truncated
linear functions; and Section 6 finally treats, also theoretically and algorithmically,
the representation modulo satisfiability of general rational McNaughton functions.

2 Preliminaries

The basic language £ of Lukasiewicz Infinitely-valued Logic (L) comprehends the
formulas built from a countable set of propositional variables P, and disjunction
(d®) and negation (—) operators. For the semantics, define a valuation as a function
v: L — [0,1], such that, for ¢,¢ € L:

v(p @ 1) = min(1,v(p) +v(¥)); (1)
v(—p) =1 —v(p). (2)

One may just give a function vp which maps propositional variables to a value in
the interval [0, 1] and extend this function to a valuation by obeying (1) and (2).
This extension is uniquely defined by such assignment to the variables in P given
by Up.

We denote by Val the set of all valuations; by Var(®) the set of all propositional
variables occurring in the formulas ¢ € ®; and by X, the set of propositional
variables {X1,..., Xy} C P. A formula ¢ is satisfiable if there exists a v € Val such
that v(p) = 1; otherwise it is unsatisfiable. A set of formulas ® is satisfiable if there
exists a v € Val such that v(p) = 1, for all ¢ € &. We denote by Valg the set of
all valuations v € Val that satisfies a set of formulas ®.
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From disjunction and negation we derive the following operators:

Conjunction: ¢ ® ¥ =ger (- & 1) V(e ® ) = max(0,v(p) +v(y) — 1)

Implication: ¢ — ¥ =qef — ® v(p — ) = min(1,1 —v(p) +v(¢))
Maximum: ¢ V ¢ =4 (- ® V) B¢ v(p V1) = max(v(p), v(¥))
Minimum: ¢ A ) =qet (- V 1)) v(p A1p) = min(v(p),v())

Bi-implication: ¢ <> 1 =qet (¢ = V) A (¥ — @) v(p < ) =1 —|v(p) —v(VY)]

Note that v(¢ — ) = 1 iff v(p) < v(¢); similarly, v(p <> ) = 1 iff v(p) = v(Y).
Let X be a propositional variable, then, v(X ®—X) = 0, for any v € Val; we define
the constant 0 by X ® =X. We also define 0p =ger 0 and ny =gqetf ¢ & - D @, n
times, for n € N*; and @, ©i =det 0.

Adapting the definition in [7], a rational McNaughton function f : [0,1]™ — [0, 1]
is a function that satisfies the following conditions:

e f is continuous with respect to the usual topology of [0, 1] as an interval of the
real number line;

* There are linear polynomials p1, ..., py, over [0, 1]™ with rational coefficients such
that, for each point x € [0, 1]", there is an index i € {1,...,m} with f(x) = p;(x).
Polynomials p1, ..., pmn are the linear pieces of f.

3 Representation Modulo ®-Satisfiable

A McNaughton function is a rational McNaughton function whose linear pieces
have integer coefficients. Let ¢ be a Ly-formula with Var(p) C X,,, we inductively
associate to ¢ a function f, : [0,1]™ — [0, 1] by:

(1) fx;(w1,. . 2n) = x5, for j=1,...,n;
(i) faplt,orn) = 1= foln, oo o)
(i) formps (X1, .y ) = min(L, fo, (@1, ..., 20) + foo (T1,...,T0)).

We have that f, is a McNaughton function such that
fo(v(X1),...,v(Xn)) =v(p), for v e Val (3)

Reciprocally, McNaughton’s Theorem [13] states that, for any McNaughton function
f, there is a formula ¢ such that f = f,. We say that ¢ represents f.

Although formulas of Lo, only represent (integer) McNaughton functions, we
take the strategy of restricting the set Val of valuations in order to implicitly
represent rational McNaughton functions. For that, we start by noting that value
of a formula ¢ according to some valuation v is determined only by the values
associated to a finite set of propositional variables X such that Var(¢) C X; this
very property is the crux for the possibility that logical formulas represent functions.
We next generalize this notion.
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Definition 3.1 Let ¢ be a formula and let ® be a set of formulas. We say that a
set of variables X,, determines ¢ modulo ®-satisfiable if:

