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Dedication

This book is dedicated to the memory of Professor César Ades who passed away on March
14, 2012. César was Professor of the Postgraduate Program of Experimental Psychology
at the Institute of Psychology, University of Sdo Paulo. He started the study of sound
communication as part of animal behavior, from the perspective of ethology at the
Department of Experimental Psychology. An analysis based on the Fonoteca Cesar Ades
(FOCA) is presented in chapter 2. The author, Patricia Monticelli, did her master's and
doctorate under his supervision studying the vocal repertoire of Cavia aperea and Cavia
porcellus. The book is also dedicated to the memory of Edila Aparecida de Souza who
worked for 23 years in the Ethology Lab. She was a motivated professional and gave her
best to our University. Edila was one of thousands of people who have died from
coronavirus. She passed away on June 3rd, 2020, at age 62. We remember her positive
outlook on life, spontaneity, and willingness to work for a common goal and will continue
working with this same attitude, in the face of enormous challenges. The Covid-19
pandemic has turned the world upside down. Vaccines are in development thanks to the
efforts of scientists around the world. Science gives us hope for the future in our turbulent

world.

Emma Otta and Patricia Ferreira Monticelli
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About the book

The chapters in this eBook provide an overview of the scientific topics discussed at
the online scientific meeting that inspired the book. The meeting Acoustic Communication:
An Interdisciplinary Approach took place online on November 19-20, 2020, with the
support of the Dean’s Office for Research of the University of Sdo Paulo, Brazil. We were
experiencing a Covid-19 pandemic declared by the World Health Organization on March
11, 2020. Quarantine was declared in the State of Sao Paulo on March 13, 2020. In this
context, we stress the importance of creating and preserving opportunities for the
communication and exchange of ideas and research experiences among researchers, in
addition to the University’s initiative in fostering new ways of holding scientific meetings.

The meeting and the book were jointly organized by us, Professor Emma Otta, from
the Department of Experimental Psychology of the University of Sdo Paulo’s Institute of
Psychology (IPUSP), and Professor Patricia Ferreira Monticelli, from the University of Sdo
Paulo’s Department of Psychology at the Ribeirdo Preto School of Philosophy, Science
and Languages (FFCLRP-USP), as an extension of our research collaboration. Professor
Monticelli coordinates the Laboratory of Ethology and Bioacoustics where research is
carried out on reproductive, parental and communication behavioral aspects in terrestrial
mammals. Professor Otta coordinates the Laboratory of Psychoethology, where research
projects on Human Ethology are conducted. While studying nonverbal communication, she
became interested in paralanguage, the non-verbal dimension of speech that contributes to
its emotional quality.

During our collaborative research we noticed the need to consult specialists, given
the interdisciplinary nature of the research topics under investigation. We systematize this
experience here and share it with the readers through chapters that present the innovative
research discussed in the talks and subsequent discussions, in the form of Peer Comments
or Q&A transcription, prepared by the moderators of the presentations. We have divided
the book into four parts: Animal Bioacoustics, Human Bioacoustics, Methods used in

Bioacoustical Research and Analysis used in Bioacoustical Research.

Emma Otta & Patricia Ferreira Monticelli



Foreword

This book covers a fascinating topic: bioacoustics. After the course of events that
guided me from an electronic engineer to a speech scientist, I thought my early dream of
becoming a zoologist was over. This dream came true when I first met Patricia Monticelli
and her lovely EBAC students back in 2016. Patricia's collaborations with psychologist
Emma Otta and other colleagues were very fruitful, culminating recently in the Acoustic
Communication: An Interdisciplinary Approach workshop. The book I have the honor of
introducing is an outcome of this memorable event.

In fourteen chapters, the 22 contributors offer not only an inherently
interdisciplinary approach to bioacoustics but give examples of several decades of
scientific research developed for (human) speech. This is presented in the four parts:
Animal Bioacoustics, Human Bioacoustics, Methods used in Bioacoustic Research, and
Analysis used in Bioacoustic Research.

Part A opens this volume with a presentation of Bioacoustics as a subfield of
Animal Communication, the latter a subfield of Ethology. Communication through sound
is shown to be pervasive in both humans and non-humans, characterizing a social behavior
that is crucial for each species. This is demonstrated when the authors investigate different
intra- and inter-species behavior in primates, birds, guinea pigs, domestic and wild pigs,
and domestic and wild horses, related or not to human interaction.

