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A Machine Learning Prediction Model for 
Immediate Graft Function After Deceased Donor 
Kidney Transplantation
Raquel M. Quinino, MD,1 Fabiana Agena, PhD,1 Luis Gustavo Modelli de Andrade, MD, PhD,2 
Mariane Furtado, MA,3 Alexandre D.P. Chiavegatto Filho, PhD,3 and Elias David-Neto, MD, PhD1

Background. After kidney transplantation (KTx), the graft can evolve from excellent immediate graft function (IGF) to total 
absence of function requiring dialysis. Recipients with IGF do not seem to benefit from using machine perfusion, an expen-
sive procedure, in the long term when compared with cold storage. This study proposes to develop a prediction model for 
IGF in KTx deceased donor patients using machine learning algorithms. Methods. Unsensitized recipients who received 
their first KTx deceased donor between January 1, 2010, and December 31, 2019, were classified according to the conduct 
of renal function after transplantation. Variables related to the donor, recipient, kidney preservation, and immunology were 
used. The patients were randomly divided into 2 groups: 70% were assigned to the training and 30% to the test group. 
Popular machine learning algorithms were used: eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine, 
Gradient Boosting classifier, Logistic Regression, CatBoost classifier, AdaBoost classifier, and Random Forest classifier. 
Comparative performance analysis on the test dataset was performed using the results of the AUC values, sensitivity, speci-
ficity, positive predictive value, negative predictive value, and F1 score. Results. Of the 859 patients, 21.7% (n = 186) had 
IGF. The best predictive performance resulted from the eXtreme Gradient Boosting model (AUC, 0.78; 95% CI, 0.71–0.84; 
sensitivity, 0.64; specificity, 0.78). Five variables with the highest predictive value were identified. Conclusions. Our results 
indicated the possibility of creating a model for the prediction of IGF, enhancing the selection of patients who would benefit 
from an expensive treatment, as in the case of machine perfusion preservation. 

(Transplantation 2023;107: 1380–1389).

INTRODUCTION
Kidney transplantation (KTx) is the best treatment for end-
stage kidney disease, and the majority are performed with 
kidneys from deceased donors.1,2 These kidneys evolve in 
different ways: from excellent immediate graft function 
(IGF) to delayed graft function (DGF) with the need for 
dialysis.3,4

Although definitions for DFG, based on dialysis and 
serum creatinine levels, exist the most widely used defini-
tion is the need for dialysis in the first week after trans-
plantation.5 However, these 2 immediate renal outcomes 
do not include patients with slow graft function (SGF), 
who usually do not require dialysis. For this reason, 
some authors define 3 different outcomes: IGF, SGF, and 
DGF.6-10

DGF is associated with a higher occurrence of acute 
rejection, reduced graft survival, and increased hospital 
length of stay and costs.11-18 In addition, there is evidence 
that patients with SGF, even if they do not require dialysis, 
have similar outcomes to those who require dialysis.8,9,18,19

There are models with the objective of identifying the 
risk of patients who developed DGF after KTx, built 
using classical statistics, most of which use risk fac-
tors.20-23 These models performed well in the dataset in 
which they were developed, with a few being generaliz-
able.24-26 Some studies did not reveal the same results 
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in the validation cohorts as those in the development 
cohort and consider that some models overestimate the 
incidence of DGF.27,28

Another modeling approach recently used in the 
healthcare field involves the use of artificial intelli-
gence or, more specifically, machine learning (ML), in 
which algorithms learn patterns from a dataset without 
being explicitly programmed with prespecified rules.29 
Artificial intelligence has been used more frequently 
in medicine and specifically in transplantation in the 
last decade, with an increase in publications in the last 
2 y.30-33

There are ML models that predict allograft survival,34,35 
DGF,36-39 immunosuppressive dose optimization,40 rejec-
tion diagnosis,41 and waitlist time for KTx.42 Although 
models based on ML can improve the prediction in vari-
ous clinical situations compared with classic statistics, in 
the case of DGF prediction, the ML models did not signifi-
cantly improve performance compared with that in classi-
cal regression models.39,43