e For any (z1,...,z,) € [0,1]", there exists at least one valuation v € Valg, such
that v(X;) = x;, for j =1,...,n;
* For any valuations v,v’ € Valg, such that v(X;) = ¢'(Xj), for j = 1,...,n,
v(p) = v'().
For instance, for any formula ¢ such that Var(y) C X,,, X,, determines ¢ modulo
@-satisfiable, by truth functionality and the fact that Valy = Val.
It is important to note that any set X,, can now represent a rational fraction
é by determining a propositional variable Zé modulo pL = Zﬁ + —(d — 1)25
satisfiable, with d € N*. In fact, for any valuation v € Val, if v(goé) = 1, then
v(Z 1 ) = é. We define representation modulo satisfiability in a way that retrieves
property (3).
Definition 3.2 Let f : [0,1]" — [0,1] be a function, and (p, ®) be a pair where
@ is a formula and ® is a set of formulas. We say that ¢ represents f modulo
O-satisfiable or that (p, ) represents f in the system Loo-MODSAT if:
¢ X,, determines ¢ modulo ®-satisfiable;
o f(v(Xy),...,v(Xy)) =v(p), for v € Valg.

Representation modulo satisfiability presented in [10] has a different approach,
which we call function-based and is more restrictive than the one presented here,
which we call formula-based. However, the representation methods and algorithms
we develop in this work apply to both approaches.

4 Rational McNaughton Functions

Our algorithm uses a lattice representation of rational McNaughton functions; be-
fore that we employ an encoding based in [17,18] as follows. Let Q° be the interior
of a set Q C R™. A rational McNaughton function f : [0,1]" — [0, 1] is given by m
(not necessarily distinct) linear pieces

pi(%) = vio + Y121+ + YinTn, (4)
for x = (z1,...,2,) € [0,1]", 755 € Q and i = 1,...,m, with each linear piece p;
identical to f over a convex set §; C [0, 1]™ called region such that:
* Uil Q= [0,1]"
L4 Q;)/ m Qio// == @, fOI‘ ?:, # i//;

e Regions (); are given in such a way that there is a polynomial procedure to
determine whether or not a linear piece pi is above other linear piece p; over
region €2;, that is whether or not py(x) > p;(x), for all x € €;.

A rational McNaughton function as above is said to be in regional format. Note that
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Fig. 2. Graph of rational McNaughton function with three linear pieces over [0, 1]2.
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Fig. 3. Some possible region configurations for function f in Example 4.1.

in this format the number of linear pieces is equal to the number of regions; in this
case, the size of a function is the sum of the number of bits necessary to represent
its linear pieces coefficients as fractions 7 plus the space necessary for representing
its regions in some assumed encoding.

Example 4.1 Rational McNaughton function f with graph in Figure 2 may be
given by the linear pieces:

e pi(w1,m2) = g + %mz;

o pa(w1,22) = % - %-’E2;

e p3(x1,72) = % - X1

Regions associated to each linear piece are depicted in Figure 3(a). Determining if
some linear piece py, is above other linear piece p; over €2; is equivalent to determining
if the system of corresponding inequalities in Table 1 with added equation py—p; = 0
has no solution and px(x9) > pi(xX¢), for some point xo € 7, a tractable process.

Let f : [0,1]™ — [0, 1] be a rational McNaughton function as defined in Section 2,
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Q3 Q3 02
8 —9x1 — 620 >0 1—2x1+29>0 —8+9x1 +6x2 >0
T—m3>0 —1423>0 —1+2z1 — 23>0
x1 >0 1 >0 1—21>0
zo >0 1—29>0 To >0
Table 1

Sets Q7 for function f in Example 4.1.

with distinct linear pieces pi, ..., pm. For each permutation p of the set {1,...,m},
we define the polyhedron

Py ={x€[0,1]" | ppa)(x) =+ = ppm) (%) }- (5)
Let C be the set of n-dimensional polyhedra P,, for some permutation p.

Proposition 4.2 The set C has the following properties:

(a) UC=10,1]";

(b) For polyhedron P € C and indezes ¢',i" € {1,...,m} with i # i", py(x) #
pi(X), for any x € P°;

(c) P°NP" =@, for P, P" € C such that P' # P";

(d) For each polyhedron P € C, there is an index ip € {1,...,m} such that f(x) =
pip(x), for x € [0,1]™.