Part B describes what is known about speech production since Gunnar Fant’s work
on Source-Filter theory, as well as what the study of the prosody of emotions in both verbal
and non-verbal behaviors can offer to Bioacoustics, including the possibility of emotion
recognition.

Part C presents software and algorithms developed for acoustic analysis in both
human and non-human species, including infant cries. Praat, R, and BioVoice were used
by the contributors of Part C, including presentations and examples of Machine Learning
techniques for recognizing differences across bird species, different infant needs from their
cries, and event detection.

Part D closes the book by presenting acoustic analysis applications to highlight the
commonalities and differences in twins' speech, identify breathing issues in the case of
voice disorders and build devices for speech synthesis and speaker identification, which is

relevant for Forensic Phonetics in Speaker Comparison.



The researchers from Brazil, Canada, Denmark, and Uruguay that contributed to
this wonderful book are prominent figures in the area of human and non-human sound
communication. One major advantage of the 14 chapters is that they are written in a
language that can be understood by both experts and people new to the area.

This book will be an important tool not only for students of Biology but also those
in areas such as Computer Science, Electronic Engineering (including
Telecommunications), Linguistics (including Phonetics), and Psychology. Experts from
the same disciplines will also find a valuable resource for deepening their understanding of
communication in all its shades and meanings by opening a window to a world where social
networks must include non-human social networks aimed at a time where harmonic co-

existence between species and nature will be a reality.

Plinio A. Barbosa
Department of Linguistics, University of Campinas

January 27" 2021



Chapter 14

Deep Learning approaches for Speech Synthesis and
Speaker Verification

Edresson Casanova’®, Christopher Shulby’” and Sandra Maria Aluisio®®

Abstract

Speech synthesis is the artificial production of human speech, which can be used in
applications such as text-to-speech, music generation, navigation systems and
accessibility for visually-impaired people. As for the speaker recognition task, we can
define it as the process of recognizing the speaker of a speech segment by processing
speech signals, which can be broadly classified as speaker identification and
verification. This chapter summarizes the Deep Learning practices applied in the field
of speech synthesis and speaker verification. Speech synthesis and speaker verification
have been widely investigated in speech technology applications, especially due to the
popularity of virtual assistants. Considerable research has been conducted and
significant progress has been made in the last 5-6 years. As Deep Learning techniques
advance in most fields of machine learning, older state-of-the-art methods are also
being replaced by Deep Learning methods in both speech synthesis and speaker
verification areas. Thus, Deep Learning has apparently become the next generation
solution for the synthesis and verification of speakers.

Keywords: Speech Technologies; Speech Synthesis; Speaker Verification; Deep
Learning approaches.

Speech synthesis systems, also known as Text-To-Speech (TTS), have
received considerable attention in recent years due to the popularization of virtual
assistants, such as Amazon Echo (Purington et al., 2017), Google Home (Dempsey,
2017) and Apple Siri (Gruber, 2009). However, according to Tachibana et al. (2017),
traditional Speech Synthesis systems are not easy to develop, since they are typically

composed of many specific modules, such as a text analyzer, grapheme-to-phoneme

26 PhD student at the Institute of Mathematics and Computer Science, University of Séo Paulo,
Sao Carlos, SP, Brazil

27 Defined Crowd, Lisbon, Portugal.

28 Professor at the Institute of Mathematics and Computer Science, University of Sdo Paulo,
Sao Carlos, SP, Brazil



converter, duration estimator, FO generator, spectrum generator and vocoder. Figure
14.1 presents the main components of a traditional speech synthesis system. In
summary, given an input text, the text analyzer module converts dates, currency
symbols, abbreviations, acronyms, and numbers into their standard formats to be
pronounced or read by the system, i.e., carries out text normalization and tackles
problems such as homographs, then with the normalized text, the phonetic analyzer
converts the grapheme into phonemes. In turn, the duration estimator estimates the
duration of each phoneme. The acoustic model is used to generate acoustic
characteristics such as FO and a spectral envelope that corresponds to linguistic

characteristics. Finally, the vocoder converts the spectrum into a waveform (Ze et al.,

2013).