The prediction of DGF after transplantation is difficult 
because the definition of DGF is mostly based on the need 
for dialysis. The indication for dialysis in the first week 
after transplantation has only a few absolute indications 
like hyperpotassemia and excessive hypervolemia, but 
many others are subject to medical discretion, such as the 
removal of volume gain after transplantation without res-
piratory discomfort and blood urea nitrogen (BUN) con-
centrations, for example. This may cause a large variation 
in the dialysis rates in the first week after transplantation. 
On the contrary, the definition of IGF is not questionable, 
as it is easy to determine which patients present good diure-
sis and a daily drop-in serum creatinine, with rapid recov-
ery of renal function. The incidence of IGF varies between 
centers.6,7,9,44,45 In our center, it has varied between 21% 
and 25% in recent years.

Therefore, we consider that the prediction of IGF may 
be more accurate than the prediction of DGF. By identify-
ing, with certainty the group with IGF, interventions such 
as machine perfusion (MP), only in patients who are prone 
to develop SGF or DGF could then be carried out. MP is 
an expensive procedure that requires special logistics and 
should be more cost-effective in patients with a higher risk 
of developing DGF (or SGF).

This study proposes the development of a prediction 
model for IGF in recipients of a first KTx, from deceased 
donors, using several ML algorithms.

MATERIALS AND METHODS

Study Design and Patients
In this study, data from patients undergoing their first 

deceased donors KTx at our Transplant Service between 
January 1, 2010, and December 31, 2019, were used. 
Children (<18 y old), retransplant, panel reactive antibody 
levels >10%, missing panel data, preemptive KTx, multio-
rgan transplants, and patients who lost their grafts or died 
within 7 dafter KTx were excluded. Patients were classified 
into 3 groups according to the recovery of renal function 
after KTx:

	•	 IGF: reduction in serum creatinine levels ≥10% on 2 con-
secutive days (1st to 2nd and 2nd to 3rd day after KTx).

	•	 SGF: reduction in serum creatinine levels <10% on 2 con-
secutive days but without the need for dialysis in the first 
week.

	•	 DGF: need for dialysis in the first week after KTx. Patients 
who underwent dialysis only on the first day after trans-
plantation due to hypervolemia or hyperkalemia were clas-
sified as SGF.

This study was conducted following the Declaration of 
Helsinki and was approved by the Ethics Committee for 
Research of the Institution (CAPPesq # 4,403 231). The 
need for informed consent was waived due to the retro-
spective nature of the study.

The outcome variable of interest was the presence of 
IGF after KTx, with collected variables of the recipient, 
donor, organ preservation, and transplant immunology.

The included parameters were as follows:

	•	 Donor: age, sex, ethnicity, body mass index (BMI), type 
of donor, length of stay in the intensive care unit, termi-
nal serum creatinine levels, initial serum creatinine levels, 
blood type, history of hypertension and diabetes mellitus, 
brain death cause, terminal urine output, reversed cardiac 
arrest, mean arterial pressure, pretreatment with norepi-
nephrine, Kidney Donor Risk Index (KDRI), and Organ 
Procurement Organization of origin.

	•	 Recipient: age, sex, ethnicity, BMI, chronic kidney disease 
etiology, modality, duration of dialysis, and drug used in 
induction therapy.

	•	 Organ preservation: preservation solution and cold 
ischemia time (CIT).

	•	 Immunology: HLA mismatches in loci A, B, DR.

Popular ML algorithms were used for structured data: 
eXtreme Gradient Boosting (XGBoost),46 Light Gradient 
Boosting Machine,47 Gradient Boosting classifier,48 
Logistic Regression, CatBoost classifier,49 AdaBoost clas-
sifier,50 and Random Forest classifier.51 The logistic regres-
sion model was built without regularization following the 
same procedures as the other algorithms.

The patients were randomly divided into 2 groups: 70% 
for training and 30% for testing. The test set was com-
posed of data not seen by the algorithms during model 
development. All the results of the predictive performance 
of the study were about calibrated models using the sig-
moid method.

