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ABSTRACT

Wireless sensor networks (WSN) are formed from restricted devices and are known to be vulnerable to denial of
service (DoS) security attacks. In parallel, software-defined networking has been identified as a solution for many
WSN challenges with respect to flexibility and reuse. Conversely, the SDN control plane centralization may bring
about new security threats and vulnerabilities. In this work, we perform a traffic analysis of software-defined WSN
(SDWSN) in order to gain understanding of the network’s performance when it is under certain types of DoS attacks.
In particular, we consider three different DoS scenarios of increasing aggressiveness: (i) false flow requests DoS,
(ii) false data flow forwarding DoS, and, (iii) false neighbor information passing DoS. Our simulation results for
the latter two types of attack showed significant changes both in the average value and the variance of the delivery
rate and the overall overhead. These results demonstrate that it is possible to identify when a SDWSN is under a
particular type of DoS, by monitoring the respective quantities.
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1 INTRODUCTION

Wireless sensor networks (WSN) are formed from
restricted devices and their main purpose is to collect
and process sensed data. WSN are widely used
in environmental, industrial, and health monitoring
applications, which turn them a key technology
for Internet of Things (IoT). One of the main
challenges faced by wireless sensor networks (WSN)

This paper is accepted at the International Workshop on Very
Large Internet of Things (VLIoT 2019) in conjunction with the
VLDB 2019 conference in Los Angeles, USA. The proceedings of
VLIoT@VLDB 2019 are published in the Open Journal of Internet
of Things (OJIOT) as special issue.

and the Internet of Things (IoT) is security. WSN
have certain resources and deployment characteristics
that differentiate them from wired and non-resource-
constrained networks, increasing their vulnerability to
security attacks [21]. Also, WSN are commonly
deployed in hostile environments, which increase the
risk of physical attacks.

Software-defined wireless sensor networks (SDWSN)
offer on the other hand solutions to many WSN
challenges, in particular concerning flexibility and
resource reuse [11]. The SDWSN approach decouples
the control plane from the data plane and its main
characteristic is the ability to program the network
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operation dynamically [15][8]. The SDN controller’s
global view of the network could be instrumental
in detecting the presence of malicious nodes or
abnormal/suspicious behavior, based on the monitoring
of the network traffic and/or other performance metrics
[1]. Additionally, the SDN controller could take suitable
countermeasures against a particular type of attack,
e.g., by isolating malicious nodes, by using conditional
rules to change how a device responds under certain
conditions or to certain types of packets. On the
other hand, the SDN’s centralized architecture creates
vulnerabilities to new security threats.

The planes’ separation and the control decisions
centralization in SDN renders the network prone to
attacks that may not affect traditional networks. For
example, SDN was originally designed as a single
controller architecture, which in terms of security
mounts to a single point of failure and thus increases
vulnerability. In these conditions, an intruder may
flood the network with control packets to exhaust the
controller’s resources, harming the network operation. A
malicious node could also attack the network’s controller
by exploiting communication with legitimate network
devices. As an example, an attacker could send messages
with falsified information to its neighbors to force them
to request new rules to the controller. This kind of attacks
could harm both the controller’s as well as the network
devices’ operation and performance.

So far, these new security issues, specific to SDWSNs,
remain a largely uncharted area of research. Existing
literature includes extensive works on intrusion detection
in WSNs, but these analyzes and related proposed
solutions are not suited for SDWSNs, as they do
not consider the planes’ decoupling and the SDNs’
vulnerabilities [23][19]. On the other hand, intrusion
detection proposals for SDN in wired networks [1][7]
do not (down) scale to SDWSNs constrained networks,
since the proposed approaches use more energy and
bandwidth resources than a WSN could provide. As
an example, Wang et al. [23] focus on routing in
SDWSN, comparing their proposal to SDN-WISE when
both networks are under attack. Authors focus on the
selective forwarding attack and new flow requests. The
first attack applies to any type of WSNs, while the second
is specific for SDN.

