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Abstract: Free-forming or casual groups are groups in which individuals are in face-to-face interac-
tions and are free to maintain or terminate contact with one another, such as clusters of people at
a cocktail party, play groups in a children’s playground or shopping groups in a mall. Stochastic
models of casual groups assume that group sizes are the products of natural processes by which
groups acquire and lose members. The size distributions predicted by these models have been the
object of controversy since their derivation in the 1960s because of the neglect of fluctuations around
the mean values of random variables that characterize a collection of groups. Here, we check the
validity of these mean-field approximations using an exact stochastic simulation algorithm to study
the processes of the acquisition and loss of group members. In addition, we consider the situation
where the appeal of a group of size i to isolates is proportional to iα. We find that, for α ≤ 1, the
mean-field approximation fits the equilibrium simulation results very well, even for a relatively
small population size N. However, for α > 1, this approximation scheme fails to provide a coherent
description of the distribution of group sizes. We find a discontinuous phase transition at αc > 1 that
separates the regime where the variance of the group size does not depend on N from the regime
where it grows linearly with N. In the latter regime, the system is composed of a single large group
that coexists with a large number of isolates. Hence, the same underlying acquisition-and-loss process
can explain the existence of small, temporary casual groups and of large, stable social groups.

Keywords: casual groups; size distribution; stochastic simulation; mean-field approximation;
phase transition

MSC: 91Dxx; 92-10; 60Gxx

1. Introduction

Finding and explaining patterns in the ebb and flow of people in a public gathering
have been challenging tasks for the mathematically inclined social scientist [1,2]. People
constantly join and leave groups, so at any moment, the gathering appears as a collection of
social clusters. The stochastic models proposed in the 1960s to explain the size distribution
of these free-forming or casual groups ignore any prior knowledge of the individuals
present in the gathering and use only a couple of parameters to represent people’s average
tendencies to join and leave groups [3,4]. Here, we evaluate the suitability of these models
to reproduce the empirical size distribution of casual groups.

In fact, the equilibrium group-size distributions resulting from these null models, viz.,
the zero-truncated Poisson distribution and the logarithmic distribution, well describe the
observed size distributions of collections of small groups, such as pedestrians on a sidewalk,
playgroups in a playground and shopping groups [3]. However, these distributions were
derived using a mean-field approximation to solve equations for the expected number of
groups of a given size, which prompted the criticism that they were not actual outcomes of
the models but artifacts of the approximation scheme [4–6]. Here, we attempt to settle this
long-standing (and likely forgotten) issue using Gillespie’s stochastic algorithm to exactly
simulate the group dynamics [7,8].
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In addition, we extend the null models proposed in the 1960s to consider the situation
where the appeal of a group of size i to isolates (i.e., individuals who are not members of
any group) is proportional to iα, where α ∈ (−∞, ∞) is the attractiveness exponent. Large
negative values of α describe situations where a predominance of couples and isolates is
expected, whereas large positive values of α foster the formation of a single large group
that coexists with isolates. In time, the truncated Poisson distribution is obtained for
α = 0 [3], and the logarithmic distribution is obtained for α = 1 [4], which have been the
only cases studied so far. The stochastic simulations of the group dynamics indicate that
the mean-field approximation yields the exact results for α ≤ 1 and a large population
size N. However, the approximation fails for α > 1 since it violates the fixed-population
constraint.

The variation in the attractiveness exponent α allows the modeling of collections of
small, temporary groups as well as of large, stable groups. We find that these two scenarios
are separated by a discontinuous phase transition at α = αc > 1. The probability of
observing large groups vanishes exponentially with increasing group size i for α < αc.
For α > αc, the probability mass function concentrates around i = 1 and i = N − n1,
where n1 is the number of isolates. Hence, the acquisition-and-loss process of group
dynamics does not produce a power-law decay for the probability of finding large groups
observed in face-to-face interaction networks [9]. Long-tailed group-size distributions
are outputs of agent-based models where the individuals are ascribed distinct degrees
of attractiveness [10,11], so it seems that some knowledge of the individuals present in
the gathering is necessary to produce these power-law distributions. In fact, the natural
tendency of people to gravitate toward others who share similar interests or backgrounds
is an important factor in explaining the formation of social groups [12–14]. Nevertheless, it
is noteworthy that the stochastic null models can explain the empirical size distribution of
collections of small groups.