Linguistic Features Extraction

ello | Text Analyzer = Phonetic Analyzer #| Duration Estimator—‘

Acustic Model

Spectrum o
FO generator [— T > Vocoder —.W

Hello

Figure 14.1. The main components of a traditional speech synthesis system.

The advent of Deep Learning (Goodfellow et al., 2016) has made it possible to
integrate all processing steps into a single model and connect them directly from the
input text to the synthesized audio output, which is known as end-to-end learning.
Although neural models are sometimes criticized as being difficult to interpret, several
end-to-end trained speech synthesis systems (e.g., Sotelo et al., 2017, Wang, Skerry-
Ryan et al., 2017, Shen et al., 2018, Tachibana et al., 2018, Ping et al.,2018, Kim et
al.,2020, and Valle et al., 2020) have been able to estimate spectrograms from text
entries with promising performances.

Due to the sequential characteristic of text and audio data, the recurring units
were the standard building blocks for speech synthesis, as in Tacotron 1 and 2

(Wang,Skerry-Ryan et al., 2017; Shen et al., 2018). In addition, the convolutional



layers showed good performance while reducing computational costs, as observed in
the DeepVoice 3 (Ping et al., 2018) and Deep Convolutional Text To Speech (DCTTS)
(Tachibana et al., 2018) models. On the other hand, with the recent popularization of
Transformers (Vaswani et al., 2017), some transformer-based synthesis models have
emerged, such as that proposed by Li et al. (2019), which performed similarly to
Tacotron 2 (Shen et al., 2018), and trained 4.25 times faster. Finally, the flow-based
models (Kingma et al., 2016; Hoogeboom et al., 2019; Durkan et al., 2019) attracted
attention in the speech synthesis area, where the Flowtron (Valle et al., 2020) model
surpassed the results reported by Tacotron 2 for enabling the manipulation of the latent
space, allowing a change in characteristics such as speech speed and prosody. On the
other hand, Kim et al. (2020) proposed GlowTTS, whose performance resembled that
of the Tacotron 2, synthesizing speech 15.7 times faster.

The advent of Deep Learning has also enabled significant advances in speaker
recognition. Speaker Recognition can be divided into three different subtasks: Speaker
Verification (SV), Speaker Identification and Speaker Diarization. The objective of
SV is to determine if two distinct audios contain the voice of the same speaker. On the
other hand, speaker identification seeks to ascertain which speaker produced the voice
on the audio file. Finally, Speaker Diarization splits an input audio stream into
homogeneous segments according to the speaker’s identity. In this study, we will only
address Speaker Verification because it can be used in both of the other tasks cited
above (Sztaho et al., 2019).

Currently, state-of-the-art (SOTA) Speaker Verification systems (Wang,
Wang, Law et al., 2019; Deng et al., 2019; Chung, Huh et al., 2020; Casanova, Candido
Junior, Shulby et al., 2020) allow the identification of new speakers without the need
to retrain the model. This feature is very useful for different applications, such as
meeting loggers, telephone-banking systems (Bowater & Porter, 2001) and automatic
question answering (Ferrucci et al., 2010).

The objective of this study was to review the SOTA methods using Deep
Learning that are applied in the speech synthesis area, focusing on Sequence-to-
Sequence (seq2seq) models and speaker verification tasks. This text is subdivided in
Speech datasets (main datasets employed in speech synthesis and speaker verification
tasks); Deep Learning for the speech synthesis task; Deep Learning for the speaker

verification task and conclusions and reflections.



Speech datasets

As with many tasks related to machine learning, the issue of the dataset used is
fundamental. The methods developed can be evaluated and compared only if the same
test circumstances are used. It is difficult to say whether an approach performs better
if it is evaluated on a different dataset (or corpus) (Sztaho et al., 2019). Some datasets
are used for speaker recognition and speech synthesis. Section Speech synthesis
datasets presents the most commonly used datasets for speech synthesis in the English
language, as well as the unique dataset publicly available for Brazilian Portuguese.
Section Speaker verification datasets presents the main datasets used in the training

and evaluation of speaker recognition models.