In this work, we will attempt an analysis of the
impact of three different DoS attacks on SDWSNs,
aiming at shedding light on their impact on important
network metrics; our ultimate goal is to exploit the
findings of this study in future work on the early
detection of such attacks in SDWSNs. In this framework
and considering the SDWSN vulnerabilities described
before, we implement three different DoS attacks: (i)
a false flow request (FFR) attack, (ii) a false data flow

forwarding (FDFF) attack, and, (iii) a false neighbor
information (FNI) attack. The first one is similar
to the new flow attack implemented by Wang et al.
[23]. To improve the SDWSNs’ resilience to DoS
attacks one needs to understand the vulnerabilities that
would allow malicious nodes to harm the network
operation or performance. Therefore, our objective in
this contribution is to provide the tools to understand the
performance of a SDWSN when it is under these three
attacks.

To achieve our goal, we executed simulations running
IT-SDN [14] for six different square grid network sizes
(36, 49, 64, 81, 100 and 121 nodes). We also
considered two different sizes for the set of malicious
nodes executing the attacks: a single attacker and
approximately 10% of the network size. We analyze
the following performance metrics: delivery rate, delay,
control overhead and energy consumption. Results
for the FDFF and FNI DoS attacks showed significant
changes in the delivery rate, and in the overhead, both
in terms of the average as well as the variance of these
metrics.

Interestingly, in the FDFF attack, the impact on the
average value is more accentuated than the impact on
the variance of these metrics, while the inverse has
been observed for the FNI attack. In future work, we
will investigate the possible employment of lightweight
change point anomaly detection methods [20] on the
SDN controller, in order to identify changes in the
average and/or the variance of these metrics. Ultimately,
we envision to be able to flag not only the occurrence
of an “abnormal” event, but, further provide an initial
guideline regarding the nature of the underlying type of
DoS attack.

The remaining of this paper is organized as follows.
Section 2 provides a detailed description of the three
attacks, while Section 3 explains set-up of our simulation
platform for their implementation. The methods and
experiments conducted are explained in Section 4.
Section 5 presents the results and related discussion
and Section 6 other related works. Lastly, Section 7
concludes the paper.

2 DOS ATTACKS IN SDWSNS

In this Section we describe in detail the three attacks
investigated in this manuscript, their mode of operation,
characteristics and the packets exchanged.

1. The false flow request (FFR) attack targets the
controller and its main goals are to increase the
controller’s processing overhead and the packet
traffic in order to increase the number of collisions.
To attain these goals, the attacker sends multiple
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Figure 1: Flase flow request DoS attack
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Figure 2: False data flow forwarding DoS attack
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Figure 3: False neighbor information DoS attack

flow rule requests to the controller for different
flows. The controller processes the packets,
calculates the rules, and sends the replies to the
attacker. Figure 1 depicts the packets’ exchange
during this attack.

2. The false data flow forwarding (FDFF) attack
is similar to the FFR attack because it targets the
controller, however its implementation is different
as this is achieved via the network’s devices. In
this case the attacker sends a data packet with an
unknown flow to its neighbors. Since the neighbors

do not known the flow, they will ask a rule from
the controller. From this point on, the attack
behaves similarly to the FFR attack. The attack’s
main goals are to increase the controller’s and
neighbors’ processing overhead and to increase the
network’s packet traffic. Additionally, this attack
could saturate the neighbors’ flow table (as these are
constrained devices with limited storage). Figure 2
shows the packets’ exchange for this attack.

3. The false neighbor information (FNI) attack
modifies the packets that contain neighbor
information. In this manner, the controller will
mistreat false information as true and will send
erroneous routing rules to the nodes. The main goal
of this attack is to reduce the network’s delivery
rate. The packets’ exchange for this attack is
depicted in Figure 3.

Therefore, it becomes obvious that the attacks are of
increasing aggressiveness, with an increasing number of
packets being exchanged in each scenario. In particular,
the FNI type of attack can cause significant performance
degradation if not identified, as will be seen in the results
Section.

3 IMPLEMENTATION

The three attacks were implemented using Contiki-OS
version 3.0 [4] and IT-SDN version 0.4.1. [14]. Contiki-
OS is a well known operating system for WSN and
Internet of Things (IoT), and IT-SDN is an SDWSN
framework and southbound protocol based on Contiki-
OS. Next we explain the implementation of the the three
attacks in detail.