Because of the unbalanced nature of the positive out-
come, which accounts for only about 21% of cases, 
balancing techniques were performed by applying the 
undersampling method edited nearest neighbor in the 
training dataset,52 leaving the test set unchanged. Edited 
nearest neighbor rebalances the dataset by excluding train-
ing examples from the majority class considered noisier 
when they were distinct from their nearest neighbors. The 
hyperparameters of each model were optimized by 10-fold 
cross-validation in the train set through Bayesian optimiza-
tion (HyperOpt),53 optimizing the area under the receiver 
operating characteristic curve (AUC-ROC). After that, the 
models were trained with the best hyperparameters using 
the training set in its entirety.

Comparative performance analysis of the test dataset 
was performed using the area under the receiver operating 
characteristic (AUC) values. In addition, sensitivity (recall), 
specificity, positive predictive value (PPV), negative predic-
tive value (NPV), and F1 score were also reported. The 
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number of true positives among 20% of individuals with 
the highest predicted probability of having IGF after KTx 
was reported.

To provide interpretability of the results, graphs from 
SHapley Additive exPlanations (SHAP)54 and density 
graphs were plotted for the best-performing model, allow-
ing visualization of variable importance and discrimina-
tion of classes performed by the model.

An additional analysis was performed. We verified the 
results of the models built with the algorithms by making 
5 random seed draws from the first selected seed.

We also tested the Boruta variable selection algorithm,55 
using the first tested seed, which removes the variables that 
do not significantly improve the predictive performance of 
the model.

All analyses were performed using the Python pro-
gramming language, with the libraries Pandas,56 Scikit 
Learn,57 NumPy,58 Matplotlib,59 and SHAP,54 following the 
Transparent Reporting of a multivariable prediction model 
for Individual Prognosis or Diagnosis (TRIPOD) guidelines.60

RESULTS

Descriptive Analysis
A total of 1610 deceased-donor KTxs were performed 

at our institution during the study period, and 751 patients 
were excluded according to the exclusion criteria already 
described. Thus, a total of 859 patients were analyzed 
(Figure 1). Of the 859 patients, 186 (21.65%) developed 
IGF, 248 (28.87%) developed SGF, and 425 (49.48%) 
developed DGF.

Table 1 presents a descriptive analysis of the database (n =  
859) in relation to the recipient, donor, organ preservation, 
and immunology.

Algorithmic Performance
Table 2 shows the results separately obtained from the 

test dataset for all the algorithms. XGBoost achieved the 
best overall performance of the AUC-ROC (AUC, 0.78; 
95% CI, 0.71–0.84; recall, 0.64, specificity, 0.78; PPV, 
0.44; NPV, 0.92).

FIGURE 1.  Flowchart. DGF, delayed graft function; IGF, immediate graft function; KTx, kidney transplantation; PRA, panel-reactive 
antibody; SGF, slow graft function.
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TABLE 1.