Speech Synthesis datasets

For the speech synthesis task, high quality datasets recorded in controlled
environments are required. Since the purpose of speech synthesis is to synthesize high
quality voice, if the training dataset contains noise, the model can synthesize it, which
is not desired. The most widely used for training single-speaker speech synthesis
models is the LJ Speech (Ito, 2017) dataset, which consists of 24 hours of speech by
an English-language speaker. On the other hand, for multi-speaker synthesis, the
LibriTTS (Zen et al., 2019) and VCTK (Veaux et al., 2016) datasets are the most
commonly used. Although the most popular datasets are for English, other languages
also have open datasets. With Portuguese, for example, the only publicly available
dataset is the TTS-Portuguese Corpus (Casanova, Candido Junior, de Oliveira et al.,
2020). Table 14.1 shows the approximate number of hours and total number of
speakers of the main publicly available datasets for speech synthesis in English and

the only dataset available for Portuguese.



Speaker Verification Datasets

For the SV task, the datasets created for the development of Automatic Speech

Recognition (ASR) systems are commonly used due to their characteristics. Unlike

speech synthesis datasets, their ASR counterparts generally have several speakers and

few samples for each speaker; this feature is desired, since for Speaker Verification

we want as many speakers as possible during model training (Sztaho et al., 2019).

Thus, the datasets built for ASR models can be used to train and evaluate SV models.

However, some datasets are made specifically for Speaker Verification. For example,

VoxCeleb 2 (Chung et al., 2018) is currently the largest dataset built for SV. It consists

of samples from more than 6,000 speakers downloaded from YouTube. Table 14.2

shows the approximate number of hours and total number of speakers in the main

publicly available datasets for ASR and provides information about the VoxCeleb 2

dataset.

Table 14.1. Speech Synthesis datasets

Corpus Hours Total Speakers
*) ()
LibriTTS (Zen et al. 2019) 586 2,456
M-AILAB 75 2
VCTK (Veaux et al. 2016) 44 109
LJ Speech (Ito 2017) 24 1
TTS-Portuguese Corpus 10.5 1
(Casanova, Candido-Jr, de Oliveira, et al. 2020)
Table 14.2. Speaker Verification datasets
Corpus Hours (~) Total Speakers (~)
LibriSpeech (Panayotov et al. 2015) 986 2,848
Common Voice (Ardila et al. 2019) 2,508 58,250
TED-LIUM V3 (Hernandez et al. 2018) 452 2,028
VoxCeleb (J. S. Chung et al. 2018) 2,000 6,112




Sequence-to-Sequence Voice Synthesis Approaches

With the advent of Deep Learning, speech synthesis systems have evolved
considerably and are still being studied intensively. Models based on Recurrent Neural
Networks such as Tacotron Wang, Wang, Skerry-Ryan et al., 2017), Tacotron 2 (Shen
et al., 2018), Deep Voice 1 (Arik, Chrzanowski et al., 2017) and Deep Voice 2 (Arik,
Diamos et al., 2017) have gained prominence, but have high computational costs
because they use recurring layers. This led to the development of fully convolutional
models, such as DCTTS (Tachibana et al., 2018) and Deep Voice 3 (Ping et al., 2018),
which sought to reduce the computational costs while maintaining good synthesis
quality. On the other hand, more recently with the popularization of the Transformers,
new Transformer-based models (Li et al., 2019; Kim et al., 2020) have emerged, and
due to the parallelization of this architecture, the models achieved results similar to
those of recurrent architectures with lower computing costs. Finally, the flow-based
models (Kingma et al., 2016; Hoogeboom et al., 2019; Durkan et al., 2019) attracted
attention in the synthesis area, allowing the training of simpler models with reduced
computing costs. For example, the quality of the GlowTTS (Kim et al., 2020) model
is similar to that of the recurrent Tacotron 2 model, but it can synthesize speech 15.7
times faster. The speech synthesis models are trained by receiving a text as input and
a spectrogram as an expected output that represents the speech of the respective text
input.

The model must learn to generate a spectrogram given the input text; the
spectrogram is then transformed into a waveform using a vocoder. Neural vocoders
have better quality speech synthesis, while phase reconstruction methods such as
Griffin-Lim (GLA) (Griffin & Lim, 1984) and RTISI-LA (Real-Time Iterative
Spectrogram Inversion with Look-Ahead) (Zhu et al., 2007) are based on Short Fast
Fourier Transform (SFFT) redundancy (Sorensen & Burrus, 1988) and have higher
synthesis speed and reduced quality. Figure 14.2 presents a general flow diagram of a
TTS system based on Deep Learning. Briefly, given an input text, it is passed to the
TTS model, which returns a spectrogram. Finally, this spectrogram is converted into a

waveform by the vocoder.