3.1 False Flow Request

This attack was implemented using the function
sdn_send_data_flow_request(flowid_t f) from
IT-SDN. We use this function to send a flow rule request packet
to the controller. The parameter f is the flow identifier for
which the sensor node is requiring the rule.

In our implementation the attacker sends one flow rule
request every T seconds and the parameter f is a random
number between 0 and 65, 535. We chose this range because in
IT-SDN the flow identifier is defined as an unsigned integer of
16 bits. The pseudocode for this attack is shown in Algorithm
1.

3.2 False Data Flow Forwarding
This attack requires that the attacker sends data packets to its
neighbors using unknown flow numbers. To generate a packet
with a flow number unknown to the controller, the attacker
includes a new entry in his flow table with the unknown flow.
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Algorithm 1: False Flow Request

start timer(T)
while true do

wait until new event
if timer expired = TRUE then

f = random(0, 65535)
send request(f)
restart timer

end if
end while

Algorithm 2: False Data Flow Forwarding

start timer(T)
while true do

wait until new event
if timer expired = TRUE then

for n in neighbors do
f = random(0, 1000)
new entry(neighbor address,f, forward)
send data packet(f)

end for
restart timer
erase entries

end if
end while

Algorithm 3: False Neighbor Information

while true do
wait until new packet to forward
if new packet is neighbor report then

modify neighbors(new packet)
modify metric(new packet)
forward(new packet)

end if
end while

Then, since the flow table has a limited memory allocation, the
attacker erases this entry after sending the packet to avoid a
flow table saturation. The IT-SDN function to include a new
entry in the flow table has three parameters: the flow number,
the next hop’s address, and the action for the flow.

Similarly to our implementation of the FFR attack, in the
FDFF attack scenario we use a timer to trigger an attack
instance. When the timer expires, the malicious node creates
n new entries in its flow table, where n is the number of its
neighbors. Each entry has a different flow number and each
number is determined using a random function. In this case the
random function’s range is between 10 and 1000, in order to
minimize the probability of selecting randomly flow numbers
that are actually being used in the network. The pseudocode
for this attack is shown in Algorithm 2.

3.3 False Neighbor Information
In the FNI attack, the malicious node modifies
the packet it sends to the controller, containing its
neighbors’ information. IT-SDN defines these packets as
NEIGHBOR REPORT packets. The information included
in the NEIGHBOR REPORT packets are the sensor node
neighbors’ addresses and the routing metric value for each
neighbor.

When the attacker receives a packet for forwarding,
it checks the packet type. In the case the packet is
a NEIGHBOR REPORT type, the attacker modifies the
neighbors’ addresses and the routing metric values. The
pseudocode for this attack is shown in Algorithm 3.

4 METHODS

The main objective of this work is to understand the
performance of an SDWSN when it is under different types
of DoS attacks, captured in the present as FFR, FDFF, and
FNI attacks. To attain our objective, we simulated each attack,
varying the topology and the number of attackers. We use fully
bidirectional square grid topologies from 36 to 121 nodes, and
two aggressiveness levels: only one attacker and ten percent of
nodes as attackers (rounded down to the closest integer value).
We also simulated each scenario in the absence of attackers
to use its performance results as a reference to determine the
attacks’ impact on the network performance. Each scenario
was replicated ten times.

The simulations were performed using COOJA simulator
[17]. COOJA allows to emulate different WSN platforms and
simulate the radio medium. For the experiments we use sky
mote, which is a TelosB mote [16] equivalent. The MAC layer
is IEEE 802.15.4, configured to work without radio duty cycle
(nullrdc_driver).

The topologies were configured with one data sink, one
management sink, and one controller. The data sink receives
the application’s data, while the management sink receives
data flow and control flow usage metrics. We use IT-SDN
monitoring module [13] to implement the collection of flow
usage metrics.

The controller and sinks positions in the network were
placed according to the following rules:

• The controller and the sinks are in the same row;

• For 49, 81, and 121 nodes, the controller is in the center
of the grid, such as shown in Figure 4b.

• For 36, 64 and 100 nodes, the controller is in the lower
left corner of the first quadrant (right-up), as shown in
Figure 4a.

