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Abstract 

Given a Bcrnstcin algebra A = Fe EI) U ED V, the ordered pairs of integers ( l + 
dimU,dimV) and (dirn(UV + V2),dimU2) are ealled, respeetively, the type and the 
subtypc of A. It is well known that given integers r,s 2 0 there exists a Bernstein 
algebra of type ( J + r,s). The similar question for subtypes has no simple answer. 
In this papcr, we generalize the well known coneept of exeeptional Bernstein algebra 
(U2 = 0) introdueing »-exccptionality. In this context, we study under which condi­ 
tions, givcn a quadruple of non negative integers (r, s, I, z) there exists an »-exceprional 
algebra of rypc (l +r,s) and subtype (1,z). Results are obtained for the cases 0- 
exccptional and l -exccptional. 

1. Introduction 

A Bernstein algebra over a field Fis a pair (A,w), whcrc A is a commutative (not ncc­ 
cssarily associativc) F-algcbra and (J): A--+ Fis a nonzero algcbra homornorphism that 
satisfies 

(I) 

for every x E A. 
From (I) it follows that N:= kcr (J) is ni! and thus w, called the wcight homornorphism, 

is uniqucly dctcrmined. Every Bcrnstcin algcbra posscsscs at lcast onc nonzcro idempotent. 
If Fis a field of charactcristic not 2, then for every nonzero idernpotcnt e, A has a Peirce 
dccomposition relat ivc to e, A = Fe »U; (l) Vc, where U, = { x E A I 2ex =x}, Vc = {x E A \ 
ex = O} and N= Ue1fl V:,. 

The Pcircc subspaccs U,, and V" (relative to the idempotent e) satisfy the rclations 

U} ~ Vc, (2) 
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and also the following identities hold for all u E U; and v E Ve: 

u3 = 0, uv: = 0, u(uv) = 0, (uv)2 = 0, (u2)2 = 0. (3) 

By linearizations of (3), we obtain the following identities for all ti.u, ,u2,u3 E Ue, 

uf u2 + 2u1 (u1 u2) = 0, 
u 1 ( u: U3) + u2 ( U I U3) + U3 ( u I u2) = 0, 

u(v1 v2) = 0, 
u 1 ( u2 v) + u2 ( u I v) = 0, 

(u1 v)(u2v) = 0, 
(uv1 )(uv2) = 0, 

(u1u2)(v1v2) = 0. 
Also for all x E N= U, EB Ve 

We will use also the following linearized form of this identity: 

xf (x1x2) = 0, 

xf (x2x3) + 2(x1x2)(x1x3) = 0, 
(x1x2)(x3x4) + (x1x3)(x2x4) + (x1x4)(x2x3) = 0, 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

( I 0) 

( I I) 

( 12) 

( 13) 

(14) 

for all x1 ,x2,x3,X4 E N. 
In this paper, Fis a field with car(F) -/= 2, 3 and A a finite dimensional Bernstein algebra 

over F. If e is any idempotent of A, lp( A) = { e + u + u2 I u E Ue} is the set of nonzero 
idempotents of A. For any idempotent J= e + uo + u6 ( uo E Ue) the mappings <J: U; - Ur, 
T: Ve __, Vl defined by cr(u) = u + 2uou and T( v) = v - 2uov - 2u6v are isomorphisms of 
vectors spaces. Thus U1 = {u+2uou / u E Ue} and V1 = {v-2uov-2u6v I v E Ve}- It 
follows that the dimensions of U; and Ve do not depend on the idempotent e. The ordered 
pair ( J + dim Us, dim Ve) is called the type of A. 

A Bernstein algebra A is said Jordan-Bernstein if is also Jordan, that is, it satisfies 
x2 (yx) = (x2y)x for all x,y in A. In [5] it is proved that A= Fe EB U; EB Ve is Jordan-Bcrnstcin 
if and only if V}= 0 and (uv)v = 0, for all u E Ue, v E Ve. Let A= Fe(J) U; (I) Ve be a Pcircc 
decomposition of a Bernstein algebra A. The set L = {x E Ue I xu = 0 for all u E Ue} is 
an ideal of A contained in Us, which is independent on the idempotent and the quotient 
algebra (A,w), where A= A/Land w(a+L) = w(a), for all a E A, is Jordan-Bcrnstein. In 
the Peirce decomposition A = Fe ED Ue ED Vi, relative to the idcmpotent e = e + L, wc have 
Ue = U; := Ue/ land Vi, = Ve := (Ve + L)/L. For a subspace X of a Bernstcin A, wc will 
denote by X the quotient (X+ L) / L. AII these facts are wcl I known and c an be found in l 6 J, 
[8] and [9]. 
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If X and Y are subspaces of a Bernstein algebra A, we define xy(O) = X and xy(k) = 
(XY(k-l))Y, k integer 2: I, where XY = (xy I x E X,y E Y). For a E A, we write simply aX 
in place of (a)X. 

A Bernstcin algebra A= Fe © U; ffi Ve is said to be normal if UeVe + Ve2 = 0 and is said 
to be exceptional if U;; = 0, for some idempotent e. The algebra A is called nuclear if 
U;; = Ve. These definitions do not depend on the choice of the idempotent element. It is 
known also that dim( UeVe + V}) and dim U;; are invariant under change of the idempotent 
(see [7]). We will use the dimensions ofthese subspaces to define the subtype of a Bernstein 
algebra. 