A more recent and fruitful approach to the characterization of social groups or, more
precisely, social networks—networks of friends or other acquaintances—is based on the
complex networks framework [15]. In particular, a group of individuals (nodes) with a high
density of internal links but with a comparatively lower density of external links is called
a community [16,17]. Communities are ubiquitous in social and biological systems and
are believed to represent real social groupings assembled by interest or background. We
note that, although there are a variety of public repositories of animal social networks (see,
e.g., [18,19]), the detection of communities in the real world as well as in artificial networks
is a challenging computational task [20,21]. From an evolutionary perspective, the com-
munity organization of social networks is considered optimal if it boosts communication
and decision making at the group level while keeping a minimum number of connections
between individuals [22,23]. However, social network communities are relatively stable
groups and thus are not good models for fleeting casual groups, which can be described by
the less popular face-to-face interaction networks [24].

The rest of this paper is organized as follows: In Section 2, we describe the group
dynamics and derive the exact equations for the expected number of groups of a given
size. In Section 3, we present a brief overview of Gillespie’s algorithm and study the group
dynamics using this stochastic simulation algorithm. In Section 4, we solve the equations
derived in Section 2 for the equilibrium regime using the mean-field approximation and
present explicit analytical expressions for the cases α → −∞, α = 0 and α = 1, which
are then compared with the simulation results. In Section 5, we study the equilibrium
regime for α > 1 using stochastic simulations and show that in the limit N → ∞, there is a
discontinuous phase transition separating the scenarios where the variance of the group
size is finite and where it diverges linearly with increasing N. Finally, in Section 6, we
review our main results and present some concluding remarks.
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2. The Model

We consider a fixed number of individuals N that organize themselves into a variable
number of groups of size i = 1, . . . , N in a closed system. We denote by ni the number
of groups of size i at time t. These random variables satisfy the constraint ∑N

i=1 ini = N
and determine the total number of groups in the system, viz., ∑N

i=1 ni = M, which is also a
random variable. The processes of joining and leaving the groups are as follows.

Each individual in a group of size i > 1 has a probability µδt of leaving the group
during the time interval δt. When an individual leaves a group, it becomes an isolate, i.e.,
a group of size i = 1. An isolate has a probability λδt of joining a group (including other
isolates) in the time interval δt.

We assume that the attractiveness of a group of size i to isolates is proportional to
iα. The case α = 0 describes the situation where isolates join any group in the system at
the same rate, whatever its size [3]. For α > 0, we have a contagious scenario that favors
the formation of large groups [4], whereas, for α < 0, we have an aversion scenario that
disfavors the formation of groups. In the 1960s, approximate analytical expressions for the
expected values of ni were derived for the cases α = 0 and α = 1 only [3,4].

The understanding of the processes by which groups acquire and lose individuals
is facilitated if we write down the conditional expected values of the random variables
ni(t + δt) given that the system is in the state ~n(t) = (n1(t), . . . , nN(t)) at time t. Let us
begin with the conditional expectation of the number of isolates,

E[n1(t + δt)|~n(t)] = n1 + µδt(2n2) + µδt(N − n1)− λδtn1
Nα − n1

Nα − 1
− 2λδtn1

n1 − 1
Nα − 1

, (1)

where we have omitted the dependence of the variables ni(t) on t that appear on the
right-hand side (RHS) of the equation. In addition, we have introduced the notation

Nα(t) = 1αn1(t) + 2αn2(t) + . . . + NαnN(t), (2)

so that N0(t) = M(t) and N1(t) = N. The third term on the RHS of Equation (1) takes
into account the fact that any individual who is not isolated may become an isolate with
a probability of µδt. The second term corrects the third term by reckoning with the fact
that whenever an individual leaves a group of two individuals, two isolates are created.
The fourth term on the RHS of Equation (1) accounts for the event that an isolate joins any
group with i > 1 individuals, whereas the fifth term accounts for the aggregation of two
isolates.

Next, we consider the conditional expectation of the number of couples, viz.,

E[n2(t + δt)|~n(t)] = n2 + 3µδtn3 − 2µδtn2 − λδtn1
2αn2

Nα − 1
+ λδtn1

n1 − 1
Nα − 1

. (3)

The second and third terms on the RHS of Equation (3) account for the facts that a group of
two individuals is created when an individual leaves a group of three individuals, and it is
destroyed when an individual leaves a group of two individuals. The fourth term accounts
for the event that isolates attracted by groups of two individuals produce groups of three
individuals, and the fifth term accounts for the joining of two isolates to produce a group
of two individuals.

