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This book is dedicated to the memory of Professor César Ades who passed away on March 

14, 2012. César was Professor of the Postgraduate Program of Experimental Psychology 

at the Institute of Psychology, University of São Paulo. He started the study of sound 

communication as part of animal behavior, from the perspective of ethology at the 

Department of Experimental Psychology. An analysis based on the Fonoteca Cesar Ades 

(FOCA) is presented in chapter 2. The author, Patricia Monticelli, did her master's and 

doctorate under his supervision studying the vocal repertoire of Cavia aperea and Cavia 

porcellus. The book is also dedicated to the memory of Edila Aparecida de Souza who 

worked for 23 years in the Ethology Lab. She was a motivated professional and gave her 

best to our University. Edila was one of thousands of people who have died from 

coronavirus. She passed away on June 3rd, 2020, at age 62. We remember her positive 

outlook on life, spontaneity, and willingness to work for a common goal and will continue 

working with this same attitude, in the face of enormous challenges. The Covid-19 

pandemic has turned the world upside down. Vaccines are in development thanks to the 

efforts of scientists around the world. Science gives us hope for the future in our turbulent 

world. 

 

Emma Otta and Patrícia Ferreira Monticelli 
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About the book 

 

The chapters in this eBook provide an overview of the scientific topics discussed at 

the online scientific meeting that inspired the book. The meeting Acoustic Communication: 

An Interdisciplinary Approach took place online on November 19-20, 2020, with the 

support of the Dean’s Office for Research of the University of São Paulo, Brazil. We were 

experiencing a Covid-19 pandemic declared by the World Health Organization on March 

11, 2020. Quarantine was declared in the State of São Paulo on March 13, 2020.  In this 

context, we stress the importance of creating and preserving opportunities for the 

communication and exchange of ideas and research experiences among researchers, in 

addition to the University’s initiative in fostering new ways of holding scientific meetings.  

The meeting and the book were jointly organized by us, Professor Emma Otta, from 

the Department of Experimental Psychology of the University of São Paulo’s Institute of 

Psychology (IPUSP), and Professor Patrícia Ferreira Monticelli, from the University of São 

Paulo’s Department of Psychology at the Ribeirão Preto School of Philosophy, Science 

and Languages (FFCLRP-USP), as an extension of our research collaboration. Professor 

Monticelli coordinates the Laboratory of Ethology and Bioacoustics where research is 

carried out on reproductive, parental and communication behavioral aspects in terrestrial 

mammals. Professor Otta coordinates the Laboratory of Psychoethology, where research 

projects on Human Ethology are conducted. While studying nonverbal communication, she 

became interested in paralanguage, the non-verbal dimension of speech that contributes to 

its emotional quality.  

During our collaborative research we noticed the need to consult specialists, given 

the interdisciplinary nature of the research topics under investigation. We systematize this 

experience here and share it with the readers through chapters that present the innovative 

research discussed in the talks and subsequent discussions, in the form of Peer Comments 

or Q&A transcription, prepared by the moderators of the presentations. We have divided 

the book into four parts: Animal Bioacoustics, Human Bioacoustics, Methods used in 

Bioacoustical Research and Analysis used in Bioacoustical Research. 

 

Emma Otta & Patricia Ferreira Monticelli  



 

Foreword 

 

This book covers a fascinating topic: bioacoustics. After the course of events that 

guided me from an electronic engineer to a speech scientist, I thought my early dream of 

becoming a zoologist was over. This dream came true when I first met Patricia Monticelli 

and her lovely EBAC students back in 2016. Patricia's collaborations with psychologist 

Emma Otta and other colleagues were very fruitful, culminating recently in the Acoustic 

Communication: An Interdisciplinary Approach workshop. The book I have the honor of 

introducing is an outcome of this memorable event. 