Characteristics of patients who underwent kidney transplantation

Variable IGF (n = 186)  Non-IGF (n = 673)  P 

Recipient    
Sex, n (%)   0.123
 � Femalea 77.0 (41.4) 241.0 (35.8)  
 � Male 109.0 (58.6) 432.0 (64.2)  
Ethnicity, n (%)   0.129
 � Non-Whitea 64.0 (34.4) 209.0 (31.1)  
 � White 122.0 (65.6) 464.0 (68.9)  
Age, median ± SD, y 52.0 ± 14.4 54.0 ± 13.3 0.261
Time on dialysis, median ± SD, mo 37.5 ± 34.3 42.0 ± 42.5 0.069
CKD etiology, n (%)   0.855
 � Diabetes mellitus 40.0 (21.5) 177.0 (26.3)  
 � Hypertension 28.0 (15.0) 66.0 (9.8)  
 � CGN 41.0 (22.0) 169.0 (25.1)  
 � ADPKD/Alport 15.0 (8.1) 47.0 (7.0)  
 � Tubulointerstitial disease 9.0 (4.8) 38.0 (5.6)  
 � Urological/malformation 4.0 (2.2) 14.0 (2.0)  
 � Unknown 46.0 (24.7) 151.0 (22.4)  
 � Others 3.0 (1.6) 11.0 (1.6)  
BMI, median ± SD, kg/m2 24.3 ± 4.5 25.1 ± 4.7 0.002
Drug used for induction, n (%)   0.815
 � Basiliximab 122.0 (65.6) 476.0 (70.7)  
 � ATG 62.0 (33.3) 94.0 (28.8)  
 � Methylprednisolone 2 (1.1) 3.0 (0.4)  
Modality of dialysis, n (%)   0.517
 � PDa 24.0 (12.9) 43.0 (6.4)  
 � HD 162.0 (87.1) 630.0 (93.6)  
Donor    
Type of donor, n (%)   0.026
 � SCDa 149 (80.1) 469.0 (69.7)  
 � ECD 37 (19.9) 204.0 (30.3)  
Sex, n (%)   0.732
 � Femalea 75 (40.9) 273.0 (40.6)  
 � Male 110 (59.1) 400.0 (59.4)  
Ethnicity, n (%)   0.968
 � Non-Whitea 92.0 (49.5) 309.0 (46.9)  
 � White 94.0 (50.5) 364.0 (54.1)  
Age, median ± SD, y 43 ± 14.0 49.0 ± 13.1 0.000
BMI, median ± SD, kg/m2 25.4 ± 4.5 26.0 ± 4.7 0.015
Blood type A, n (%) 73.0 (39.4) 247.0 (36.8) 0.511
Blood type B, n (%) 24.0 (13.0) 82.0 (12.2) 0.738
Blood type AB, n (%) 10.0 (5.4) 19.0 (2.8) 0.158
Blood type O, n (%) 78.0 (42.2) 323.0 (48.1) 0.935
Length of stay in the ICU, median ± SD, d 4.0 ± 3.9 4.0 ± 4.5 0.032
Mean blood pressure, median ± SD, mm Hg 91.0 ± 15.2 88.0 ± 17.3 0.076
Reversing cardiac arrest, n (%)   0.762
 � Noa 159.0 (85.5) 573.0 (85.1)  
 � Yes 27.0 (14.5) 100.0 (14.9)  
Use of norepinephrine   0.834
 � No,a n (%) 24.0 (12.9) 88.0 (13.1)  
 � Yes, n (%) 162.0 (87.1) 586.0 (86.9)  
KDRI, median ± SD 1.0 ± 0.4 1.2 ± 0.5 (0.010)  
Diabetes mellitus, n (%)   0.802
 � Noa 176.0 (94.6) 631.0 (93.8)  
 � Yes 10.0 (5.4) 42.0 (5.2)  

Continued next page
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TABLE 2.

Predictive model performance with full set of predictor variables

Algorithm AUC (95% CI) Recall Specificity PPV NPV F1 k-tops 

XGBoost 0.78 (0.71-0.84) 0.64 0.78 0.44 0.92 0.53 46.2%
LightGBM 0.76 (0.70-0.83) 0.57 0.76 0.40 0.87 0.47 44.6%
GBC 0.76 (0.69-0.83) 0.52 0.83 0.45 0.86 0.48 44.6%
LR 0.75 (0.69-0.82) 0.70 0.72 0.41 0.90 0.52 39.3%
RF 0.76 (0.69-0.83) 0.52 0.83 0.44 0.86 0.48 42.9%
CatBoost 0.72 (0.65-0.80) 0.52 0.78 0.40 0.87 0.45 39.3%
Adaboost 0.76 (0.69-0.82) 0.38 0.85 0.41 0.83 0.39 37.5%

AUC, area under the receiver operating characteristic; CI, confidence interval; F1, F1 score; GBC, gradient boosting classifier; LightGBM, light gradient boosting machine; LR, logistic regression; NPV, 
negative predictive value; PPV, positive predictive value; Recall, sensibility; RF, Random Forest; XGBoost, eXtreme Gradient Boosting.