The sensor nodes transmit one data packet every minute
and one management packet every 3 minutes. The data and
management packets’ payload is 10 bytes. In the case of the
data packets, 10 bytes is enough to store simple measurement
data. In the case of the management packets, we are monitoring
two metrics: data flow and control flow usage. Such as
explained in [13] two metrics is equivalent to 10 bytes.

IT-SDN 0.4.1 gives two options for the neighbor discovery
protocol: the Contiki’s Collect protocol [10] and a protocol for
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Controller SinkSink

(a) 36 nodes topology

Sink SinkController
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Figure 4: Sink and controller position examples

directed IoT networks proposed by Alves et al. [3], devised to
cope with unidirectional links. Since we are working with fully
bidirectional networks, we decided to use the Collect protocol.
Table 1 summarizes simulation, energy consumption and IT-
SDN parameters.

4.1 Attackers Configuration

The attackers were programmed to behave as regular nodes
during the first 10 minutes of the simulations. After this
time the attack is triggered. The FFR and the FDFF attacks
work with a periodic timer that triggers the attacker’s action.
This timer was fixed to 60 seconds for both cases and for all
scenarios. The FNI attack modifies the neighbors’ addresses
and the routing metric. IT-SDN uses two-byte addresses, thus
the false addresses are generated randomly between 0 and
65, 535.

The routing metric is based on the expected transmissions
(ETX) metric [6] calculated by the Collect protocol. The
Contiki’s Collect protocol implementation defines a minimum

Table 1: Simulation parameters

Simulation parameters
Topology Square grid

Number of nodes 36, 49, 64, 81, 100, 121

Simulation duration 3600 s

Node boot interval [0, 1] s

Number of sinks 2

Sinks position Middle of the grid edge

Data traffic rate 1 packet per minute

Management traffic rate 1 packet every three minutes

Data payload size 10 bytes

Management payload size 10 bytes

Data traffic start time [2, 3] min

Radio module power 0 dB

Distance between neighbors 50 m

Attacks begins after 600 s

Energy Consumption parameters
Transmission current consumption 21,70 mA

Receiving current consumption 22,00 mA

Processing current consumption 2,33 mA

Sleeping current consumption 0,18 mA

Operation voltage 3 V

IT-SDN parameters
Controller position Center

Controller retransmission timeout 60 s

ND protocol Collect-based

Link metric ETX

Neighbor report max frequency 1 packer per minute

CD protocol None

Flow setup Source routed

Route calculation algorithm Dijkstra

Route recalculation threshold 20%

Flow setup types Regular or source routed

Flow table size 10 entries

and maximum ETX of 8 and 511, respectively. The attacker
uses this interval to randomly generate the false ETX value.
The attackers’ positions in the network were configured using
the next rules:

• In the cases there is only one attacker, it is located in the
third quadrant and is guaranteed to have 4 neighbors;

• In the case of multiple attackers, they have random
positions but are equally distributed among the four
quadrants in order to have the same number of attackers
in each half of the grid and maximize the number of their
non-malicious neighbors.
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Figure 5: Data packet delivery rates for one attacker
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Figure 6: Data packet delivery rates for 10% of nodes
as attackers

4.2 Performance Metrics

The metrics to measure the network performance are (i)
the delivery rate, (ii) the end-to-end delay, (iii) the packet
overhead, and, (iv) the energy consumption. The delivery rate
is calculated dividing the total number of packets successfully
received by the total number of packets sent. The end-to-
end delay is the average time the packets spent to reach their
destination. The overhead is quantified as the total amount of
control packets per minute. Finally, the energy consumption is
the average energy consumption of all nodes during one hour
of simulation.

The delivery rate and the end-to-end delay were calculated
for both control and data packets. The packet overhead was
calculated only for control packets because the attacks were
designed to increment specifically this type of traffic. The
energy consumption was calculated for all nodes, excluding
the sinks, the controller, and the attackers. We excluded the
sinks and the controller because we assume those nodes have
no energy restrictions and we excluded the attackers because
we consider their energy consumption information could also
be compromised.