Proof.

(a) For any x € P € C, x € [0,1]™. On the other hand, for any x € [0, 1]", there is
a permutation p for which P, is n-dimensional and x € P,,.

(b) Let x € P° and let ¢/,i" € {1,...,m} be indexes such that i’ # i". Since py
and p;» are linear pieces, if p;(x) = py(x), for some x € P°, there would be
points x1,Xx2 € P° in a neighborhood of x such that py(x1) < py(x1) and
pir(x2) < py(x2), contrary to the definition of P.

(c) Let x € P°NP"°. Then, by definitions of P’ and P”, there are',i" € {1,...,m}
such that py(x) = py(x), contrary to item (b).

(d) Let {i1,...,ix} C {1,...,m} be a non-singleton set of indexes such that, for
any x € P°, there is | € {1,...,k}, such that f(x) = p;(x) and U;, = {x €

P° | f(x) =pi(x)} # @, for | = 1,...,k. We have that UF_,U;, = P° and, by
item (b), U, NU;,, = @, for I’ #1”. As P° is a connected set, there are distinct
i',i" € {i1,...,ix} and b € P° such that b € Uy and b € U;». As p;s restricted

to Uy U {b} is continuous, for any sequence {b,} C Uy such that limb,, = b
(which exists since b € 0U;/), we have that lim f(b,,) = limpy(b,) = pi(b).
However, f(b) = py#(b) # py(b), by item (b), contrary to the continuity of f.

O
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Polyhedra in C may play the role of regions since they are convex sets with the
properties above; determining whether a linear piece pi is above other linear piece
p; over P € C comes down to comparing their values for some point x € P°. Note
that the same linear piece p; may be associated to many distinct polyhedra. Thus,
any rational McNaughton function may be encoded in regional format. Figure 3(b)
shows the polyhedra-based configuration C for the function in Example 4.1.

The setback with describing a rational McNaughton function using the set C of
polyhedra is that in the worst case |C| = m!. However, in general there are smaller
sets of regions that comply with representation restrictions above [18].

5 A Particular Case: Truncated Linear Functions

Let us show the possibility of representing a rational McNaughton function modulo
satisfiability and develop a polynomial algorithm for computing such representation
in the particular case that function is a truncated linear polynomial with rational
coeflicients.

Let p: [0,1]™ — R be a nonzero linear polynomial given by

p(x) = b—“ + b— Tt Z—":cn (6)

for x = (x1,...,2,) €[0,1]", aj € Z, and b; € Z* . We want to build a representa-
tion for the functlon p* :[0,1]" — [0,1] given by

p” (x) = min <1, max (O,p(x))). (7)

We have that p#(x) = 0, if p(x) < 0; p¥(x) = 1, if p(x) > 1; and p#(x) = p(x),
otherwise.
In order to rewrite expression (6), we define:

aj = aj, for j € P;
aj = —ayj, for j € N;
ﬁjzﬁ‘bj, forj:0,...,n

where j € P, ifa; >0, and j € N, if a; <0, with PUN C {0,...,n}, and 3 is the
least integer greater than or equal to

a; a;
max A -
L p; b;

JEP JEN

We have that o; € Z; and §; € Z%, for j = 0,...,n. Let 29 = 1 and define
functions pp : [0,1]" — R and py : [0,1]" = R, for x = (x1,...,x,) € [0,1]", by:

pp(x) = Z ; =3 ° *% (8)

JGP JEN
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Lemma 5.1 Functions p, pp, and py in (6) and (8) have the following properties,
for x € [0,1]":

(a) p(x) =B (pp(x) — pn(x));

(b) 0 <pp(x),pn(x) < 1.

Proof. By elementary algebraic manipulation. O

Lemma above decomposes function p in terms of pp and py, let us represent
the latter ones. Let Zf, Z/BL € P. For a set of indexes J € {P, N}, define:
j

p1= P a2 ¢;= | {gpﬁl_, BiZ% + X;, Z§?—>ZI}.

JEIN0) sentoy + R

And then, define:

@7 = @r; Dy =y, if 0 ¢ J;

@J:CYOZBL@@J; (i(]:éju{@ﬂi}, otherwise.
0 0

(9)

Lem{na 5.2 Functéons pp and py in (8) may respectively be represented by

(P, ®p) and (N, Pn) in (9).