Variable IGF (n = 186)  Non-IGF (n = 673)  P 

Hypertension, n (%)   0.194
 � Noa 134.0 (72.0) 436.0 (65.1)  
 � Yes 52.0 (28.0) 235.0 (34.9)  
OPO, n (%)   0.012
 � OPO 1 37.0 (19.9) 175.0 (26.0)  
 � OPO 2 70.0 (37.6) 194.0 (28.9)  
 � OPO 3 19.0 (10.2) 147.0 (21.8)  
 � OPO 4 37.0 (19.9) 102.0 (15.2)  
 � OPO 5 13.0 (7.0) 30.0 (4.5)  
 � OPO 6 10.0 (5.4) 24.0 (3.6)  
Brain death cause, n (%)   0.003
 � Stroke 100.0 (54.9) 439.0 (65.9)  
 � Head trauma 70.0 (38.5) 205.0 (30.8)  
 � Anoxia 2.0 (1.1) 3.0 (0.5)  
 � CNS tumor 1.0 (0.5) 7.0 (1.0)  
 � Others 9.0 (4.9) 12.0 (1.8)  
Initial Cr level, median ± SD, mg/dL 0.9 ± 0.5 0.9 ± 0.8 0.272
Final Cr level, median ± SD, mg/dL 1.1 ± 0.6 1.6 ± 1.6 0.000
Diuresis, median ± SD, mL/kg/h 1.3 ± 1.4 1.1 ± 1.2 0.003
CIT, median ± SD, h 25.0 ± 6.0 27.0 ± 5.7 0.004
Preservation solution, n (%)   0.087
 � Euro-Collinsa 148.0 (78.6) 490.0 (72.8)  
 � Others 38.0 (20.4) 183.0 (27.2)  
Immunology, n (%)    
HLA mismatch – locus A   0.875
 � 0 26.0 (14.0) 86.0 (12.8)  
 � 1 89.0 (47.8) 312.0 (46.4)  
 � 2 71.0 (38.2) 275.0 (40.8)  
HLA mismatch – locus B   0.021
 � 0 38.0 (20.4) 95.0 (14.1)  
 � 1 97.0 (52.2) 367.0 (54.5)  
 � 2 51.0 (27.4) 211.0 (31.4)  
HLA mismatch – locus DR   0.362
 � 0 108.0 (58.1) 405.0 (60.2)  
 � 1 58.0 (31.2) 151.0 (22.4)  
 � 2 20.0 (10.8) 117.0 (17.4)  

P-values of continuous variables were calculated by the Mann–Whitney test. P-values of categorical variables were calculated by the chi-square test.
aReference dummy.
ADPKD, autosomal dominant polycystic kidney disease; ATG, antithymocyte globulin; BMI, body mass index; CGN, chronic glomerulonephritis; CIT, cold ischemia time; CKD, chronic kidney disease; CNS, 
central nervous system; Cr, creatinine; ECD, extended criteria donor; HD, hemodialysis; ICU, intensive care unit; IGF, immediate graft function; KDRI, Kidney Donor Risk Index; OPO, Organ Procurement 
Organization; PD, peritoneal dialysis; SCD, standard criteria donor.

TABLE 1. (Continued)
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Table S1, SDC, http://links.lww.com/TP/C674, shows a 
comparison of the different ML algorithms on the test set 
in 5 different seeds for IGF.

Table S2, SDC, http://links.lww.com/TP/C674, shows 
the predictive performance of models with variables 
selected to the Boruta algorithm for IGF.

Figure 2 shows the ROC curve for each of the different 
algorithms. Figure  3 shows the distribution of the risk 
score and class discrimination for the XGBoost algo-
rithm. The distribution of probability densities in blue 
represents patients who did not develop IGF and in red 
those with IGF after KTx. The results show that, albeit 
not perfect, the XGBoost algorithm was able to discrimi-
nate patients who developed IGF from those who did not.

The top 5 variables with the greatest predictive impor-
tance according to the Shapley value are shown in 
Figure 4. The variables are ranked in descending order of 
importance. Low levels (represented in blue) of final donor 
serum creatinine levels had a positive impact on the IGF 
prediction results, with similar results noted for donor age, 
especially with younger age. Regarding the mean blood 
pressure and diuresis of the donor, higher values (in red) 
had an overall positive impact on posttransplant IGF 
prediction.