 In fourteen chapters, the 22 contributors offer not only an inherently 

interdisciplinary approach to bioacoustics but give examples of several decades of 

scientific research developed for (human) speech. This is presented in the four parts: 

Animal Bioacoustics, Human Bioacoustics, Methods used in Bioacoustic Research, and 

Analysis used in Bioacoustic Research.  

 Part A opens this volume with a presentation of Bioacoustics as a subfield of 

Animal Communication, the latter a subfield of Ethology. Communication through sound 

is shown to be pervasive in both humans and non-humans, characterizing a social behavior 

that is crucial for each species. This is demonstrated when the authors investigate different 

intra- and inter-species behavior in primates, birds, guinea pigs, domestic and wild pigs, 

and domestic and wild horses, related or not to human interaction. 

 Part B describes what is known about speech production since Gunnar Fant’s work 

on Source-Filter theory, as well as what the study of the prosody of emotions in both verbal 

and non-verbal behaviors can offer to Bioacoustics, including the possibility of emotion 

recognition. 

 Part C presents software and algorithms developed for acoustic analysis in both 

human and non-human species, including infant cries. Praat, R, and BioVoice were used 

by the contributors of Part C, including presentations and examples of Machine Learning 

techniques for recognizing differences across bird species, different infant needs from their 

cries, and event detection. 

 Part D closes the book by presenting acoustic analysis applications to highlight the 

commonalities and differences in twins' speech, identify breathing issues in the case of 

voice disorders and build devices for speech synthesis and speaker identification, which is 

relevant for Forensic Phonetics in Speaker Comparison. 



 

 The researchers from Brazil, Canada, Denmark, and Uruguay that contributed to 

this wonderful book are prominent figures in the area of human and non-human sound 

communication. One major advantage of the 14 chapters is that they are written in a 

language that can be understood by both experts and people new to the area.  

 This book will be an important tool not only for students of Biology but also those 

in areas such as Computer Science, Electronic Engineering (including 

Telecommunications), Linguistics (including Phonetics), and Psychology. Experts from 

the same disciplines will also find a valuable resource for deepening their understanding of 

communication in all its shades and meanings by opening a window to a world where social 

networks must include non-human social networks aimed at a time where harmonic co-

existence between species and nature will be a reality. 

 

Plínio A. Barbosa 

Department of Linguistics, University of Campinas 

January 27th 2021 

 

 

  



 

Chapter 14 

Deep Learning approaches for Speech Synthesis and 

Speaker Verification 

Edresson Casanova26, Christopher Shulby27 and Sandra Maria Aluísio28 

 Abstract 

Speech synthesis is the artificial production of human speech, which can be used in 
applications such as text-to-speech, music generation, navigation systems and 

accessibility for visually-impaired people. As for the speaker recognition task, we can 

define it as the process of recognizing the speaker of a speech segment by processing 
speech signals, which can be broadly classified as speaker identification and 

verification. This chapter summarizes the Deep Learning practices applied in the field 

of speech synthesis and speaker verification. Speech synthesis and speaker verification 

have been widely investigated in speech technology applications, especially due to the 

popularity of virtual assistants. Considerable research has been conducted and 

significant progress has been made in the last 5-6 years. As Deep Learning techniques 

advance in most fields of machine learning, older state-of-the-art methods are also 

being replaced by Deep Learning methods in both speech synthesis and speaker 
verification areas. Thus, Deep Learning has apparently become the next generation 

solution for the synthesis and verification of speakers. 

Keywords: Speech Technologies; Speech Synthesis; Speaker Verification; Deep 
Learning approaches. 