Deep Learning Based TTS Model
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Figure 14.2. General flow diagram of a TTS system based on Deep Learning.

The most popular neural vocoders today are Wavenet (Tamamori et al., 2017),
WaveRNN (Kalchbrenner et al., 2018), Waveglow (Prenger et al., 2019), GAN-TTS
(Binkowski et al., 2019), MelGan (Kumar et al., 2019) and more recently WaveGrad
(Chen et al., 2020). Each of these vocoders has its advantages; some focus on higher
quality and others on faster synthesis. In this study, we will not discuss vocoders, but
they play a very important role in speech synthesis, converting a spectrogram into a
waveform. In this chapter, we will only focus on models that convert text into
spectrograms.

As mentioned above, a large amount of data is required to train speech
synthesis models. For the English language, the most popular single speaker dataset
for speech synthesis is called LJ Speech (Ito, 2017) and contains 24 hours of speech.
On the other hand, in Brazilian Portuguese, the only available dataset is TTS-
Portuguese Corpus (Casanova, Candido Junior, de Oliveira, et al., 2020) and contains
10 hours of speech. The speech synthesis models are subjectively evaluated using the
Mean Opinion Score (MOS). Ribeiro et al. (2011) proposed a methodology for
calculating MOS in speech synthesis and the vast majority of studies follow this
technique. To calculate the MOS, the evaluators are asked to assess the naturalness of
the statements generated on a five-point scale (from 1 = Bad to 5 = Excellent). Each
participant evaluates the audio and the average MOS of the participant is calculated.

Tacotron 1 (Wang, Wang, Skerry-Ryan et al., 2017) was one of the first speech
synthesis models to use only neural networks to transform text into a spectrogram. The
authors proposed the use of a single deep neural network trained from end-to-end.
Tacotron 1 includes an encoder, decoder and post-processing module, in addition to
using an attention mechanism (Bahdanau et al., 2014) and convolutional filters,
skipping connections (Srivastava et al., 2015) and Gated Recurrent Unit (GRU)

neurons (Chung, Gulcehre et al., 2014). Tacotron also uses the Griffin-Lim algorithm



to convert the STFT spectrogram into the waveform (Griffin & Lim, 1984).
Simultaneously, the Deep Voice 1 (Arik, Chrzanowski et al., 2017) model also
emerged, which uses several neural submodels to synthesize speech into text. The
Deep Voice 2 (Arik, Diamos et al., 2017) model was then proposed. This model is
based on Deep Voice 1; however, the authors proposed improvements to surpass the
results obtained by Tacotron 1. In addition, the authors proposed improvements in
Tacotron 1 and changed the Griffin-Lim vocoder in favor of the WaveNet neural
vocoder, thereby increasing the quality of the synthesized speech.

On the other hand, Shen et al. (2018) proposed an improvement on the
Tacotron 1 model. They simplified the architecture and combined the new model with
a modified version of the WaveNet (Tamamori et al., 2017) vocoder. Tacotron 2 is
composed of a recurrent network of sequence prediction features that maps the
incorporation of characters to Mel spectrograms, followed by a modified WaveNet
model acting as a vocoder to synthesize waveforms in the time domain from these
spectrograms. They also demonstrated that the use of Mel spectrograms as a
conditioning input for WaveNet, instead of linguistic characteristics, allows for a
significant reduction in the size of the WaveNet architecture, and consequently faster
speech synthesis.

Furthermore, with the popularization of Transformers (Vaswani et al., 2017)
in the Natural Language Processing (NLP) area, and the use of several language
models such as BERT (Devlin et al., 2018), some transformer-based synthesis models
have emerged. We can cite the work proposed by Li et al. (2019) which achieved
quality comparable to that of Tacotron 2 (Shen et al., 2018), but trained 4.25 times
faster.