5 RESULTS AND DISCUSSION

In this section we present, analyze, and discuss the results
obtained from our simulations. The results are sorted by metric
and by attack aggressiveness.
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Figure 7: Control packets delivery for one attacker
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Figure 8: Control packets delivery for 10% of nodes
as attackers

Figure 5 depicts the data packet delivery rate when there
is only one attacker in the network. These results show that
when there is only one attacker in the network, the FFR and
FDFF attacks do not have a significant impact on the delivery
rate, unlike the FNI attack does. In all the scenarios when
the network is under a FNI attack, the average delivery rate
is lower than the delivery rate in the baseline and the other
attacks. Furthermore, we note a considerably higher variability
(shown here as the standard deviation of the measurements) in
the data packet delivery rates when compared to the baseline
reference performance.

Figure 6 depicts the data packet delivery rate when ten
percent of nodes are malicious. The results show that the
networks under the FFR attack and the networks from 36 to
81 nodes under the FDFF attack maintain the baseline delivery
rate. The networks with 100 and 121 nodes under the FDFF
attack and all the network scenarios under the FDN attack
show a decrease in the delivery rate with respect to the baseline
results. In the case of the FDFF attack, the delivery rate drop
is less than 2%, while in the case of the FNI attack the drop is
considerably higher, between 17% and 66%.

The delivery rate results for control packets are shown
in Figure 7 and Figure 8 for one attacker and for multiple
attackers, respectively. Similar to the previous set of results
for the data packet delivery rates, the FNI is the attack that has
the highest impact on the delivery rate. On the other hand,
we observed two behaviors that were not present in the data
packets results: (i) all the networks under the FFR attack with

63



Open Journal of Internet of Things (OJIOT), Volume 5, Issue 1, 2019

	10

	20

	30

	40

	50

	60

	70

	80

	90

36 49 64 81 100 121

Co
nt
ro
l	o
ve
rh
ea

d	
(p
ac
ke
ts
/m

in
)

Topology	size

Base-line
FFR

FDFF
FNI

Figure 9: Control packets overhead for one attacker
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Figure 10: Control packets overhead for 10% of
nodes as attackers
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Figure 11: Control packets flow usage

ten percent of nodes as attackers showed an improvement in the
delivery rate for the control packets; and (ii) all the networks
under the FDFF attack with multiple attackers showed a drop
in their control packets delivery rate.

To understand both behaviors, it is necessary to analyze
also the total control packets overhead and the control packets
traffic during the simulation time. The results in Figure 9
and Figure 10 show that the networks under the FDFF attack
have the largest control packets overhead for both single and
multiple attackers. The FFR attack does not impact the control
packets overhead when there is only one attacker, but induces
an increase in this metric when there are multiple attackers.
Then, Figure 11 shows a large control packet traffic due to
the network configuration during the first three minutes, and
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Figure 12: Data packets delay for one attacker
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Figure 13: Data packets delay for 10% of nodes as
attackers

then this number falls to zero. Subsequently, after the initial
exchange of a large number of control packets the first three
minutes of operation, in the baseline scenario the number of
control packets continues to be very small, close to zero. On
the other hand, in the FFR and in the FDFF attacks the control
packets flow usage increases over 100 times once the attacks
are launched.

Therefore, the control packets delivery rate obtained during
the baseline scenario concerns mostly the first three minutes.
On the other hand, when the attackers start to operate, there
is constant but less dense control traffic than in the first three
minutes. This is why the control packets metric has a larger
value in the FFR attack scenario compared to the baseline.
The situation is different for the FDFF attack mainly for two
reasons: (i) the control packets overhead is larger than the
control packets overhead in the FFR attack, and (ii) all the
attacker’s neighbors send a flow rule request at the same
time, instead of only the single attacker sending one flow rule
request per minute. Both situations increase the probabilities
of collisions.

The control packets overhead results also give information
about the FNI attack. When there is only one attacker the
average overhead in all the topologies sizes increases compared
to the baseline results; interestingly, we also see an increase
in the standard deviation of this metric. In the case of
multiple attackers, there is a high increase in the control packets
overhead, with the corresponding gap – when compared to the
baseline results – increasing with the number of nodes. For
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Figure 14: Control packets delay for one attacker
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Figure 15: Control packets delay for 10% of nodes as
attackers

36 nodes, the average control packets per minute increases by
102, 78%, for 64 nodes it increases by 117, 52%, and for 121
nodes it increases by 130, 07%.