For groups with i = 3, . . . , N individuals, we can write the general expression

E[ni(t + δt)|~n(t)] = ni + (i + 1)µδtni+1− iµδtni − λδtn1
iαni

Nα − 1
+ λδtn1

(i− 1)αni−1

Nα − 1
, (4)

with nN+1 ≡ 0. The interpretation of the terms in this equation follows straightforwardly
from the interpretations of the terms in Equations (1) and (3).
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We stress that Equations (1), (3) and (4) for the conditional expectations of ni(t +
δt), i = 1, . . . , N are exact. Adding these equations yields the conditional expectation for
the number of groups,

E[M(t + δt)|~n(t)] = M(t) + µδt[N − n1(t)]− λδtn1(t), (5)

from which we can see that the isolates play a key role in driving the casual group dynamics.
Averaging Equations (1), (3)–(5) over the states~n(t) and taking the limit δt→ 0 yield

d〈n1〉
dt

= 2µ〈n2〉+ µ(N − 〈n1〉)− λE
[

n1(Nα − n1)

Nα − 1

]
− 2λE

[
n1(n1 − 1)

Nα − 1

]
, (6)

d〈n2〉
dt

= 3µ〈n3〉 − 2µ〈n2〉 − 2αλE
[

n1n2

Nα − 1

]
+ λE

[
n1(n1 − 1)

Nα − 1

]
, (7)

d〈ni〉
dt

= (i + 1)µ〈ni+1〉 − iµ〈ni〉 − iαλE
[

n1ni
Nα − 1

]
+ (i− 1)αλE

[
n1ni−1

Nα − 1

]
(8)

for i = 2, . . . , N, and
d〈M〉

dt
= µN + (λ− µ)〈n1〉, (9)

where 〈nN+1〉 ≡ 0, and we have introduced the notation 〈ni(t)〉 ≡ E[ni(t)]. We note that by
rescaling the time τ = µt, these equations depend on the aggregation and disaggregation
rates only through their ratio,

κ ≡ λ

µ
. (10)

Of course, Equations (6)–(8) do not form a closed set of equations since there are quantities
(e.g., E[n2

1/(Nα − 1)]) that are left undefined. Somewhat surprisingly, however, in the
equilibrium regime, i.e., d〈ni〉/dt = 0 for i = 1, . . . , N, Equation (9) yields the exact mean
number of isolates,

〈n1〉eq =
N

1 + κ
, (11)

which does not depend on the attractiveness exponent α.

3. The Gillespie Algorithm

Here, we offer a brief overview of Gillespie’s algorithm for simulating continuous-time
stochastic models [7,8]. In the time interval δt, the probability that aggregation occurs is
λn1(t)δt, and the probability that an individual leaves a group is µ[N − n1(t)]δt. Since
these two events decrease and increase the number of groups by one unity, respectively,
their probabilities appear on the RHS of Equation (5). Given the state ~n(t) at time t, the
probability that the next event will occur in the infinitesimal time interval (t+ t′, t+ t′+ δt′)
is P(t′)δt′, where P(t′) is the exponential distribution,

P(t′) = υ exp
(
−t′υ

)
. (12)

and
υ = µN + (λ− µ)n1(t) (13)

is the total rate of events. The event that occurs in the time interval (t + t′, t + t′ + δt′)
is an aggregation with a probability λn1(t)/υ and a disaggregation with a probability
µ[N − n1(t)]/υ. In the case that aggregation occurs, there are two possibilities: an isolate
can join a group of size i > 1, which is an event that happens with a probability

iαni(t)
n1(t)− 1 + 2αn2(t) + . . . + NαnN(t)

, (14)
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or two isolates can join together to form a couple, which has a probability

n1(t)− 1
n1(t)− 1 + 2αn2(t) + . . . + NαnN(t)

. (15)

In the case that disaggregation occurs in the time interval (t + t′, t + t′ + δt′), a single
individual leaves a group of size i > 1, which is an event that happens with a probability

ini(t)
2n2(t) + . . . + NnN(t)

=
ini(t)

N − n1(t)
. (16)

In sum, given the state of the system~n(t) at time t, the stochastic simulation of the casual-
group model begins with the choice of the time t′ when the next event will occur using
the distribution in (12), followed by the choice of the type of event—aggregation with a
probability λn1(t)/υ and disaggregation with a probability µ[N − n1(t)]/υ. Finally, the
specific aggregation and disaggregation events are chosen with probabilities given by
Equations (14)–(16). We note that, with the exception of the determination of the time
of the next event, the aggregation and disaggregation rates always appear in the form
of the ratio λ/µ. This numerical algorithm produces the exact trajectories of the states
~n(t), which, when properly averaged over many independent runs, offers the only way to
verify the validity of the approximation schemes used to solve high-dimensional master
equations [7,8].