 
 

Speech synthesis systems, also known as Text-To-Speech (TTS), have 

received considerable attention in recent years due to the popularization of virtual 

assistants, such as Amazon Echo (Purington et al., 2017), Google Home (Dempsey, 

2017) and Apple Siri (Gruber, 2009). However, according to Tachibana et al. (2017), 

traditional Speech Synthesis systems are not easy to develop, since they are typically 

composed of many specific modules, such as a text analyzer, grapheme-to-phoneme 

 
26 PhD student at the Institute of Mathematics and Computer Science, University of São Paulo, 
São Carlos, SP, Brazil 

27  Defined Crowd, Lisbon, Portugal. 
28 Professor at the Institute of Mathematics and Computer Science, University of São Paulo, 
São Carlos, SP, Brazil 
 



 

converter, duration estimator, F0 generator, spectrum generator and vocoder. Figure 

14.1 presents the main components of a traditional speech synthesis system. In 

summary, given an input text, the text analyzer module converts dates, currency 

symbols, abbreviations, acronyms, and numbers into their standard formats to be 

pronounced or read by the system, i.e., carries out text normalization and tackles 

problems such as homographs, then with the normalized text, the phonetic analyzer 

converts the grapheme into phonemes. In turn, the duration estimator estimates the 

duration of each phoneme. The acoustic model is used to generate acoustic 

characteristics such as F0 and a spectral envelope that corresponds to linguistic 

characteristics. Finally, the vocoder converts the spectrum into a waveform (Ze et al., 

2013). 

 

 
Figure 14.1. The main components of a traditional speech synthesis system. 

  

 

The advent of Deep Learning (Goodfellow et al., 2016) has made it possible to 

integrate all processing steps into a single model and connect them directly from the 

input text to the synthesized audio output, which is known as end-to-end learning. 

Although neural models are sometimes criticized as being difficult to interpret, several 

end-to-end trained speech synthesis systems (e.g., Sotelo et al., 2017, Wang, Skerry-

Ryan et al., 2017, Shen et al., 2018, Tachibana et al., 2018, Ping et al.,2018, Kim et 

al.,2020, and Valle et al., 2020) have been able to estimate spectrograms from text 

entries with promising performances.  

Due to the sequential characteristic of text and audio data, the recurring units 

were the standard building blocks for speech synthesis, as in Tacotron 1 and 2 

(Wang,Skerry-Ryan et al., 2017; Shen et al., 2018). In addition, the convolutional 



 

layers showed good performance while reducing computational costs, as observed in 

the DeepVoice 3 (Ping et al., 2018) and Deep Convolutional Text To Speech (DCTTS) 

(Tachibana et al., 2018) models. On the other hand, with the recent popularization of 

Transformers (Vaswani et al., 2017), some transformer-based synthesis models have 

emerged, such as that proposed by Li et al. (2019), which performed similarly to 

Tacotron 2 (Shen et al., 2018), and trained 4.25 times faster. Finally, the flow-based 

models (Kingma et al., 2016; Hoogeboom et al., 2019; Durkan et al., 2019) attracted 

attention in the speech synthesis area, where the Flowtron (Valle et al., 2020) model 

surpassed the results reported by Tacotron 2 for enabling the manipulation of the latent 

space, allowing a change in characteristics such as speech speed and prosody. On the 

other hand, Kim et al. (2020) proposed GlowTTS, whose performance resembled that 

of the Tacotron 2, synthesizing speech 15.7 times faster. 

  The advent of Deep Learning has also enabled significant advances in speaker 

recognition. Speaker Recognition can be divided into three different subtasks: Speaker 

Verification (SV), Speaker Identification and Speaker Diarization. The objective of 

SV is to determine if two distinct audios contain the voice of the same speaker. On the 

other hand, speaker identification seeks to ascertain which speaker produced the voice 

on the audio file. Finally, Speaker Diarization splits an input audio stream into 

homogeneous segments according to the speaker’s identity. In this study, we will only 

address Speaker Verification because it can be used in both of the other tasks cited 

above (Sztahó et al., 2019).  