Proof. Let J € {P,N}. If J = @, then (p;,®,) = (0,2) represents p;. For

<a:1, .., Zy) €0,1]", define a Valuation v € Val such that v(X;) = ; and v(Z}) =
for] € J\ {0}, and ’U(Zl) = ﬁ, for j € J. We have that v € Valg.

Now let v,v" € Valg, such that v(X;) = (X ) for j = 1,...,n. By rational
constant representation, v(Z1 =0 (21 ) = ﬂ , for j € J. Thus v(Zf) < ﬂ—lj
and v'(Z}) < —j, which 1mphes that 8; - v(Z]) = v(8;Z]) = v(X;) = v'(X;) =
v'(8;Z7) = By - v'(Z7) and, then, v(Z}) = o(Z}), for j € J\ {0}. Therefore,
v(ps) = v'(py) and X,, determines ¢; modulo ® j-satisfiable. Finally, suppose
v € Valg . In the case where 0 € J,

pr(X1).. o 0(Xn)) = a0 0(ZL) + D ay-v(Z)) = (),
JjeJ\{0}

J
The case where 0 ¢ J is similar. O

by Lemma 5.1 and aforementioned equations v(ZBL) = % and §; - v(Z%) = v(X;).
0

For the final step towards a representation for p#, we define:
¢p = Bl=(ep — on)]; ©, =2pUoy. (10)
Theorem 5.3 Function p? in (7) may be represented by (pp, ®,) in (10).

Proof. For (z1,...,2,) € [0,1]", there exists v € Valg  such that v(X;) = z; as
in the proof of Lemma 5.2 with J = P U N. Now, let v,v € Valci,p such that



S. Preto, M. Finger / Electronic Notes in Theoretical Computer Science 351 (2020) 167-186 177

v(Xj) = v'(Xj), for j = 1,...,n. In particular, v,v" € Valg, and, by Lemma 5.2,
v(gs) =V (@), for J € {P,N}. Therefore, v(pp) = v'(@p) and X,, determines @,
modulo ‘i)p—satisﬁable. Finally, suppose v € Valé In particular, v € Valg, and
v € Valg . If p(v(X1),...,v(X,)) <0, by Lemma 5 1, pp(v(Xq),...,v(Xy)) <
N(v(X1),...,v(Xy)). Therefore, by Lemma 5.2, v(gpp) < v(pn) and, then,
v(@p) = 0. On the other hand, if p(v(X1),...,v(Xy)) > 0, by Lemma 5.1,
pp(v(X1),...,v(Xy)) > pyv(W(X1),...,v(X,)). Therefore, by Lemma 5.2, v(¢p) >
v(¢n) and, then, v(=(¢p — ¢n)) = 1—min(1,1-v(pp)+v(Pn)) = v(pr)—v(PN).
Fmally, by Lemmas 5.1 and 5.2, p(v(X1),...,v(Xy,)) = 5 - (v(@p) —v(pn)), hence
p” (v(X1),...,v(X,)) = v(pp) in any case. O

Table 2 shows how functions in Example 4.1 can be represented as in Theorem
5.3.

In order to set up a polynomial algorithm for computing a representation (¢, ;)
for p#, we analyze more closely expressions ni, which show up in @, and in formulas
in ‘i)p. These expressions are exponential in the binary representation of n since
it denotes an n-fold repetition of formula . We deviate from this situation by

, 5 [logn]

using |logn| + 1 new propositional variables 53, f}b, . and replacing every

occurrence of ni, where n € N\ {0, 1}, with the formula

[log n]
& =det P &5 (11)

nk;l

where ny € {0,1} comes from the binary representation ZUOgnJ 2¢ny of n, and by
adding the following formulas to ®,:

&) < 1
dz “ @1271 69511271, for k=1,...,|logn|.

These formulas define the propositional variables 552 and we call =, the set that
comprehends them. In this way we avoid exponential blow up as shown in Theorem

5.5.