Here, we use the bracket notation 〈. . .〉 to indicate the average over independent
runs. In fact, because the number of runs is very large (typically 106), we can safely
equate the average over independent runs to the expected values of the random variables
n1(t), . . . , nN(t), hence the choice of the same bracket notation used in Section 2.

Figure 1 shows the time evolution of the mean density of isolates, 〈n1(t)〉/N, and
the mean number of individuals per group mα ≡ 〈N/M(t)〉 for different values of the
attractiveness exponent α. At time t = 0, all N individuals are isolates (i.e., n1(0) = N and
ni(0) = 0, i > 1). Interestingly, although the mean density of isolates does not depend on α
in the equilibrium regime, as shown in Equation (11), the transient regime is affected by
the attractiveness exponent: the increase in α favors the production of isolates. This is so
because α > 0 hinders the formation of couples, which requires the annihilation of two
isolates, whereas the formation of groups of size i > 2 requires the annihilation of only one
isolate. In addition, an increase in α increases the transient period, as well as the mean size
of the groups.

Figure 2 shows the effect of the population size N on the density of isolates and on
the mean group size for α = 0. The results are qualitatively similar to other values of the
attractiveness exponent. We note the remarkable unresponsiveness of the density of isolates
to changes in N. In fact, although the decrease in N results in a reduction in the rate of
events υ, given by Equation (13), the effect of a single event on the density of isolates is
enhanced. These two effects compensate for each other, resulting in a system size invariance
of 〈n1(t)〉/N. However, the mean group size decreases with increasing N and converges
very rapidly to the infinite system size limit. For α ≤ 1, this limit is described very well by
the analytical approximation for the equilibrium solutions of Equations (6)–(8) that we will
derive in the next section.
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Figure 1. Stochastic simulations of casual groups with attractiveness exponents α = −1, 0, 1 and 2, as
indicated. (Left) Mean density of isolates as function of time t. The dashed horizontal line is the exact
result (11) for the equilibrium regime. (Right) Mean group size as function of time t. The dashed
horizontal lines are the equilibrium approximate analytical results for α ≤ 1 presented in Section 4.
The other parameters are λ = 1.5, µ = 1 and N = 100.
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Figure 2. Stochastic simulations of casual groups for α = 0 and population sizes N = 5, 10, 20 and
100, as indicated. (Left) Mean density of isolates as function of time t. The dashed horizontal line is
the exact result (11) for the equilibrium regime. (Right) Mean group size as function of time t. The
dashed horizontal line is the approximate analytical result for the equilibrium regime presented in
Section 4. The other parameters are λ = 1.5 and µ = 1.

4. Analytical Approximation for the Equilibrium Regime

Here, we derive the controversial approximate analytical results for the expectations
E[ni(t)] ≡ 〈ni(t)〉 that motivated the present contribution [4–6]. In the following, we will
focus only on the equilibrium regime, i.e., d〈ni〉/dt = 0 for i = 1, . . . , N. To solve the
equilibrium equations for 〈ni〉eq with i > 1, we make the assumption

E[ f (n1, . . . , nN)] = f
(
〈n1〉eq, . . . , 〈nN〉eq

)
, (17)
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where f is an arbitrary rational function. Such a strong assumption is valid if the random
variables ni are self-averaging, i.e., ni/N → 〈ni〉eq/N for all i in the limit N → ∞. This
neglect of fluctuations is the basis of the popular mean-field approximation of statistical
physics [25]. With this assumption, we can easily write 〈ni〉eq for i > 1 in terms of 〈n1〉eq
and 〈Nα〉eq,

〈ni〉eq =
[(i− 1)!]α−1

i

[
κ
〈n1〉eq

〈Nα〉eq − 1

]i−1

(〈n1〉eq − 1) (18)

where 〈Nα〉eq = ∑N
i=1 iα〈ni〉eq, and 〈n1〉eq is given by Equation (11). These equations must be

solved self-consistently: for an arbitrary value of 〈Nα〉eq, we calculate 〈ni〉eq for i > 1, which
we then use to update the estimate of 〈Nα〉eq. The process is repeated until convergence. At
this point, we can already see that the assumption in (17) leads to nonphysical results for
κ > N − 1, where 〈n1〉eq < 1 (see Equation (11)), since it implies 〈ni〉eq < 0 for i > 1. This
breakdown of the mean-field approximation is expected because a necessary condition for
the self-averaging property to hold is that 〈n1〉eq � 1 for large N.