Currently, state-of-the-art (SOTA) Speaker Verification systems (Wang, 

Wang, Law et al., 2019; Deng et al., 2019; Chung, Huh et al., 2020; Casanova, Candido 

Junior, Shulby et al., 2020) allow the identification of new speakers without the need 

to retrain the model. This feature is very useful for different applications, such as 

meeting loggers, telephone-banking systems (Bowater & Porter, 2001) and automatic 

question answering (Ferrucci et al., 2010).  

The objective of this study was to review the SOTA methods using Deep 

Learning that are applied in the speech synthesis area, focusing on Sequence-to-

Sequence (seq2seq) models and speaker verification tasks. This text is subdivided in 

Speech datasets (main datasets employed in speech synthesis and speaker verification 

tasks); Deep Learning for the speech synthesis task; Deep Learning for the speaker 

verification task and conclusions and reflections. 

. 



 

           Speech datasets 

As with many tasks related to machine learning, the issue of the dataset used is 

fundamental. The methods developed can be evaluated and compared only if the same 

test circumstances are used. It is difficult to say whether an approach performs better 

if it is evaluated on a different dataset (or corpus) (Sztahó et al., 2019). Some datasets 

are used for speaker recognition and speech synthesis. Section Speech synthesis 

datasets presents the most commonly used datasets for speech synthesis in the English 

language, as well as the unique dataset publicly available for Brazilian Portuguese. 

Section Speaker verification datasets presents the main datasets used in the training 

and evaluation of speaker recognition models. 

 Speech Synthesis datasets 

For the speech synthesis task, high quality datasets recorded in controlled 

environments are required. Since the purpose of speech synthesis is to synthesize high 

quality voice, if the training dataset contains noise, the model can synthesize it, which 

is not desired. The most widely used for training single-speaker speech synthesis 

models is the LJ Speech (Ito, 2017) dataset, which consists of 24 hours of speech by 

an English-language speaker. On the other hand, for multi-speaker synthesis, the 

LibriTTS (Zen et al., 2019) and VCTK (Veaux et al., 2016) datasets are the most 

commonly used. Although the most popular datasets are for English, other languages 

also have open datasets. With Portuguese, for example, the only publicly available 

dataset is the TTS-Portuguese Corpus (Casanova, Candido Junior, de Oliveira et al., 

2020). Table 14.1 shows the approximate number of hours and total number of 

speakers of the main publicly available datasets for speech synthesis in English and 

the only dataset available for Portuguese. 

  



 

Speaker Verification Datasets 

For the SV task, the datasets created for the development of Automatic Speech 

Recognition (ASR) systems are commonly used due to their characteristics. Unlike 

speech synthesis datasets, their ASR counterparts generally have several speakers and 

few samples for each speaker; this feature is desired, since for Speaker Verification 

we want as many speakers as possible during model training (Sztahó et al., 2019). 

Thus, the datasets built for ASR models can be used to train and evaluate SV models. 

However, some datasets are made specifically for Speaker Verification. For example, 

VoxCeleb 2 (Chung et al., 2018) is currently the largest dataset built for SV. It consists 

of samples from more than 6,000 speakers downloaded from YouTube. Table 14.2 

shows the approximate number of hours and total number of speakers in the main 

publicly available datasets for ASR and provides information about the VoxCeleb 2 

dataset. 

 

Table 14.1. Speech Synthesis datasets 

Corpus Hours 

 (~) 

Total Speakers 

(~) 

LibriTTS (Zen et al. 2019) 586 2,456 

M-AILAB 75 2 

VCTK (Veaux et al. 2016) 44 109 

LJ Speech (Ito 2017) 24 1 

TTS-Portuguese Corpus 
(Casanova, Candido-Jr, de Oliveira, et al. 2020) 

10.5 1 

    

Table 14.2. Speaker Verification datasets 

Corpus Hours (~) Total Speakers (~) 

LibriSpeech (Panayotov et al. 2015) 986 2,848 

Common Voice (Ardila et al. 2019) 2,508 58,250 

TED-LIUM V3 (Hernandez et al. 2018) 452 2,028 

VoxCeleb (J. S. Chung et al. 2018) 2,000 6,112 



 