Lemma 5.4 Let n € N\ {0,1}, ¥ be a formula, and &,y and 2, be respectively
a formula as in (11) and a set as in (12) built from n and . For any valuation

v € Valg, , v(n)) = v(&ny)-
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Ppy

_‘<ZL DZ1L ®ZLL ®ZL @251@251%0)

18 18 18 18

@ﬁ(ZiEBZi@ZL@ZiEBZgl@Zgl_>O)
18 18 18 18

=]

p1+

ZLHﬁ(ZL@ZL@ZL@ZL@ZL@ZL@ZL@ZL@ZL
18 18 18 18 18 18 18 18 18 18
VANV VAR VANV AR-V IR VANV Y
18 18 18 18 18 18 18 18
Z;<—>—'<Z;@Z;@Z;@Z;@Z;)
6 6 6 6 6 6
VeV ozl ez o ZV @ Z5 « X,

Zgl —)Zl
6

Ppa-

ﬁ(Z;@Z;eaZ;@Z;@Z;%Z?)
6 6 6 6 6

=]

pa-

Zé)? D 252 g XQ

Zgg — Zl
2

Pp3-

~(Zieziezioss > ) e~ (28282 62 > 2P)
6 6 6 6 6 6 6 6

=l

p3-

Z;fs D Zf?’ g X1

Zf?’ — Zl
2

Table 2
#

Representations as in (10) for functions p]", pJ” and p?, where functions p1, p2 and ps are from Example

4.1.
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Proof. For v € Valg, , and k =0,..., |logn], v(f{Z) = min(1, 2¥v(¢))). Then,

[logn]

v(nty) = min | 1, Z 2k npu(eh)
k=0
[logn]

= min | 1, Z (fd, @f¢ V(€ny),

k=0 ne=1

where ny € {0,1} in the binary representation n = ,Eli%nj 2Fny,. O
Theorem 5.5 Let n € N\ {0,1}, ¢ be a formula, and (pp, ®p) be a pair defined
from representation (@, ®,) in (10) by replacing any occurrence of ny in @, and @,
with &ny in (11) and by adding formulas in set E,y in (12) to ®,. Then, (pp, ©p)
is also a representation for p* in (7). Furthermore, (pp, ®p) is a representation
for p* even if it is defined by multiple suitable replacements of expressions nyby, for
I=1,...,L.

Proof. For (z1,...,2,) € [0 1]™, define a valuation v such that v(X;) = z; and
v(Zf) = g—;, for j =1,...,n, v(Z1) = BJ for j =0,...,n, v({i) = v(¢), and

v(ﬁfZ) = min(l,v(ffz_l) (§w ), for k =1,...,|logn|. Note that v € Valg
and v € Valg, , then, by Lemma 5.4, as E,y C ®,, we have that v € Valg,.
Still, for any v € ®,, we have that v € Valg , and, by Lemma 5.4, v € @,
Therefore, again by Lemma 5.4, for v,v" € ®, such that v(X;) = v/(X}), for j =
1,...,n, it follows that v(p,) = v'(¢p), X, determines ¢, modulo ®,-satisfiable,
and p# (v(X1),...,v(X,)) = v(pp). This argument still holds when considering
multiple replacements. O

We set {¢p, ®p) from (@,, ®,) in (10) by properly replacing all occurrences of
ny; as stated in the above theorem. By construction, (y,, ®,) is given by

op = B[=(wp = @N)]; ¢y =Pp UPn; (13)

where pp, on, Pp, and @ are properly defined from their barred correspondents in
(9). Table 3 shows how functions in Example 4.1 can be represented as in Theorem
5.5.

Algorithms 1 and 2 compute the representation modulo satisfiability of ni.
Algorithm 1 returns 0 and 1 in the limit cases n = 0 and n = 1 (lines 1 to 5);
when n € N\ {0, 1}, it returns formula &,y in (11) by building it in line 6 plus a
|log n| + 1 iteration loop (lines 7 to 13) where the n’s in the binary representation
of n are calculated by the routine in lines 8 and 9. Algorithm 2 returns & in the
limit cases n = 0 and n = 1 (lines 1 to 3); when n € N\ {0,1}, it returns set =,
that comprehends formulas (12) by building it in line 4 plus a |logn| iteration loop
(lines 5 to 7). Both algorithms terminate in time O(logn) assuming propositional
variables are all represented with a constant size.
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el
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el
i )
6