Finally, more recent flow-based models (Kingma et al., 2016; Hoogeboom et
al., 2019; Durkan et al., 2019) attracted attention in the synthesis area. Valle et al.
(2020) proposed the Flowtron model, which reformulates from Tacotron 2 to provide
high-quality and significant Mel spectrogram synthesis. Flowtron is optimized to
maximize the likelithood of training data, which makes training simple and more stable.
It allows the manipulation of several aspects of speech synthesis, such as pitch, tone,
speech rate, cadence and accent. It achieved MOS scores slightly higher than those of
Tacotron 2 and also allows for speech manipulation. On the other hand, Kim et al.
(2020) proposed GlowTTS, whose quality is similar to that of Tacotron 2, but

synthesizes speech 15.7 times faster. It uses transformers in its architecture and also



allows one to manipulate the velocity of speech. Both Flowtron and GlowTTS use the

Waveglow neural vocoder.

Speaker Verification approaches

In the last decade, the area of speaker recognition has undergone major
changes. In the past, speaker identification models could only identify speakers seen
during training, and required a reasonable amount of speaker data to be able to learn
to identify that speaker. Currently, speaker recognition models are able to identify
speakers not seen in training using just a few seconds of the speaker’s voice; this is
known as the open-set scenario. This advance was possible due to the evolution of the
machine learning area and the introduction of new cost functions applied to the training
of these models.

Current speaker verification methods are trained using acoustic features, such
as Mel-frequency cepstral coefficients (MFCCs) (Davis & Mermelstein, 1990) or Mel
spectrograms, as inputs and use speaker IDs to calculate the loss. The models aim to
learn a representation (speaker embedding), which is a vector of fixed size, to which
the distance of the vectors of two different speakers is the greatest possible, while the
distance of vectors of two samples of the same speaker are as close as possible. After
training, the distance between these embeddings is usually calculated, allowing
speakers to be identified. The performance of SV systems is commonly evaluated by
the Equal Error Rate (EER) (Cheng & Wang, 2004). EER is a biometric security
system algorithm used to predetermine threshold values due to its false acceptance
index and false rejection rate (Cheng & Wang, 2004). EER indicates that the
proportion of false acceptances is equal to that of false rejections, and the lower the
EER, the more accurate the biometric system (Sztaho et al., 2019).

An SV system can be evaluated in two scenarios. In the closed-set scenario,
where samples of speakers seen in the training of the SV model are used, the model
recognizes these speakers. In the Open-set scenario, where speaker samples never seen
in the training of the model are used, the model does not recognize these speakers. The
models usually report only EER results for the Open-set scenario, since the goal of SV
systems is to learn to differentiate speakers never seen in training, eliminating the need

to retrain the neural model (Casanova, Candido Junior, Shulby et al., 2020).



The first studies to use deep neural networks in speaker recognition in an open-
set scenario used speaker embeddings learned via the Softmax loss. Although the
Softmax classifier can learn different embeddings for different speakers (Snyder et al.
2017, 2018), it is not non-discriminatory enough (Chung et al., 2020). To overcome
this problem, the models trained with Softmax were combined with backends built in
Probabilistic Linear Discriminant Analysis (PLDA) (Ioffe, 2006) to generate scoring
functions (Ramoji et al., 2020; Snyder et al., 2018). On the other hand, Liu et al. (2017)
proposed Softmax Angular, where the cosine similarity is used as logit input for the
Softmax layer, showing its superiority over Softmax alone. Subsequently, Wang et al.
(2018) proposed the use of Additive Margins in Softmax (AM-Softmax) to increase
inter-class variance by introducing a cosine margin penalty to the target logit.
However, according to Chung, Hu et al. (2020), training with AM-Softmax and AAM-
Softmax (Deng et al., 2019) proved to be a challenge, since they are sensitive to scale
and margin value in the loss function.

The use of contrastive (Chopra et al., 2005) and triple loss (Schroff et al., 2015;
Bredin, 2017) has also achieved promising results in speaker recognition, but these
methods require a careful choice of pairs or triplets, which is time-consuming and can
interfere with performance (Chung, Hu et al., 2020).

Wang, Wang et al. (2019) proposed the use of prototypical networks (Snell et
al., 2017) in speaker recognition. Prototypical networks seek to learn a metric space in
which the classification of open sets of speakers can be performed by calculating
distances for prototypical representations of each class. Generalized end-to-end loss
(GE2E) (Wan et al., 2018) and Prototypical Angular (Chung, Hu et al., 2020) follow
the same principle and recently achieved SOTA results in speaker recognition. Chung
et al. (2020) compared the different loss functions mentioned above in the training of
two convolutional models proposed by the authors. They showed that the Prototypical
Angular loss function performs better than the others, demonstrating that it is more
suitable for training SV models.