Sequence-to-Sequence Voice Synthesis Approaches 

With the advent of Deep Learning, speech synthesis systems have evolved 

considerably and are still being studied intensively. Models based on Recurrent Neural 

Networks such as Tacotron Wang, Wang, Skerry-Ryan et al., 2017), Tacotron 2 (Shen 

et al., 2018), Deep Voice 1 (Arik, Chrzanowski et al., 2017) and Deep Voice 2 (Arık, 

Diamos et al., 2017) have gained prominence, but have high computational costs 

because they use recurring layers. This led to the development of fully convolutional 

models, such as DCTTS (Tachibana et al., 2018) and Deep Voice 3 (Ping et al., 2018), 

which sought to reduce the computational costs while maintaining good synthesis 

quality. On the other hand, more recently with the popularization of the Transformers, 

new Transformer-based models (Li et al., 2019; Kim et al., 2020) have emerged, and 

due to the parallelization of this architecture, the models achieved results similar to 

those of recurrent architectures with lower computing costs. Finally, the flow-based 

models (Kingma et al., 2016; Hoogeboom et al., 2019; Durkan et al., 2019) attracted 

attention in the synthesis area, allowing the training of simpler models with reduced 

computing costs. For example, the quality of the GlowTTS (Kim et al., 2020) model 

is similar to that of the recurrent Tacotron 2 model, but it can synthesize speech 15.7 

times faster. The speech synthesis models are trained by receiving a text as input and 

a spectrogram as an expected output that represents the speech of the respective text 

input. 

The model must learn to generate a spectrogram given the input text; the 

spectrogram is then transformed into a waveform using a vocoder. Neural vocoders 

have better quality speech synthesis, while phase reconstruction methods such as 

Griffin-Lim (GLA) (Griffin & Lim, 1984) and RTISI-LA (Real-Time Iterative 

Spectrogram Inversion with Look-Ahead) (Zhu et al., 2007) are based on Short Fast 

Fourier Transform (SFFT) redundancy (Sorensen & Burrus, 1988) and have higher 

synthesis speed and reduced quality. Figure 14.2 presents a general flow diagram of a 

TTS system based on Deep Learning. Briefly, given an input text, it is passed to the 

TTS model, which returns a spectrogram. Finally, this spectrogram is converted into a 

waveform by the vocoder. 



 

 

 

Figure 14.2. General flow diagram of a TTS system based on Deep Learning. 

  

The most popular neural vocoders today are Wavenet (Tamamori et al., 2017), 

WaveRNN (Kalchbrenner et al., 2018), Waveglow (Prenger et al., 2019), GAN-TTS 

(Bínkowski et al., 2019), MelGan (Kumar et al., 2019) and more recently WaveGrad 

(Chen et al., 2020). Each of these vocoders has its advantages; some focus on higher 

quality and others on faster synthesis. In this study, we will not discuss vocoders, but 

they play a very important role in speech synthesis, converting a spectrogram into a 

waveform. In this chapter, we will only focus on models that convert text into 

spectrograms.  

As mentioned above, a large amount of data is required to train speech 

synthesis models. For the English language, the most popular single speaker dataset 

for speech synthesis is called LJ Speech (Ito, 2017) and contains 24 hours of speech. 

On the other hand, in Brazilian Portuguese, the only available dataset is TTS-

Portuguese Corpus (Casanova, Candido Junior, de Oliveira, et al., 2020) and contains 

10 hours of speech. The speech synthesis models are subjectively evaluated using the 

Mean Opinion Score (MOS). Ribeiro et al. (2011) proposed a methodology for 

calculating MOS in speech synthesis and the vast majority of studies follow this 

technique. To calculate the MOS, the evaluators are asked to assess the naturalness of 

the statements generated on a five-point scale (from 1 = Bad to 5 = Excellent). Each 

participant evaluates the audio and the average MOS of the participant is calculated.  