In addition, and more importantly, Equation (18) holds for α ≤ 1 only. Although for
finite N, the self-consistent strategy yields a solution for any value of α, in which 〈Nα〉eq

scales with Nα, the solution does not satisfy the constraint ∑N
i=1 i〈ni〉eq = N for α > 1. The

reason is that Equation (18) yields a non-negligible value for 〈nN〉eq, resulting in a net flow
of individuals to nonphysical group sizes and the consequent violation of the constant-
population-size constraint. This effect is negligible for α ≤ 1 because 〈nN〉eq is vanishingly
small (provided that N is not too small), so the flow of individuals to nonphysical regions
is inconsequential. We stress that the exact simulations of the group dynamics result in
negligible values of 〈nN〉eq for any α, as we will show in Section 5.

A relevant quantity that is usually observed in empirical investigations [1–3] is the
mean fraction of groups of size i = 1, . . . , N at equilibrium, defined as

pi = 〈
ni
M
〉eq ≈

〈ni〉eq

〈M〉eq
, (19)

where the approximation is justified by the assumption in (17). Of course, pi can be
interpreted as the probability of observing a group of size i. It is interesting that empirical
studies typically clump together groups of the same size that are observed on many different
occasions (e.g., pedestrians on a sidewalk during Spring mornings in Eugene, Oregon [3]),
so they report the total number of observations of groups of a given size. Summing over
the different sizes yields the total number of groups observed. Hence, the ratio between the
two averages 〈ni〉eq/〈M〉eq is actually the correct measure to describe the empirical results.
However, in stochastic simulations, we calculate the ratios ni/M for each run and then
average the results over the many independent runs, so we measure 〈ni/M〉eq.

In the following, we present explicit analytical expressions of pi for α = 0, α = 1 and
the limit α→ −∞. In addition, we present the numerical solution of Equation (18) obtained
with the self-consistent method for general α ≤ 1.

4.1. Case α = 0

In this case, 〈Nα〉eq = 〈M〉eq, and Equation (18) reduces to

〈ni〉eq =
1
i!

[
κ
〈n1〉eq

〈M〉eq − 1

]i−1

(〈n1〉eq − 1) (20)
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for i > 1, with

〈M〉eq =
N

∑
i=1
〈ni〉eq

≈ 1 +
1
κ
(〈M〉eq − 1)(1− 1

〈n1〉eq
)[exp(κ

〈n1〉eq

〈M〉eq − 1
)− 1], (21)

from which we obtain an explicit expression for the mean number of groups in the equilib-
rium regime,

〈M〉eq ≈
κ

1 + κ

N
ln(1 + κ)

. (22)

In deriving Equation (21), we have assumed that N → ∞ in order to carry out the sum
over the group sizes, whereas, in deriving Equation (22), we have assumed that 〈n1〉eq is on
the order of N, which means that κ � N. As already pointed out, these are the necessary
conditions for the validity of the self-averaging property that underlies the mean-field
approximation.

Hence,

pi =
1

ea − 1
ai

i!
, (23)

where a = ln(1 + κ), which we identify as the zero-truncated Poisson distribution. Interest-
ingly, this distribution fits a wide variety of data of small groups [3]. The mean and the
variance of the group size are

m0 =
N

∑
i=1

ipi = (1 + 1/κ) ln(1 + κ) (24)

and
σ2

0 = (1 + 1/κ)
[
ln(1 + κ) + ln2(1 + κ)

]
− (1 + 1/κ)2 ln2(1 + κ). (25)

Figure 3 exhibits the comparison between the stochastic simulations and the truncated
Poisson distribution (23) for N = 10 and N = 100. As expected, the mean-field approxi-
mation fails to describe the size distribution for N = 10, but for N = 100, its predictions
are indistinguishable from the simulation results. This finding validates the use of that
approximation, provided that the number of individuals is not too small.
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Figure 3. Probability of observing a group of size i = 1, 2, 3 and 4 in the equilibrium regime for α = 0.
The population sizes are N = 10 and 100, as indicated, and the disaggregation rate is µ = 1. The
solid curves that perfectly fit the simulation data for N = 100 are given by the truncated Poisson
distribution (23).
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4.2. Case α = 1

In this case, 〈Nα〉eq = N, and Equation (18) reduces to

〈ni〉eq =
1
i

[
κ
〈n1〉eq

N − 1

]i−1

(〈n1〉eq − 1) (26)

with 〈n1〉eq given in Equation (11). As before, assuming that N � 1 and 〈n1〉eq � 1, we
obtain an explicit expression for the mean number of groups:

〈M〉eq ≈ N
1
κ

ln(1 + κ). (27)

Thus, the fraction pi of groups of size i > 0 is

pi =
1

ln(1 + κ)

1
i

(
κ

1 + κ

)i
, (28)

which we identify as the logarithmic distribution used to model relative species abun-
dance [26]. Hence, the mean group size is

m1 =
κ

ln(1 + κ)
(29)

and the variance of the group size is

σ2
1 =
−κ2 + κ(1 + κ) ln(1 + κ)

ln2(1 + κ)
. (30)

Figure 4 exhibits the comparison between the stochastic simulations and the logarithmic
distribution (28) for N = 10 and N = 100. As before, the results validate the use of the
mean-field approximation if the number of individuals is not too small.
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Figure 4. Probability of observing a group of size i = 1, 2, 3 and 4 in the equilibrium regime for α = 1.
The population sizes are N = 10 and 100, as indicated, and the disaggregation rate is µ = 1. The solid
curves that perfectly fit the simulation data for N = 100 are given by the logarithmic distribution (28).
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4.3. The Limit α→ −∞

In the limit α → −∞, we have 〈N−∞〉eq = 〈n1〉eq, 〈n2〉eq = κ〈n1〉eq/2 and 〈ni〉eq = 0
for i > 2. Hence, the fraction of groups of size i is

p1 =
1

1 + κ/2
(31)

p2 =
κ/2

1 + κ/2
(32)

and pi = 0 for i > 2. Figure 5 shows the simulation results for N = 10 and N = 100. We
have verified that pi = 0 for i > 2 in the simulations. As before, although the mean-field
approximation fails for N = 10, it yields the exact result for N = 100.

The mean group size is

m−∞ =
1 + κ

1 + κ/2
(33)

and the variance of the group size is

σ2
−∞ =

κ/2
(1 + κ/2)2 . (34)

The limit α → −∞ is instructive because we can solve Equations (6)–(8) exactly for
any value of N > 1 using the fact that iα → 0 for i > 1. We find

〈n1(t)〉 = 〈n1(0)〉e−2(1+κ)τ +
N

1 + κ

(
1− e−2(1+κ)τ

)
(35)

where τ = µt. From this equation, we can easily obtain 〈n2(t)〉 = (N − 〈n1(t)〉)/2 and
〈M(t)〉 = (N + 〈n1(t)〉)/2. The reason that Equations (31) and (32) are only approximate
and thus fail to fit the data for N = 10 in Figure 5 is that, although we can calculate 〈n1〉
and 〈M〉 exactly for all N > 1, we do not know how to calculate p1 = 〈n1/M〉, which is
the quantity measured in the simulations.
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Figure 5. Probability of observing a group of size i = 1 and 2 in the equilibrium regime for α = −104.
The population sizes are N = 10 and 100, as indicated, and the disaggregation rate is µ = 1. The solid
curves that perfectly fit the simulation data for N = 100 are given by Equations (31) and (32).

4.4. General α ≤ 1

Except for the three cases discussed before, it is not possible to obtain explicit analytical
expressions for 〈ni〉eq because we cannot carry out the summation necessary to compute
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〈Nα〉eq in a closed form. However, the use of the self-consistent method allows us to easily
obtain these quantities numerically. Since we have already established that the mean-
field approximation is very accurate, even for N = 100, in Figure 6, we present only the
approximate theoretical results for mα and σ2

α .

 1
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m
α

κ

 0
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 0  2  4  6  8  10

σ
2 α

κ

Figure 6. Mean-field approximation for the equilibrium regime for attractiveness exponents (top to
bottom) α = 1, 0.5, 0,−1 and α → −∞. (Left) Mean group size mα. (Right) Variance of the group
size σ2

α .

As expected, decreasing the value of the attractiveness exponent decreases the mean
and the variance of the group sizes. We note that these quantities have explicit analytical
expressions in the cases α = 0 (Equations (24) and (25)), α = 1 (Equations (29) and (30)) and
α→ −∞ (Equations (33) and (34)).