DISCUSSION
This single-center, retrospective study analyzed a 

homogeneous population of 859 unsensitized patients 

undergoing their first KTx with kidneys from deceased 
donors and compared several ML algorithms for the pre-
diction of IGF. An ML model was developed that identified 
patients who will develop IGF after KTx.

Popular algorithms were used to develop the model. 
When all available variables were used, the algorithm that 
presented the best prediction of IGF was XGBoost (AUC, 
0.78; sensitivity, 0.64; specificity, 0.78; PPV, 0.44; NPV, 
0.92). The other algorithms had similar AUCs, which dem-
onstrates the predictive ability of the dataset, even if with 
a lower NPV. It is important to emphasize that ML mod-
els are capable of learning complex relationships between 
variables. XGBoost is a learning-by-set method that brings 
together decision trees as building blocks to construct a 
strong “learner” that can discover nonlinear relationships 
between predictors and the outcome. Recently, XGBoost 
has been shown to have a better predictive performance 
than that in other ML algorithms in various contexts.61-63

Several predictive models developed by conventional 
statistics have been published with good performance 
in the population in which they were developed.20-23 
However, in validation studies, these models were not gen-
eralizable, with the exception of the model developed by 
Irish et al. 24-26 However, this is a complex nomogram that 
uses many variables not frequently available and may not 
be applicable in clinical practice.20 More recently, studies 
developed by ML were published compared with those of 
classic statistics models to predict DGF and concluded that 
ML was superior.37,38

FIGURE 2.  Comparison of the different machine learning algorithms on the test set. AUC, area under the receiver operating characteristic; 
GBC, gradient boosting classifier; LightGBM, light gradient boosting machine; LR, logistic regression; RF, Random Forest; XGBoost, 
eXtreme Gradient Boosting.
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The novelty of our study lies in the prediction of IGF 
instead of DGF. The models described in the literature, 
either using conventional statistics or ML, used the DGF 
as an outcome. The prediction of DGF can be complex 
because of different definitions, but most of them are based 
on the need for dialysis in the first week after KTx.

Universal indications for dialysis are few (extreme hyper-
volemia, severe hyperkalemia, and very high BUN levels). 
However, several indications may change according to the 
nephrologist’s discretion. The indication according to the 
BUN level varies among centers. Economic issues also exist, 
such as dialysis fees or limiting it due to the maximum num-
ber of dialysis that can be reimbursed by the health system. 
In addition, the incidence of dialysis in the first week also 
varies if dialysis is performed in the morning of the 8th day 
instead of the night of the 7th day due, for example, to the 
availability of the dialysis facility, only to mention a few. 
For these reasons, models described in the literature do not 
perform well when applied to other centers.

Conversely, IGF defined as patients presenting good 
diuresis from the beginning, with a daily drop in SCr lev-
els and rapid renal function recovery adds no margins for 
doubts, despite the nephrologist who evaluates the patient 
or the logistic conditions of the hospital. Besides, it seems 
that there is no long-term (3-y) improvement in graft sur-
vival by machine perfusion in patients who do not develop 
DGF.64

According to the importance of variables reported 
as a result of SHAP in the complete model (Figure 4), 
as well as for the analysis of a minimum set of vari-
ables with Boruta’s variable selection algorithm 
(described in Table S2, SDC, http://links.lww.com/TP/
C674) the most relevant variables for predicting IGF 
were donor final serum Cr, KDRI, donor mean blood 
pressure, donor 24-h diuresis and donor age. In the lit-
erature, there are several predictive models for DGF, 
but we did not find any reference to the prediction of 
IGF. Younger donors and lower CIT are described in a 

FIGURE 3.  Probability density distributions for predicting immediate graft function for XGBoost algorithm. IRF, immediate renal function; 
XGBoost, eXtreme Gradient Boosting.

FIGURE 4.  Top 5 feature contributions to predict immediate graft function with XGBoost algorithm. KDRI, Kidney Donor Risk Index; 
SHAP, SHapley Additive exPlanations; XGBoost, eXtreme Gradient Boosting.
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study published by Siénko et al, which describes fac-
tors associated with IGF.65 On the other hand, although 
not described in the literature as factors associated with 
IGF, donor serum creatinine, donor mean blood pres-
sure, and diuresis reflect maintenance conditions before 
organ procurement.