Tacotron 1 (Wang, Wang, Skerry-Ryan et al., 2017) was one of the first speech 

synthesis models to use only neural networks to transform text into a spectrogram. The 

authors proposed the use of a single deep neural network trained from end-to-end. 

Tacotron 1 includes an encoder, decoder and post-processing module, in addition to 

using an attention mechanism (Bahdanau et al., 2014) and convolutional filters, 

skipping connections (Srivastava et al., 2015) and Gated Recurrent Unit (GRU) 

neurons (Chung, Gulcehre et al., 2014). Tacotron also uses the Griffin-Lim algorithm 



 

to convert the STFT spectrogram into the waveform (Griffin & Lim, 1984). 

Simultaneously, the Deep Voice 1 (Arik, Chrzanowski et al., 2017) model also 

emerged, which uses several neural submodels to synthesize speech into text. The 

Deep Voice 2 (Arık, Diamos et al., 2017) model was then proposed. This model is 

based on Deep Voice 1; however, the authors proposed improvements to surpass the 

results obtained by Tacotron 1. In addition, the authors proposed improvements in 

Tacotron 1 and changed the Griffin-Lim vocoder in favor of the WaveNet neural 

vocoder, thereby increasing the quality of the synthesized speech. 

On the other hand, Shen et al. (2018) proposed an improvement on the 

Tacotron 1 model. They simplified the architecture and combined the new model with 

a modified version of the WaveNet (Tamamori et al., 2017) vocoder. Tacotron 2 is 

composed of a recurrent network of sequence prediction features that maps the 

incorporation of characters to Mel spectrograms, followed by a modified WaveNet 

model acting as a vocoder to synthesize waveforms in the time domain from these 

spectrograms. They also demonstrated that the use of Mel spectrograms as a 

conditioning input for WaveNet, instead of linguistic characteristics, allows for a 

significant reduction in the size of the WaveNet architecture, and consequently faster 

speech synthesis.  

Furthermore, with the popularization of Transformers (Vaswani et al., 2017) 

in the Natural Language Processing (NLP) area, and the use of several language 

models such as BERT (Devlin et al., 2018), some transformer-based synthesis models 

have emerged. We can cite the work proposed by Li et al. (2019) which achieved 

quality comparable to that of Tacotron 2 (Shen et al., 2018), but trained 4.25 times 

faster.  

Finally, more recent flow-based models (Kingma et al., 2016; Hoogeboom et 

al., 2019; Durkan et al., 2019) attracted attention in the synthesis area. Valle et al. 

(2020) proposed the Flowtron model, which reformulates from Tacotron 2 to provide 

high-quality and significant Mel spectrogram synthesis. Flowtron is optimized to 

maximize the likelihood of training data, which makes training simple and more stable. 

It allows the manipulation of several aspects of speech synthesis, such as pitch, tone, 

speech rate, cadence and accent. It achieved MOS scores slightly higher than those of 

Tacotron 2 and also allows for speech manipulation. On the other hand, Kim et al. 

(2020) proposed GlowTTS, whose quality is similar to that of Tacotron 2, but 

synthesizes speech 15.7 times faster. It uses transformers in its architecture and also 



 

allows one to manipulate the velocity of speech. Both Flowtron and GlowTTS use the 

Waveglow neural vocoder. 

      Speaker Verification approaches 

In the last decade, the area of speaker recognition has undergone major 

changes. In the past, speaker identification models could only identify speakers seen 

during training, and required a reasonable amount of speaker data to be able to learn 

to identify that speaker. Currently, speaker recognition models are able to identify 

speakers not seen in training using just a few seconds of the speaker’s voice; this is 

known as the open-set scenario. This advance was possible due to the evolution of the 

machine learning area and the introduction of new cost functions applied to the training 

of these models.  