5. Equilibrium Regime for α > 1

This is by far the most interesting situation because of the complete failure of the mean-
field approximation. As already pointed out, the reason is that the solution of Equation (18)
violates the fixed-population constraint for α > 1. However, we can still obtain some useful
analytical information by considering the limit of very large α. In this limit, the system
is composed of 〈n1〉eq isolates and a single group of N − 〈n1〉eq individuals on average.
Hence, the mean number of groups is 〈M〉eq = 〈n1〉eq + 1, and we have

m∞ ≈
〈n1〉eq + (N − 〈n1〉eq)

〈n1〉eq + 1
≈ 1 + κ (36)

and

σ2
∞ ≈

〈n1〉eq + (N − 〈n1〉eq)2

〈n1〉eq + 1
−m2

∞ ≈ N
κ2

1 + κ
, (37)

so that the mean group size is finite, but the variance diverges in the limit N → ∞. The
mean size of the large group is

N − 〈n1〉eq =
Nκ

1 + κ
. (38)

Interestingly, Figure 7 shows that this scenario—a single large group coexisting with
isolates—describes the case α = 2 very well for large N. Figure 8 corroborates this finding
by showing that pi tends to a bimodal distribution characterized by sharp peaks at i = 1
and i = N − n1 in the limit of large N. In addition, this figure shows that pN (or 〈nN〉eq)



Mathematics 2023, 11, 2152 12 of 16

is negligibly small for α > 1, in disagreement with the prediction (17) of the mean-field
approximation.
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Figure 7. Stochastic simulations in the equilibrium regime for α = 2 and population sizes
N = 50, 100, 200 and 400, as indicated. (Left) Mean group size m2. (Middle) Variance of the group
size σ2

2 . (Right) Scaled variance σ2
2 /N. The solid lines are the predictions of Equations (36) and (37)

for α→ ∞. The disaggregation rate is µ = 1.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

p
i

i/N

N=100

N=200

N=400

N=800

Figure 8. Distribution of group sizes in the equilibrium regime for α = 2, κ = 2, µ = 1 and
N = 100, 200, 400 and 800, as indicated. The dashed vertical line indicates the relative size of the large
group for α→ ∞, viz., 1− 〈n1〉eq/N = 2/3. The lines connecting the symbols are guides to the eye.

In order to better understand the transition between the equilibrium regime character-
ized by a finite variance σ2

α and the regime where σ2
α diverges linearly with N as N → ∞,

in Figure 9, we show the influence of the attractiveness exponent α on mα and σ2
α /N. The

results indicate the existence of a discontinuous transition between these two regimes
that takes place at a critical value αc = αc(κ) > 1. In addition, limα→α+c

mα < m∞, so the
regime of infinite variance but finite α is not perfectly described by the α → ∞ scenario.
In particular, for κ = 2, we find αc ≈ 1.105. This estimate was obtained by considering
population sizes up to N = 12800 and noticing that, for α = 1.10, the variance σ2

α tends to a
fixed value, whereas, for α = 1.11, it increases with N. As κ increases, we find that αc → 1.
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We note that from the statistical physics perspective, the scaled variance σ2
α /N is the order

parameter of the casual-group model since it is zero for α < αc and nonzero otherwise.
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Figure 9. Stochastic simulations in the equilibrium regime for κ = 2 and population sizes N = 100,
200, 400 and 800, as indicated. (Left) Mean group size mα. (Right) Scaled variance σ2

2 /N. The
predictions of Equations (36) and (37) for α→ ∞ are m∞ = 3 and σ2

∞/N = 4/3 (dashed horizontal
line in the right panel). The disaggregation rate is µ = 1. The lines connecting the symbols are guides
to the eye.

Somewhat disappointingly, the acquisition-and-loss process underlying our model
does not produce a power-law decay for the probability of finding large groups. In fact,
Figure 10 shows that in the vicinity of the transition point αc, where a scale-free behavior
is more likely to be observed [27], the probability of observing large groups vanishes
exponentially with increasing group size for α < αc or exhibits two peaks for α > αc. It
remains a challenge to find a simple acquisition-and-loss process that leads to a power-law
distribution of group sizes as observed in face-to-face interaction networks [10,11].
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Figure 10. Distribution of group sizes in the equilibrium regime for κ = 2 and N = 100, 200, 400 and
800, as indicated. (Left) α = 1.10. The straight line is the fitting pi = 0.003 exp(−0.18i) of the data for
N = 800. (Right) α = 1.15. The disaggregation rate is µ = 1. The lines connecting the symbols are
guides to the eye.
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6. Discussion

The distribution of sizes is likely the simplest quantitative information we can derive
from the observation of freely forming groups. Of course, if the interrelations of the
people present were known a priori, we could most certainly predict the formation and
composition of some groups. However, here, we follow an alternative and more fruitful
approach that ignores any prior knowledge of the individuals present and attempts to
explain the observations using stochastic models characterized by a few parameters that
represent people’s average tendencies to join and leave a group of a certain size [3,4].
Because the models considered here do not take into account individual idiosyncrasies, we
refer to them as null models.