By identifying patients with a possible outcome of IGF, 
patients with a higher chance of developing either DGF 
or SGF were combined. It seems that patients with SGF 
have long-term outcomes comparable to those of the DGF 
group.8-10 Therefore, both SGF and DGF groups may be 
considered unique groups that may need special assistance 
to improve their outcome, for example, with the use of 
hypothermic MP.

MP is an expensive procedure (the cost in Brazil is US 
$2000.00/kit). Besides requiring special logistics, MP is a 
high-cost procedure, especially for developing countries 
like Brazil, where MP is not reimbursable by the health 
system.

The idea, therefore, is to use MP only in kidneys with a 
higher chance of developing DGF/SGF. Specifically, in this 
condition, there is a need to present to the health authori-
ties that this extra expense is cost effective, reducing hos-
pital stays, days at the intensive care units, exams, biopsies, 
etc.18 With MP, it has been reported that cost reduction 
was approximately US $2626 per procedure.66

A Brazilian collaborative, randomized study of kidney 
recipients from the same deceased donor showed a 16% 
reduction in DGF (61% versus 45%) with MP versus cold 
storage (CS).67

Another major study comparing CS with MP in kidneys 
from the same donor showed a small reduction (5.7% 
with marginal statistical significance, P = 0.05) in the inci-
dence of DGF with no differences in the duration of DGF, 
creatinine clearance, acute rejection episodes, and length 
of hospital stay.68

In a 3-y analysis of the same cohort, overall, 3-y graft 
survival was better for machine-perfused kidneys (91% 
versus 87%; adjusted hazard ratio for graft failure, 0.60; 
P = 0.04). However, when evaluating survival in patients 
who did not develop DGF, there were no differences in the 
3-y graft survival.64

Therefore, the results of MP in terms of DGF rate and 
costs are not striking to introduce the procedure world-
wide. Including kidney transplant recipients who possibly 
will develop IGF (around 20%–25% of patients) in the 
MP studies may reduce the power of these studies in dem-
onstrating a cost-effective benefit of MP in brain-dead kid-
ney donors. By excluding patients with a higher chance of 
IGF, the statistical results of studies comparing MP with 
CS may be enriched. This is the next step after developing 
our model.

The recorded incidence of DGF in our country is high, 
with rates much higher than those reported in other coun-
tries. In this study, the incidence of DGF was 49%, higher 
when compared with the rates described in the United 
States and Europe, but comparable to what has been 
described in Brazil and even lower when compared to the 
incidence of some Brazilian centers that describe rates of 
up to 82% and 87.7%.69

The exact reason for the high incidence of DGF in Brazil 
is not known, but it is likely to be related to the main-
tenance of the potential donor before organ procurement 

and prolonged CIT due to procurement and organ distri-
bution in a large country.36

Our study has several limitations. This study was con-
ducted at a single center with a very “homogeneous” 
population (first KTx, nonsensitized patients) designed 
to avoid biases that could increase the incidence of 
DGF. For this reason, it is possible that the model may 
not be generalizable to the entire transplant cohort, 
which includes sensitized recipients and retransplants. 
Although access to data from another research center 
could be used to test the generalization of the model, 
there would be a need to retrain the model with local 
data given the change in the distribution of variables, 
which would lead to inadequate extrapolation. For this 
reason, it is possible that the model cannot be directly 
extended to the entire transplant population including 
sensitized recipients or retransplants. However, a single-
center–based model may be more accurate and practical 
for clinical applicability in its specific population. The 
small number of patients can also be considered a limi-
tation when compared with other ML models recently 
published in the literature38,39 and thus, the high NPV 
found for this study could be different in centers with 
low DGF prevalence. Nevertheless, it can be looked at as 
a pilot study to develop a larger analysis at a multicenter 
level.

In summary, an ML model was developed to identify 
transplanted patients with a higher chance of developing 
IGF after KTx. By excluding them, a prospective study 
comparing CS and MP in patients with a higher chance of 
developing DGF will be developed to demonstrate a higher 
cost-effective benefit of MP, which might largely overcome 
the costs of the MP procedure.
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