Current speaker verification methods are trained using acoustic features, such 

as Mel-frequency cepstral coefficients (MFCCs) (Davis & Mermelstein, 1990) or Mel 

spectrograms, as inputs and use speaker IDs to calculate the loss. The models aim to 

learn a representation (speaker embedding), which is a vector of fixed size, to which 

the distance of the vectors of two different speakers is the greatest possible, while the 

distance of vectors of two samples of the same speaker are as close as possible. After 

training, the distance between these embeddings is usually calculated, allowing 

speakers to be identified. The performance of SV systems is commonly evaluated by 

the Equal Error Rate (EER) (Cheng & Wang, 2004). EER is a biometric security 

system algorithm used to predetermine threshold values due to its false acceptance 

index and false rejection rate (Cheng & Wang, 2004). EER indicates that the 

proportion of false acceptances is equal to that of false rejections, and the lower the 

EER, the more accurate the biometric system (Sztahó et al., 2019). 

 An SV system can be evaluated in two scenarios. In the closed-set scenario, 

where samples of speakers seen in the training of the SV model are used, the model 

recognizes these speakers. In the Open-set scenario, where speaker samples never seen 

in the training of the model are used, the model does not recognize these speakers. The 

models usually report only EER results for the Open-set scenario, since the goal of SV 

systems is to learn to differentiate speakers never seen in training, eliminating the need 

to retrain the neural model (Casanova, Candido Junior, Shulby et al., 2020).  



 

The first studies to use deep neural networks in speaker recognition in an open-

set scenario used speaker embeddings learned via the Softmax loss. Although the 

Softmax classifier can learn different embeddings for different speakers (Snyder et al. 

2017, 2018), it is not non-discriminatory enough (Chung et al., 2020). To overcome 

this problem, the models trained with Softmax were combined with backends built in 

Probabilistic Linear Discriminant Analysis (PLDA) (Ioffe, 2006) to generate scoring 

functions (Ramoji et al., 2020; Snyder et al., 2018). On the other hand, Liu et al. (2017) 

proposed Softmax Angular, where the cosine similarity is used as logit input for the 

Softmax layer, showing its superiority over Softmax alone. Subsequently, Wang et al. 

(2018) proposed the use of Additive Margins in Softmax (AM-Softmax) to increase 

inter-class variance by introducing a cosine margin penalty to the target logit. 

However, according to Chung, Hu et al. (2020), training with AM-Softmax and AAM-

Softmax (Deng et al., 2019) proved to be a challenge, since they are sensitive to scale 

and margin value in the loss function.  

The use of contrastive (Chopra et al., 2005) and triple loss (Schroff et al., 2015; 

Bredin, 2017) has also achieved promising results in speaker recognition, but these 

methods require a careful choice of pairs or triplets, which is time-consuming and can 

interfere with performance (Chung, Hu et al., 2020).  

Wang, Wang et al. (2019) proposed the use of prototypical networks (Snell et 

al., 2017) in speaker recognition. Prototypical networks seek to learn a metric space in 

which the classification of open sets of speakers can be performed by calculating 

distances for prototypical representations of each class. Generalized end-to-end loss 

(GE2E) (Wan et al., 2018) and Prototypical Angular (Chung, Hu et al., 2020) follow 

the same principle and recently achieved SOTA results in speaker recognition. Chung 

et al. (2020) compared the different loss functions mentioned above in the training of 

two convolutional models proposed by the authors. They showed that the Prototypical 

Angular loss function performs better than the others, demonstrating that it is more 

suitable for training SV models.  