The null models assume that the total number of individuals N is fixed, i.e., that the
system is closed, but this assumption is rarely satisfied in field studies of casual groups. For
instance, the number of pedestrians on a sidewalk observed on distinct days varies greatly,
and it is likely bounded by the city population. However, by taking the limit N → ∞, the
fixed-population constraint becomes inconsequential. Of course, when considering this
limit, we must focus only on the ratios of the number of groups, as applied in Equation (19).
In fact, this was the approach used in the pioneer paper that introduced the mathematical
modeling of casual groups [5]. In any event, our results indicate that even for N = 100,
the group-size distribution is practically indistinguishable from the distribution derived in
the infinite population limit. Regarding the connection between the field studies and the
mathematical models, it is assumed that the acquisition-and-loss process takes place at the
time of the formation of the groups and that the system is at equilibrium at the moment of
the observation. In addition, it is assumed that the observation happens on a time scale
that is much faster than the acquisition-and-loss process, so the groups maintain their sizes
during the period of observation [3].

Here, we extend previous models of casual groups by assuming that the appeal of
a group of size i to isolates is proportional to iα, where α ∈ (−∞, ∞) is the attractiveness
exponent. The control of the appeal of groups of different sizes to isolates, which is obtained
by tuning the exponent α, allows us to consider some interesting scenarios. For instance,
large negative values of α could describe people on the sidewalk walking to a dance
party, where a predominance of couples is expected, which cannot be explained by the
truncated Poisson distribution (see [28] for an alternative, more complex model of couples
and isolates). Large positive values of α result in a bimodal distribution of group sizes,
corresponding to a scenario where a single large group coexists with a number of isolates.
Interestingly, in both cases, the proportion between the number of individuals in the large
group or the number of individuals forming couples and the number of isolates is given by
the ratio κ between the rates of aggregation and disaggregation.

Our main result is that the mean-field approximation used to derive the distribution
of group sizes in the case that the attractiveness of a group does not depend on its size
(i.e., α = 0) and in the case that it increases linearly with the group size (i.e., α = 1)
actually yields the exact result for N → ∞. This conclusion, which is drawn from the
agreement between the exact stochastic simulations of the group dynamics and the mean-
field results, dismisses the suspicion of the inadequacy of the mean-field approximation
to describe the equilibrium size distribution of casual groups [6]. (Of course, neither
Gillespie’s algorithm [7,8] nor the computational resources to implement it were available
in the 1960s to settle this issue.) In fact, for α ≤ 1, the mean-field approximation yields very
good predictions, even for a relatively small population size (e.g., N = 100). However, the
approximation fails spectacularly for α > 1, since it violates the fixed-population constraint.
In this case, Gillespie’s stochastic simulation algorithm emerges as the only resource to
study the dynamics of casual groups.

In addition, we find that the variation in the attractiveness exponent α produces
scenarios where the group sizes are typically small, which is the situation addressed in the
literature on casual groups [2], and scenarios where most of the population is confined to
a single group. The latter scenario corresponds to the large and stable groups formed by
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gregarious animals, whose sizes are determined by a variety of selective pressures, such
as defense against predation and foraging success [29]; the cognitive load that constrains
the number of individuals with whom it is possible to maintain stable relationships [30];
competence in problem solving [31]; and individual distance preservation [32]. Remarkably,
in our model, these distinct scenarios are separated by a discontinuous phase transition
that takes place at α = αc > 1, indicating that both types of aggregation behavior can be
explained by the same underlying acquisition-and-loss process.

The biological and sociological implication of the success of the null models to produce
the empirical distribution of sizes for small groups (i.e., the truncated Poisson distribution)
is that prior knowledge of the individuals present in the gathering, as well as individual
idiosyncrasies, is not necessary to explain the size distribution of casual groups.

There are at least two research avenues to pursue in order to further improve our
understanding of the fleeting clusters of people observed in public gatherings. First,
different forms of group attractiveness to isolates can be explored so as to fit the data
available from the SocioPatterns collaboration [24], which suggests that the group-size
distribution decays as a power law for large group sizes [9–11]. Second, the individual-
based model that reproduces the SocioPatterns collaboration data [10,11] can be used to fit
the small groups’ data available in the seminal works on casual groups [2,3]. If any of these
pursuits is successful, one would be able to reproduce all available data on casual groups
with a single model.
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