©p,: 2y 4 (5}1 @ggl> Z0 = 7y
© 6

0 0 P3
§z, © Zé s < 4y
% 1
1 0 0 1 0 0
§z, < &7, B, rs <7 Eops B E s
I3 I3 I3 1 1 1
2 1 1 0 2 D3
§7, &z, ©&, £ﬁ<§2 ey 7T (Ezl - Z; )
© 3 © Z1 1 ©
5
AR IV A 1 Lo g0 @ €0
3 3 S, »ar) e O g o
5 5 5
1
éZf3 < X1

Table 3
Representations as in (13) for functions p’l#, pf and p?, where functions p1, p2 and p3 are from Example
4.1.
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Algorithm 1 BINARY-F: computes formula &, in (11) or 0 or ¢
Input: A natural number n and a formula .

Output: Formula &,y

1: if n =0 then

2 return O;

3: else if n =1 then
4:  return

5. end if
6
7
8
9

s qi=mn,ng =0, &y =0
:for k=0,...,[logn| do
ny, = remainder from division of ¢ by 2;
q := quotient from division of ¢ by 2;
10:  if np =1 then

11: gnw = 5112 @ fmp;
122 end if
13: end for

14: return §,y;

Algorithm 2 BINARY-S: computes set Z,,, in (12) or &
Input: A natural number n and a formula ).
Output: Set 5.

1: if n=0o0r n=1 then

2 return J;

3: end if

4 By = {53 P}

5 for k=1,...,|logn| do

6 Enyi=EnpU{E) 0 T @]
7. end for

8: return Z,y;

Algorithm 3 computes a representation modulo satisfiability for p#. It returns

(0,2) in the limit case ap = -+ = a, = 0 (lines 1 to 3); otherwise it returns
representation (pp, ®,) given in (13). From line 4 to line 15, the algorithm sets all
P, N, aj, Bj, and B, for j =0,...,n, which are used to rewrite function p in terms

of pp and py as in Lemma 5.1. From line 16 to line 26, it writes formulas ¢p and
on and adds formulas in ®p and & to ®,. For J € {P, N}, it works throughout

a |J| iteration loop where each iteration takes a coefficient J_' into account, where
it treats 32 (lines 18 to 21) separately from the others (lines 22 to 25). In lines 27
and 28 it finally writes formula ¢, and completes set ®,.

Theorem 5.6 Given a rational linear function p by its coefficients, a representation
(@p, ®p) for p* may be computed in polynomial time by Algorithm 3

Proof. Algorithm 3 builds representation (¢,, ®,) in (13). So, its correctness fol-

lows from Theorem 5.5. Let [0,1]" be the domain of p and M the maximum size
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Algorithm 3 REPRESENT-TL: computing representations for truncated linear
functions
Input: A linear function p given by its rational coefficients “O, ‘;1 e ‘;—:.

Output: A representation (¢, ®,) for the truncated functlon p*.
1: if a1 =--- =a, =0 then
2:  return (0, 9);

3: end if
4. P.=o, N .= g,

5. for j:=0,...,n do

6 if a;j > 0 then

7 P:=PU{j}, o :==aj;

8 else if a; < 0 then

9: N :=NU{j}, aj := —ay;

10  end if

11: end for

12: 3 := least integer greater than or equal to max{}_;p Z—j, — 2 jeN Z—j ;

13: for j € PUN do

14: B]‘ = ﬁ . b]‘;

15: end for

16: pp =0, oy =0, &, := &;

17: for J = P, N do

18:  if 0 € J then

19: wj = p;® BINARY- F(ao,Zl )

20: ¢, =P, U {Z 1 & ﬁBINARY F(By — 1,2%)} U BINARY—S(aO,ZBL) U

BINARY-S(f — 1, Z L) ’ ’

21:  end if

22:.  for j € J\ {0} do

23: ©J —@JGBBINARYF((XJ,Z?)