The data packets delay results depicted in Figure 12 and
Figure 13 show a high dispersion for topologies from 64 to 121
nodes. Also, this dispersion is higher when there are multiple
attackers in the network. Additionally, the mean values do not
show any pattern along the different topologies sizes that could
aid to determine the impact of each attack in the data packets
delay. On the other hand, our baseline delay results coincide
with the results obtained in [14] and [3] for topologies over 49
nodes. This indicates that it is common to have high dispersion
in this metric even though the network is not under attack.

In the case of the control packets delay results shown in
Figure 14 and Figure 15, the networks with 36 and 49 nodes
under the FDFF attack have the highest delay. This behavior
is the same when there is only one attacker and when there are
multiple attackers. For topologies over 49 nodes, the dispersion
in the metrics increases and the difference among the networks
under attack delay results becomes less clear. For this reason,
the dispersion in the delay metric render it difficult to determine
the impact of each attack in the control packets delay when
monitoring the average delay only.

Finally, the energy consumption results are shown in Figure
16 and Figure 17 for one attacker and multiple attackers,
respectively. In both cases, the energy consumption remains
unchanged, which means the attacks do not induce an energy
consumption overhead for the network. On the other hand, all
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Figure 16: Energy consumption for one attacker
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Figure 17: Energy consumption for 10% of nodes as
attackers

the nodes in the network were programmed to work without
radio duty cycle, which means the radio module is turned on
all the time. Since the radio module has the highest energy
consumption in the node, the energy consumption overhead
generated by the attacks becomes negligible. In the future, we
will run experiments with radio duty cycle turned on to obtain
a finer understanding of the attacks’ impact on the energy
consumption.

Summarizing, the FFR attack does not induce a significant
change in the network delivery rate, packets overhead and end-
to-end delay. This means that those metrics are not the proper
indicators to detect this type of attack; at the same time, this
attack is very mild and does not heavily impact the performance
of the network. On the other hand, the control packets flow
usage analysis offered useful information about the difference
with the baseline scenario in terms of control packets traffic.
We have identified a small increase in the average number of
control packet delivery both for single and multiple attackers,
making this metric a potential candidate for the identification
of this type of attacks.

The scenarios under the FDFF attack indicated the highest
control packets overhead and also a drop in the control packets
delivery rate. Conversely, this attack did not alter the metrics
related to the data plane. As a result, it is conceivable that
a joint monitoring of the control packet overhead and of the
control packet delivery rate can offer the means to identify this
type of attacks.

The FNI attack was the only one that affected both control
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Table 2: Related work comparison

Work Approach Attacks Implementation/
Simulation Parameters Metrics

Anhtuan et al. [12] IoT Rank Contiki 2.5/COOJA attack aggressivenes delivery rate, delay

Tripathi et al. [22] WSN
Black Hole,
Gray Hole NS-2 topology size (20-200)

lifetime,
energy consumption,
delivery rate

Alanazi et al. [2] IoT Hello flooding Not-specified attack aggressivenes
delivery rate,
throughput,
and delay

ETMRM [23] SDWSN
Selective forwarding
New Flow SDN-WISE/COOJA attack aggressiveness

control overhead,
network lifetime,
energy consumption,
data packets loss ratio

This work SDWSN
False Flow Request,
False Data Forwarding,
False Neighbor Information

IT-SDN/COOJA
attack aggressiveness
topology size (36-121)

delivery rate,
delay,
packets overhead

and data packets metrics, both in terms of the average value of
the metrics as well as of their dispersion. This attack reduced
the control and data packets delivery rate and increased the
control packets overhead. Also, the performance results show
there is a significant difference when there is only one attacker
and when there are multiple attackers. We posit that monitoring
the variability of these metrics might offer the means to identify
this type of attacks.

Next, when looking at the energy consumption, our results
showed that when the duty cycle is off, the attacks do not affect
the average network’s energy consumption. Lastly, the end-to-
end delay metric used in this work did not give results that, at
present, we could consider bearing any useful information in
identifying the attacks based on their impact on the network
performance. The main problem was the high dispersion in the
results, which is consistent with previously published work. In
the future, we will explore whether an approach to separate the
delay metric by number of hops to reach the controller and the
sink, or by clusters, could be an option to reduce the dispersion.