Finally, Casanova, Candido Junior, Shulby, et al. (2020) proposed a new 

training approach consisting of reconstructing the 1-second pronunciation of the 

phoneme /a/ in the voice of the speakers. After training, the model is able to 

approximate the pronunciation of /a/ in the voice of any speaker and an embedding of 

this reconstruction is extracted from an intermediate layer of the neural network. Given 

that the reconstruction of /a/ from the same speaker is always closer to their own than 



 

to others, the model is applied in open-set scenarios. In addition, the method surpassed 

a model trained in a 500x larger dataset with the GE2E loss function. It also surpassed 

the result of the best model proposed by Chung, Hu et al. (2020) and trained with the 

Angular Prototypical loss function in one of the four datasets used to compare the 

models. Therefore, the method requires fewer data points to achieve competitive 

results. 

Concluding remarks 

In this chapter, we aimed to list the main Deep Learning approaches applied in 

the fields of Speech Synthesis and Speaker Verification. In the era of Deep Learning, 

as in most tasks involving machine learning, significant improvements in performance 

have been achieved when compared to classic/traditional methods. As Deep Learning 

techniques advance in most fields of machine learning, older, state-of-the-art methods 

are also being replaced by those using Deep Learning in both speech synthesis and 

speaker verification. Thus, Deep Learning has apparently become the next generation 

solution for speech synthesis and speaker verification (Sztahó et al., 2019). In some 

cases, Deep Learning opened up new research fronts, allowing us to meet demands 

that were not previously possible. In addition, speaker verification and speech 

synthesis systems are still evolving. In the Speech Synthesis field, the current goal is 

to reduce the computing cost of the models and improve speech manipulation 

mechanisms, with a view to synthesizing more expressive speech (Valle et al., 2020; 

Kim et al., 2020). On the other hand, in Speaker Verification, researchers still seek to 

advance the current results and focus more on new training methods for modeling 

(Chung, Hu et al., 2020; Casanova, Candido Junior, Shulby et al., 2020). 
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This chapter by Edresson Casanova, Christopher Shulby and Sandra Maria 

Aluísio presents the contents of the first author’s lecture at the Bioacoustic Meeting 

Brazil 2020. Edresson is a young researcher (doctoral student at ICMC/USP/SC) 

trained in Computer Sciences with a focus on Neural Networks and Deep Learning. 

In this chapter the focus is on Speech Synthesis and Speaker Verification. This 

area has been receiving increasing attention for several years, with the emergence of 

so-called virtual assistants. The early 21st century saw the birth of methods known as 

Deep Learning. There was a revolution in the scope and possibilities that emerged. 

  Speech Synthesis techniques obtain good reproductions of human voices. The 

voice quality obtained is fundamental. It is important to underscore that the English 

language has received the largest number of resources and hours of recording and 

therefore, the best results. The chapter presents the primary models used, recording 

times and general characteristics of this type of study. The neural network concepts 

play an important role in this area. 

Under the general name of Speaker Recognition, recent decades have seen 

enormous progress in tasks involving: (SV) Speaker Verification, (SI) Speaker 

Identification, and (SD) Speaker Diarization. Deep Learning also caused a revolution 

in the field of studies. 

The specific aim of SV is to decide whether two different audio recordings 

were produced by the same person/speaker. SI attempts to identify the speaker that 

produced a certain sound recording from previously collected recordings. This is what 

some bank security systems do. SD splits the audio input stream into homogeneous 

segments according to the speaker’s identity. 

In the present chapter the authors address only questions related to Speaker 

Verification. One of the significant recent advances obtained from Deep Learning 

techniques are the so-called Open-set scenarios in which the system recognizes a 

speaker with even just a few seconds of acoustic recording, even if the speaker’s 

recordings were not used by the system in the “learning” phase. 



 

The final part of the chapter includes an original contribution by the first author 

and collaborators, which consists of the reconstruction of 1 second of the 

pronunciation of the /a/ phoneme, constant in the speaker’s voice and, after a training 

period, the model is capable of producing the /a/ sound of any speaker, even from a 

very short recording. This makes it possible to identify the speaker or determine 

whether two recordings are of the same speaker by comparing the sounds produced. 

The present chapter is an introduction to this type of study, which is becoming 

increasingly relevant.   

 

 

 

  