24: ¢, = ¢, U {Z1 < —BINARY-F(38; — 1, Zl ), BINARY- F(ﬂj,Zf) >

X;, 2P = 21 '} U BINARY-S(ay, 27) u BINARY-S(g; — LZ1) U
J

BINARY-S(53;, Zp)
25:  end for
26: end for
27: ¢, = BINARY-F (3, ~(¢pr = ¢nN));
28: @), := &, UBINARY-S(3, ~(¢pp = ©nN));
209: return (pp, ®p);

of a binary representation for numbers among a; and b;; then the input size of p

is at most 2(n + 1)M. The algorithm first calculates in polynomial time all 3, o

and f;; let 1 be the maximum size of a binary representation for numbers among /3,

aj and B;. Then, it proceeds to writing the representation which is made up of at

most 3(n+ 1) propositional variables of the type X, Zf and Z%, and 2(n+1)u+p
J



S. Preto, M. Finger / Electronic Notes in Theoretical Computer Science 351 (2020) 167-186 183

propositional variables of the type {5], a quantity polynomially proportional to the
size of the input. Thus, the size of the representation for each propositional variable
may be assumed to be a constant 7 also polynomially proportional to the size of
the input. Next, the algorithm calculates formulas ¢p and ¢ and sets ®p and P
in n + 1 steps; in each one it calculates the part associated to a coefficient % For
each part, computation takes polynomial time on 7 and at most three executions
of routines BINARY-F (Algorithm 2) and BINARY-S (Algorithm 1) with argument
(v, P), where v is «y;, 3; or 3;—1, which are already or may be quickly computed, and
P is a propositional variable. In these cases BINARY-F and BINARY-S run in poly-
nomial time on p and 7. The algorithm finishes calculating ¢, and ®, by running
BINARY-F and BINARY-S with argument (3,-(¢p — ¢n)). Now, BINARY-F
runs in polynomial time on g and 7 and BINARY-S runs in polynomial time on u,
7 and the size of =(¢p — @n). After all, Algorithm 4 terminates in polynomial
time. O

We call REPRESENT-TL-F and REPRESENT-TL-S the routines that sepa-
rately compute ¢, and ®,, respectively. Both may be easily derived from routine
REPRESENT-TL in Algorithm 3.

6 The General Case

Given a rational McNaughton function formatted as in Section 4, we now compute
a logical representation for it. Let f : [0,1]™ — [0,1] be a rational McNaughton
function in regional format with linear pieces:
a; a; a;
pi(x) = 2 T LV (14)
bio  bi1 bin
for x = (x1,...,2n) € [0,1]", a;j € Z, by € Z7 and i = 1,...,m, with each piece
identical to f in region €;, for i =1,...,m. We call ABOVE(pg,p;) the polynomial

routine that decides if linear piece p; is above a different linear piece p; over §2;.
#

i

Let (¢p,, ®p;,) be the representation for p
1,...,m. We define:

given by Theorem 5.5, for i =

m
o=\ ¥q, with o, = /\ op; o=Jo,; (15)
i=1 keK i=1

where k € K if pp(x) > pi(x), for all x € ©;. We are able to state the following
representation result which is adapted from [17,18].

Lemma 6.1 Let f be a rational McNaughton function in regional format with linear
pieces given by (14), and let pq, be a formula and ® a set as in (15). Then,
v(pq,) < f(v(X1),...,v(X,)), forve Valg andi=1,...,m.

Proof. Let v € Valg and x¢ = (v(X1),...,v(Xy)). In particular, v € Vals, , for
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28 (Som N @py N Sop:a) v (90101 A @py N 90103) \ (‘Pm N @py A ‘Ppg)
d: @, UD,, Udy,
Table 4

Representation as in (15) for function f from Example 4.1.
i € K and, by Theorem 5.5,
v(pq,) = minpk# (x0).
keK

If xg € €, then v(pgq,) < p;#(xo) = pi(x0) = f(x0). On the other hand, if x¢ ¢ €,
there is some ko such that xg € Q,. In the case pi,(x) > pi(x), for all x € €,
then ko € K and v(pq,) < pk#o (x0) = pry(X0) = f(x0). In the case there is x" € Q;
such that pg,(x’) < pi(x’), continuity of f yields that there is ¢ € K such that
pe(x) > pi(x), for all x € Q; and pi(x) < pg,(x), for all x € Q. Therefore,

v(pa,) < pff (x0) < pr(x0) < pro(%0) = P (x0) = f(x0). D

Theorem 6.2 Any rational McNaughton function may be represented by (v, ®)
in (15).