Finally, Casanova, Candido Junior, Shulby, et al. (2020) proposed a new
training approach consisting of reconstructing the 1-second pronunciation of the
phoneme /a/ in the voice of the speakers. After training, the model is able to
approximate the pronunciation of /a/ in the voice of any speaker and an embedding of
this reconstruction is extracted from an intermediate layer of the neural network. Given

that the reconstruction of /a/ from the same speaker is always closer to their own than



to others, the model is applied in open-set scenarios. In addition, the method surpassed
a model trained in a 500x larger dataset with the GE2E loss function. It also surpassed
the result of the best model proposed by Chung, Hu et al. (2020) and trained with the
Angular Prototypical loss function in one of the four datasets used to compare the
models. Therefore, the method requires fewer data points to achieve competitive

results.

Concluding remarks

In this chapter, we aimed to list the main Deep Learning approaches applied in
the fields of Speech Synthesis and Speaker Verification. In the era of Deep Learning,
as in most tasks involving machine learning, significant improvements in performance
have been achieved when compared to classic/traditional methods. As Deep Learning
techniques advance in most fields of machine learning, older, state-of-the-art methods
are also being replaced by those using Deep Learning in both speech synthesis and
speaker verification. Thus, Deep Learning has apparently become the next generation
solution for speech synthesis and speaker verification (Sztah¢ et al., 2019). In some
cases, Deep Learning opened up new research fronts, allowing us to meet demands
that were not previously possible. In addition, speaker verification and speech
synthesis systems are still evolving. In the Speech Synthesis field, the current goal is
to reduce the computing cost of the models and improve speech manipulation
mechanisms, with a view to synthesizing more expressive speech (Valle et al., 2020;
Kim et al., 2020). On the other hand, in Speaker Verification, researchers still seek to
advance the current results and focus more on new training methods for modeling

(Chung, Hu et al., 2020; Casanova, Candido Junior, Shulby et al., 2020).
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Peer Commentary

by Claudio Possani

This chapter by Edresson Casanova, Christopher Shulby and Sandra Maria
Aluisio presents the contents of the first author’s lecture at the Bioacoustic Meeting
Brazil 2020. Edresson is a young researcher (doctoral student at ICMC/USP/SC)
trained in Computer Sciences with a focus on Neural Networks and Deep Learning.

In this chapter the focus is on Speech Synthesis and Speaker Verification. This
area has been receiving increasing attention for several years, with the emergence of
so-called virtual assistants. The early 21 century saw the birth of methods known as
Deep Learning. There was a revolution in the scope and possibilities that emerged.

Speech Synthesis techniques obtain good reproductions of human voices. The
voice quality obtained is fundamental. It is important to underscore that the English
language has received the largest number of resources and hours of recording and
therefore, the best results. The chapter presents the primary models used, recording
times and general characteristics of this type of study. The neural network concepts
play an important role in this area.

Under the general name of Speaker Recognition, recent decades have seen
enormous progress in tasks involving: (SV) Speaker Verification, (SI) Speaker
Identification, and (SD) Speaker Diarization. Deep Learning also caused a revolution
in the field of studies.

The specific aim of SV is to decide whether two different audio recordings
were produced by the same person/speaker. SI attempts to identify the speaker that
produced a certain sound recording from previously collected recordings. This is what
some bank security systems do. SD splits the audio input stream into homogeneous
segments according to the speaker’s identity.

In the present chapter the authors address only questions related to Speaker
Verification. One of the significant recent advances obtained from Deep Learning
techniques are the so-called Open-set scenarios in which the system recognizes a
speaker with even just a few seconds of acoustic recording, even if the speaker’s

recordings were not used by the system in the “learning” phase.



The final part of the chapter includes an original contribution by the first author
and collaborators, which consists of the reconstruction of 1 second of the
pronunciation of the /a/ phoneme, constant in the speaker’s voice and, after a training
period, the model is capable of producing the /a/ sound of any speaker, even from a
very short recording. This makes it possible to identify the speaker or determine
whether two recordings are of the same speaker by comparing the sounds produced.
The present chapter is an introduction to this type of study, which is becoming

increasingly relevant.



