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Objetivos

Este trabalho investiga a aplicagcdo de
estruturas de conexao inspiradas no modelo
Watts—Strogatz (WS) [2] de redes complexas
pequeno-mundo em Redes Neurais MLP como
uma aprimoragado e extensdo do trabalho [3].
Experimentos controlados tiveram como
objetivos: (i) comparar o desempenho da
arquitetura proposta com a MLP tradicional e
(i) analisar a influéncia de  seus
hiperpardmetros. A principal contribuicdo é a
proposicao de técnicas que aumentam a
eficiéncia e a plausibilidade biolégica [2] das
ANNs, fomentando avangos em inteligéncia
artificial e computagéo neural.

Increasing Randomness
Regular Small-world

Increasing p (Randomness)

Figura 1: Modelo de rede Watts-Strogatz.
Métodos e Procedimentos

e Preparagao dos Dados: foram utilizados os
benchmarks de visao computacional MNIST e
Fashion-MNIST, escolhidos por sua ampla

adogdo e pela capacidade de capturar a
ndo-linearidade das ANNs.

° Desenvolvimento tedrico e
implementagdo: Adaptou-se o modelo WS
para MLPs de forma compativel com
backpropagation. No WS, conexdes de uma
rede regular sd3o remanejadas com
probabilidade p [2], criando atalhos que
reduzem o caminho minimo médio entre nés
(fig. 1). O efeito pequeno-mundo surge para p
intermediario. Supds-se que esse efeito
poderia melhorar a performance da rede. O
modelo foi, portanto, ajustado para permitir
conexdes entre camadas n&o-adjacentes,
mantendo cada neurbnio ligado apenas a
(2k + 1) vizinhos da camada seguinte, com k
configuravel (fig. 2).

Figura 2: Modelo de rede proposto (a) antes do
rewiring; (b) pos rewiring.

Para incluir as conexdes entre camadas
nédo-adjacentes, o forwardpass foi modificado

segundo:

n—1
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onde A é a mascara que indica as conexdes
ativas entre camadas, filtrando os pesos de W
pelo produto de Hadamard.

o Realizagdo dos experimentos: Foram
realizados experimentos de treinamento e teste
com um ensemble de 100 seeds aleatdrias, a
fim de obter dados que relacionam: (i) estrutura
de conexdo e desempenho da rede; (i)
parametros do modelo e sua eficacia.

Resultados

Na figura 3 e na tabela 1, estdo os resultados
obtidos e suas respectivas descricoes na
legenda. Graficos similares foram obtidos para
Fashion-MNIST.

Figura 3: Curva de aprendizado e acuracia final no
dataset MNIST com diferentes valores de p para
k =1, 3, 5, respectivamente.

Tabela 1: Acuracia final maxima do modelo WS em
comparagao com MLP para diferentes profundidades
de redes (k = 3).

MNIST Fashion-MNIST
hidden | WS (%) @ MLP (%) WS (%) MLP (%)
64 905 917 82+3 81+7
64,32 91+3 | 86+11 83.0+18 79+8
64,3232 922 | 8212 832%12 74£12
64,32,32,32 91.8+15 75+15 83.5%1.2 7012

Conclusoes

Na figura, o efeito pequeno-mundo melhora a
acuracia da rede em valores intermediarios de
p (cf. k =1, k = 3); para k maiores, o efeito
satura (cf. k = 5). Assim, recomenda-se ajuste
fino de k e p para maximizar desempenho com
menos conexoes.

A tabela mostra que cada modelo se sai melhor
em uma profundidade de rede distinta. A rede
WS mais precisa superou a MLP de melhor
desempenho, usando apenas ~54% das
conexdes, em ambos os datasets. Além disso,
apresentou menor desvio padrao no ensemble,
revelando maior robustez a inicializacao.
Conclui-se que o modelo WS supera as MLPs

tradicionais, oferecendo melhor acuracia e
confiabilidade com menor numero de
conexoes.
O autor declara ndo haver conflto de
interesses.
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Objectives
This work investigates the application of
connection  structures inspired by the

Watts—Strogatz (WS) [2] small-world complex
network model in MLP Neural Networks as an
improvement and extension of the work [3].
Controlled experiments aimed to: (i) compare
the performance of the proposed architecture
with the traditional MLP and (ii) analyze the
influence of its hyperparameters. The main
contribution is the proposition of techniques that
increase the efficiency and biological plausibility
[2] of ANNs, fostering advances in artificial
intelligence and neural computing.

Increasing Randomness
Regular Small-world

Increasing p (Randomness)

Figure 1: Watts-Strogatz network model.

Methods

e Data Preparation: the MNIST and
Fashion-MNIST computer vision benchmarks
were used, chosen for their wide adoption and
their ability to capture the non-linearity of ANNSs.

° Theoretical development and
implementation: The WS model was adapted
for MLPs in a way compatble with
backpropagation. In WS, connections of a
regular network are rewired with probability p
[2], creating shortcuts that reduce the average
shortest path between nodes (Fig. 1). The
small-world effect arises for intermediate p. It
was assumed that this effect could improve the
network’'s performance. The model was,
therefore, adjusted to allow connections
between non-adjacent layers, while keeping
each neuron connected only to (2k + 1)
neighbors of the next layer, with k configurable
(Fig. 2).

Figure 2: Proposed network model (a) before
rewiring; (b) after rewiring.

To include the connections between
non-adjacent layers, the forward pass was
modified according to:

n—1
X, = o[LX@A oW )+ Bl (1)
i=0 ' '
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where A is the mask that indicates the active
connections between layers, filtering the
weights of W through the Hadamard product.

e Execution of experiments: Training and
testing experiments were carried out with an
ensemble of 100 random seeds, in order to
obtain data relating: (i) connection structure and
network performance; (ii) model parameters
and their effectiveness.

Results

In Figure 3 and Table 1, the results obtained
and their respective descriptions in the caption
are presented. Similar plots were obtained for
Fashion-MNIST.

Figure 3: Learning curve and final accuracy on the
MNIST dataset with different values of p fork =1, 3,
5, respectively.

Table 1: Maximum final accuracy of WS compared
with MLP for different network depths (k = 3).

MNIST Fashion-MNIST
hidden | WS (%) @ MLP (%) WS (%) MLP (%)
64 905 917 82+3 81+7
64,32 91+3 | 86+11 83018 79+8
64,3232 922 | 8212 832%12 74£12
64,32,32,32 91.8+15 75+15 83.5%1.2 7012

Conclusions

In the figure, the small-world effect improves
network accuracy at intermediate values of p
(cf. k=1, k= 3); for larger k, the effect
saturates (cf. k = 5). Thus, fine-tuning of k and
p is recommended to maximize performance
with fewer connections.

The table shows that each model performs
better at a different network depth. The most
accurate WS network outperformed the
best-performing MLP while using only ~5.4% of
the connections, in both datasets. In addition, it
presented a lower standard deviation in the
ensemble, revealing greater robustness to
initialization.

It is concluded that the WS model outperforms
traditional MLPs, offering better accuracy and
reliability with a smaller number of connections.

The author declares no conflict of interest.
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