Proof. First note that any rational McNaughton function may be put in regional

format as showed in Section 4. For (z1,...,x,) € [0,1]", define a valuation v € Valg
such that v(X;) = z; andv(Zfi) = ;TJ], fori=1,...,m,5=1,...,n, v(Z[%) = B%‘j’

J
fori=1,...,m,j=0,...,n, v(fg) = v(1), and U({i) = min(l,v(&f}_l) + v(gi_l)),
for k =1,...,|logn], for any niy that occurs in ¢ and ®. Now, let v,v" € Valg
such that v(X;) = v'(Xj), for j = 1,...,n. In particular, v,v" € Valg, , for
i =1,...,m, and, by Theorem 5.5, v(pp,) = v'(¢p,), for i = 1,...,m. Therefore,
v(p) = V() and X,, determines ¢ modulo ®-satisfiable. Finally, suppose v € Valg.
There is some ky € K such that (v(X1),...,v(X,)) € Qk,. Note that v(pa,,) =
f(v(X1),...,v(Xy)). Therefore,

f(Xa),. o 0(Xn)) = max v(pq;) = v(pa),

1=1,....m
by Lemma 6.1. |

Table 4 shows how function f in Example 4.1 can be represented as in Theo-
rem 6.2.

Algorithm 4 returns representation (p, ®) for function f with linear pieces given
n (14). From line 1 to line 13, the algorithm writes formulas ¢q, and the set ®: it
first computes formulas ¢, (lines 2 to 5) by means of routine REPRESENT-TL-F
and then it writes ¢q, (lines 7 to 11) by means of routine ABOVE. It writes set ®
computing each ®,, by means of routine REPRESENT-TL-S (line 12). In line 14
it writes formula (.
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Algorithm 4 REPRESENT: computing representations for rational McNaughton

functions
Input: A rational McNaughton function f in regional format given by its linear

pieces coefficients §12, ... ¢z .. gme . gme and regions (,..., Q.
Output: A representation (p, ®) for the rational McNaughton function f.
1. ¢:=;
2: fori=1,...,mdo
% ¢p, = REPRESENT-TL-F({2, ... %),
4P = Ppis
5. end for
6: fori=1,...,mdo
7. fork=1,...,i—1,i4+1,...,mdo
8: if ABOVE(py,p;) = true then
o: PQ; = Pa; N Ppys
10: end if
11:  end for
122 @ :=®UREPRESENT-TL-S(¢2, ..., ¢2);
13: end for
4 pi=o; V- Vg,

=
ot

: return (p, P);

Theorem 6.3 Given a rational McNaughton function f in regional format, a log-
ical representation for it may be computed in polynomial time on the size of f by
Algorithm /.

Proof. Algorithm 4 builds representation (p, ®) in (15). So, the algorithm correct-
ness follows from Theorem 6.2. The size of f is the space necessary to storage the
coefficients of its m linear pieces p1,...,p, and the regions Q4,...,€,,. The algo-
rithm first calculates m representative formulas ¢,, by REPRESENT-TL-F, which
takes polynomial time on the size of f by Theorem 5.6. Then, it builds formulas ¢q,
from the already built representative formulas in m? steps; in each of these steps it
runs routine ABOVE in assumed polynomial time. Along with the above computa-
tion, the algorithm also builds set ® in m steps; in each one it calculates set ®,, by
REPRESENT-TL-S, which takes polynomial time on the size of f by Theorem 5.6.
Finally, the algorithm calculates ¢ from formulas ¢q, already computed. After all,
Algorithm 4 terminates in polynomial time. O

7 Conclusions

We introduced a way to represent functions by logical formulas in Lukasiewicz
Infinitely-valued Logic — the representation modulo satisfiability —, and we showed
by a constructive proof that all rational McNaughton functions can be represented
this way. Moreover, we derive an algorithm that builds such a representation in
polynomial time on the size of the function. For the future, we hope to couple this
algorithm with algorithms that approximate (normalized) continuous functions by
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rational McNaughton functions; also, apply these approximations to the study of
real systems such as neural networks through automated reasoning techniques.
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