6 RELATED WORK

Traffic and performance analysis is a technique commonly used
in WSN and IoT to detect malicious nodes in the network. In
this section we briefly review previous works that have studied
the impact of security attacks in the network performance and
highlight the contribution of this work.

Anhtuan et al. [12] study the impact of Rank attacks on
networks with RPL (IPv6 Routing Protocol for Low-Power
and Lossy Networks - RFC 6550). The impact in the network
performance was measured through the average end-to-end
delay, delivery rate, number of affected nodes and number of
DIOs generated (RFC 6550). The experiments were conducted
using Contiki 2.5 and COOJA simulator, using one grid of 100
nodes, multiple attackers, and simulations of 350 seconds.

Black Hole and Gray Hole attacks are common in WSN
and IoT. Both attacks are devised to collect and drop packets,
impeding or delaying these packets to reach the sink. Tripathi
et al. [22] compare the impact of both attacks in a WSN with
the LEACH routing protocol [9]. The performance metrics

used in this work are: network lifetime, delivery rate, and
energy consumption. Simulations were conducted using NS-
2, varying the network size from 20 to 200 nodes.

The impact of a “Hello Flooding” attack in a IoT-based
network is presented in [2]. The Hello Flooding attack
was simulated in a pseudo-random topology with 30 nodes,
using the AODV routing protocol and varying the number of
attackers from one to four. Also, authors test the resilience
of the network when using PASER [18], a protocol to combat
unauthorized nodes of joining the network. The metrics to
measure the impact on the network performance were: delivery
rate, throughput, and delay. Authors claim PASER is a good
candidate to secure IoT networks.

ETMRM [23] is a routing and management mechanism for
SDWSN devised to handle malicious forwarding attacks. This
work tested the performance of ETMRM using two attacks:
Selective Forwarding attack, also known as Gray Hole attack,
and New-flow attack [24]. The implementation was conducted
using SDN-WISE [5]. The experiments were conducted using
COOJA [17], simulating a network with 100 nodes during 300
seconds. The nodes were deployed in a random positions and
varying the number of attackers. The network performance
metrics used are: control overhead, network lifetime, energy
consumption, and data packets loss ratio.

From the papers reviewed before, we noticed a scarcity of
works studying the impact of SDWSN specific attacks on the
network performance. There is a lack of attack aggressiveness
experiments on different topology sizes. To fill this gap in the
literature, we implemented three different SDWSN attacks and
tested them on six topology sizes. We measured the impact of
each attack on each topology varying the attack aggressiveness.
Table 2 summarizes the related work review.

7 CONCLUSIONS

Software-defined networking has been identified as a solution
for many WSN challenges concerning flexibility and resource
reuse. On the other hand, the SDN architecture is exposed to
new security threats.

In this work we implemented three security attacks
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showcasing potential SDWSN vulnerabilities and analyzed
their impact on the network performance considering four
metrics: the delivery rate, the packet overhead, the end-to-end
delay, and, the energy consumption. Our results show that the
first of the attacks studied, the False Flow Request attack, did
not have a significant impact on any of the performance metrics
used. On the other hand, the results obtained for the False Data
Flow Forwarding and the False Neighbor Information attacks
showed significant changes in the control and data packets
delivery rate, and in the control packets overhead.

The energy consumption results showed the attacks did not
incur a significant energy consumption overhead, while the
end-to-end delay results were inconclusive due to the high
dispersion in all the scenarios. To use a delay metric based
on the number of hops to reach the controller and the sink, or
by clusters, could be an option to reduce the dispersion.

In future work, we will use more than two levels of
aggressiveness, for example, increasing the number of packets
per minute the attacker sends to the controller. We will also test
the relation between the network performance with the attacker
position, and the impact on the energy consumption when
using a radio duty cycle mechanism. Our ultimate goal is to
develop lightweight algorithms for the early detection of these
and similar DoS types of attack; as an example, monitoring the
average value of the control packet delivery rate and overhead
emerge as potential candidates for identifying FFR and FDFF
attacks, while monitoring changes in the variance of these
metrics could be better suited to identify FNI type of attacks.
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