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The purpose of this work is to give an
example of integrable involutive distribution
on scale of Banach spaces, a topological vector
space defined in [7]. We will apply the Global
Formulation of the Frobenius Theorem [5] to
construct Lie subgroups.

In §3 we will see an important example
of a distribution given by a Lie subalgebra of
the solutions of a Cauchy-Kovalewsky linear
system; in this case, the ambient space is the
gh(n,C) [2], defined as the germs of analytic
transformations around the origin of C" that
preserve the origin, and the distribution is in
the Lie group Gh(n,C) [2], defined as the
subset of gh(n,C) whose elements are invertible.
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1. THE SPACE OF GERMS gh(n. C)

We denote by gh(n,C) the topological
vector space over C of germs of analytic
transformations, around the origin of C", that
preserve the origin. We will denote in the
same way a germ or its representative.

1.1 For each s > 0, let X_be the complex
vector space of germs of analytic transfor-
mations x of C", defined on the ball D(0)
(ball of center 0 and radius r in C"), that
preserve the origin with
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sup [x(t)| <

It <s
where |t = |t | + ... + |t |. The space X with
the norm |x[|! = sup|x(t)| is a complex Banach
[t <s
space. We can write that:

(a) gh(n,C) = : U{1 X.

)X <X, and | [} £ | [ for all
s,s, such that 0 <s' =s = 1.

(c) The closed ball of center 0 and radius
1inX,B(0,1),iscompactinX .0 <s' <s = 1.

We can see also that the inductive limits
are equal:

lim X = lim X .

=5 s s fn

b<s=s1

Then gh(n,C) is a Silva space and therefore
[1] is Hausdorff and sequentially complete.
Hence gh(n,C) is a scale of Banach spaces.

1.2 We can define gh(n,C) in another way.
For each s > 0, let Y_be the complex vector
space of germs of analytic transformations X
of C®, defined on the ball DS(O), that preserve
the origin with
sup|J(x) (1) < =,
tf<s

where J(x)(t) is the matrix whose elements
2

are_ () (1< j S0 and if A=y,

n*

i
is a matrix,

|A| = max

I=isn

z |a”l‘
j=1
The space Y_ with the norm

Ix||? = Sup |J(x) (1)|
is a complex Banach space.
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We can write that:

(@ ghnC)= | Y,

0=s5=<1
) Y,cY,and| | =]
with 0<s'<s=<1.

|,. for all s,8’

1.3 THEOREM

The locally convex inductive limits
limX_ and limY_are the same. We use the

— -

lemma below to prove this theorem.

LEMMA :
@ [Ix]2,

O=<s <3 <1
®) x|} = s|x||?foralls, 0 <s < 1.

n
és—s’”x"“ for all ss with

Proof: The proof is similar to [2].

2. THEOREM (5]

Let X be a scale of Banach spaces and
G = X, a Lie group. Let H be a Lie subalgebra
of X with topological supplement. We consider
the distribution D on G given by L(z)H, where
L is the infinitesimal transformation of the
group G. We also suppose that for each z € G
there is a projection p onto L(z )H such that

polL(z): H — Lz )H

) B,(zzR)

D=xssl

is invertible for all ze V(zo) =

and for each heL(zo)H the map
Viz,)—H
z — [pol(z)] 'h
is LF-analytic [3]. Consider the system
) {z’(x,a)h = L(z)[poL(z)] " 'h,he Lz )H
z(p(a),a) = a

where [L@[poL@] bl < C——[h]|, 2 e

eV(z,), heL(z H. Then for each pointze G

there is a connected maximal integral manifold
and the one which contains the unit of the group,
is a Lie subgroup of G.
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3. THE INTEGRABILITY OF AN INVOLUTIVE

DISTRIBUTION ON Gh(n,C) GIVEN BY A LIE

SUBALGEBRA OF SOLUTIONS OF A CAUCHY-
KOVALEWSKY LINEAR SYSTEM

Only for convenience, we will treat this
example in the case n = 2.

3.1 Solutions of a Cauchy-Kovalewsky Linear
System

Consider the system

0z 0z

— - — A__._
©){at, o, 752

z(O,tz} = y(tz)

where A(t,.t,), B(t t,) are square matrices of
analytic functions of order 2, bounded by M
for [t,| <m and |t,| < 1, and v is an analytic
map of a neighborhood of 0 in C, taking values
in C2.

We denoteas X the vector space of analytic
maps u, bounded on the ball D (0) = {xeC;
x| < s}, taking values in C2. We define the norm

lul, = sup [u(x)l.

[x <s
Then X _is a complex Banach space. Consider
the scale X = () X For each ueX, con-

051

sider the map
F(t,,u)(t,) = At .t,)u(t,) + B(t,,t,) u(t,)).

Then, by [t,|<m, |t <s<<s, and by the
Cauchy inequality [u(t,) < “u"’,, we have
s—s
[F(t,u)(t,)| < ” ”“ + Mju||, <
and
2M
[, wll, <— = luf, forlt,| <n. (A)
Consider the system
du
— = F(t.,
! &, (t,,u)
ll(U)

The map y belongs to some space X 0 <
< s, < 1. Taking R > 0 such that ||'y||
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Ju—7|, <R and taking |t,| < n, we have
ull, < R+ |l¥ll, <R-.-[|,r|| <2R,0 <5 < s,
(B)
Applying (B) on (A),
4M

[Fe o, < —

By Ovcyannikov-Treves Theorem [4,7],
there is a unique solution u, that depends on y
and a number

A n R
min| 3. 3 3AMR

where e is the Neper number, such that
“u?(tl) 2T YHS < R

Since [|y|, < R, we have

[u ), < R+ ], < 2R.

If the system is linear, then the solution depends
linearly on the initial conditions. Hence,

fu I, < 2], . for allyeX, .
Taking |t,| < A(s, — ) and |t,[ <s, we

have (|t,|/A) + |t,| < s, Without loss of gen-

erality for A < 1 we have It,| +It,| <s, and

so |t| < sg,t = (t,.t,). Hence, the map zt, t ) =
= u(t,)(t,) is the only solution of the system
(S). By §1.1,

: Lo

lzl; = D jz(t,.t,)],
hence ;
lz(t.t,)] = [t )e)] < Jlu )], < 2fvl,,

and

Il <2l

Conclusion: The map that associates initial
conditions to solutions of the system (S) is a
continuous and linear operator.

3.2 The Integrability of an Involutive Distribu-
tion on Gh(n,C)

Consider the equation

gz —AE—FBZ

S (E)
BE o,

of the system (S), seen in §3.1, and X = gh(2,C),
U = Gh(2,C). Let H be the vector subspace

= {zeX; z is a solution of (E)}.

We suppose. that H is a Lie subalgebra of X.

0
The subset H 1s closed because i s
ot at,

1
— BI is a continuous operator.

There is a bijective mapping between H
and the subspace H, of the germsy, y € gh(2,C),
such that y depends only on the second variable
t,. Infact, the equation (E) has a unique solution
z[t ;t,) such that z(0,t)) = . We denote by T
thc contmuous lmear map that associates
initial conditions y to solutions of (E):

TH, —~ H
v — Tly) = z.
We define on U the distribution D given by
J(z)H, where J(z) is the jacobian matrix of z.
We will prove the hypothesis of the
Theorem 2.

(a) We fix z_ and let p be the projection onto
J(z,H such that

pl2) = Iz T[(z,)~'2) O,)]-

In fact, p(p(z)) = p(z) and p is linear and
continuous because -it is a composition of
linear and continuous maps. To simplify, we
denote by q the projection

qg: X—-H

z— q(z) = T(z0.t,)

(b) If we take z in a neighborhood of z, the
map p.J(z), restricted to H,

peJ(z): H - J(z H

is invertible. In fact, p = J(z,)°q°J(z,)""
Formally, we have
[p°J(z)]"*h =
= [3(z,)°q°J(z,) " *°J(z)] 'h
= [q°J(z )_1°J(z =iz )it
= {q°J(z,) " *o[J(z,) — Izy — z)]}‘ ol ) h
= [q — q°¥(z,) "Iz, — 2)] 'ed(z,)"h

If h e J(z )H, then J(z()™ 'heH and q restricted
to H is the 1dent1ty, then
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[peJ@] 'h =
= [T — q°J(z,) " '°J(zy — 2] "°J(z,)"th
= Y [a2¥0z) - *°Xzs —2)]™Izs) " th

Fon
By §3.1, we have |]q(z)||: < 2|z|[} ; then
|la°J(zy) " ed(z, — 2)k|! <
< 2| 3zy)tod(z, — DK, <
< 2 sup |J(z,)~ () sup [Nz, — 2)(t)| sup [k(t)|

[j<s Il <s ltf=s

< 2 sup IJ(ZO)_I(tH Iz, =23 ]l

It <s,

|

o

MZ

for k EXs and 0 < s < S Then
I[qe(z,) "z, — 2]k} <
< (2M, [z = z,[ 2™ k]
for keXs and 0 <s < Sy

The series S converges in X_ (M H if we take

13
”Z S Zo”i < 2M{
il

=R O<r<L

and we get
1 i
ISl < 7— Ik]L, k = Jz) th
Further, if we fix kegh(2,C), the map S 1s
LF-analyticin () B_(z,R) with values in X.

D<sss,

(c) Now we examine the majoration for the
second member of (S) in §2. By Lemma 1.3 (a),

[3@p° J2)] *h|2 <

2
< —[J@[p e J=@] b,
s—s§

<

2 [
—sup J@)(1)] [p* J@) ',

It] =s
2 4
¥z ) *h|*
—— |22 3z

2 1
Iz, + R

<

< sup [¥z))~ (0|

§— 8 1 —r1

Gt 1
—M
S S"(”Z”Su + R)l =

<
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By Lemma 1.3 (b), |h||! < s|/h|2. Therefore,

R 2
lI@lpe3@] )3 < 715, +
I 5=
T M, sl
We denote 7 r(”z(’”: + R)M50 =C; then
= C
[@pe 2]~ "h]5 < s— Ibl7:

Then, for each z, there is a maximal
integral manifold passing through z, and by
§2 the one passing through e is a Lie subgroup
of Gh(2,C) with Lie subalgebra H.

In [6], Saraiva proved the same result
using §2, when H is a finite Lie subalgebra
of X = gh(n,C) and taking on U = Gh(n,C)
the distribution J(z)H.
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