Definition J Give11 a Bernstein algebra A = Fe ffi U, ffi Ve, the ordered pair of integers 
( dim(UeVe + V}), dim U;) will be called the subtype of A. 

Given non negative integers r and s there exists a Bernstein algebra of type ( I + r,s). 
It is enough to consider a trivial Bernstein algebra A = Fe ffi Ue ffi Ve with dim U; = r and 
dirn Ve = s (see [9]). But this does not hold for the subtype. ln this paper we try to deterrnine 
the eonditions satisfied by a quadruple of non negative integers (r,s,t,z) sueh that there 
exists a Bernstein algebra of type ( I + r, s) and subtype (t, z). The study is made using as a 
tool the degree of exceptionality of the algebra. 

If A = Fe EB u, ffi Ve is Bernstein, from (2), it follows that UeVe + V} ~ u, and U;; ~ Ve, 
furthermore as A is commutative, dim(UeVe +V})~ r and dimU; ~ min{½r(r+ l),s}. 
Moreovcr if r = 0 or s = 0 then UeVe = V} = U; = 0, thus the only possible subtype for 
A is (0,0). Therefore we consider only quadruples of integers (r,s,t,z) with r 2: 1, s 2: I, 
0 ~ t ~ r and O ~ z ~ min{½r(r+ l),s}. Unless necessary, we omit the subscript e in U, 
and Ve. 

2. n-exceptionality 

In this section we generalize the concept of exceptional algebra introdueing the n­ 
exceptionality. This will made using the subspaces of the chain 

U2 2 U(UV) 2 U((UV)V) 2 ... 2 U(uv(k)) 2 U(uv(k+I)) 2 .... 

which have invariant dimension under change of the idempotent. 

Definition 2 A Bernstein algebra A = Fe ED U; CB Ve is called exceptional of degree n, or 
n-exceptional, ifn is the least 1101111egative integer such that the subspace Ue(UeV}n)) = 0, 
for some e E / p(A). The integer 11 wi/1 called the degree of exceptionality ofA. 

lt was proved in 14, Cor. 4] that every subspaee of a Bernstein algebra A= FeEB 
U (l) V containcd in V, has invariant dimcnsion under changc of the idempotent. Thus this 
definition docs not depend of the idempotent, since for every integer n 2 0, U(uv(n)) ~ V. 
Notc that the 0-exccptional algcbras, such that U2 = 0, are just cxeeptional. 

For every elemcnt x of an arbitrary algebra A, R, denotes the right multiplication by x, 
that is, Rx(a) = ax, for all a A. 
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Lcmma J In a Bernstein algebra A= Fe (f) U (f) V.for every u E U, v, v; E V (i= I, 2, ... ) 
and for every integer k 2 2 we have: 
(i) Rt(u) E L; 
(ii) Lr:;ESk Rvcr(1/"cr(2) ... Rva(k) ( U) E L, where sk is the symmetric group ofdegree k; 
(iii) Rv1 RvkRvH ... Rv2Rv1 ( U) E L. 

Proof. From (2) it follows that uv(k) <:;;: U for every integer k 2 0. If u1 E U then by (7) 
and (8), u1 ((uv)v) = -(uv)(u1 v)= 0. Thus (i) is true for k = 2. If Rt(u) = I E L, for some 
k 2 2, then R~+ 1 (u) = Rv(R~(u)) = !v E L. By means of consecutive linearizations of Rt(u) 
in v, we obtain (ii). From (ii), for every u E U, v1, v2 E V, there is/ E L, such that 

(15) 

In particular, taking u as uv1 and using (i), we have ((uv1)v2)v, = I- ((uv1)v1)v2 E L. 
Therefore (iii) is true for k = 2. If (( ... ((uv1)v2) ... )vk)v1 = !' E L, for some k 2' 2, 
using (15) with u as ( ... ((uv1)v2) ... )vk and v2 as vk+I, we have Rv1Rvkr1Rvk···Rv2Rv1 (u) = 
((( ... ((uv1)v2) ... )vk)vk+1)v1 =l-((( ... ((uv1)v2) ... )vk)v1)vk+I =l-!'vk+I EL. D 

Thcorcm J Every Bernstein algebra of type ( l + r, s) is n-exceptiona! for some integer n, 
with O ~ n ~ s + I. 

Proof Let A = Fe (f) U (f) V be Bernstein of type ( l + r,s). lnitially we show that 
uv(s+k) <:;;: L, for every integer k 2' l. 1f r = 0 or s = 0, this is obviously true. Let us assume 
r, s 2 1. Let { u 1, u2, ... , u,.} and let { v1, v2, ... , v.1} be a basis of U and V, respectively. The n 
uv(s+l) = (((. .. ((u;VJ1 )v12) ... )vjJvin1 11 ~i~ r, I ~ )1 ,)2, ... J,,Js+I ~ s). Let us 
show that cvery spanning of i/Fv+U isanelementofL. As I ~J,,)2, ... ,Js,Js+I ~s, there 
exist )k and )1, with l ~ k <I~ s + l, such that )k = )1. By Lemma I, item (iii) we have: 
( ( ·· .( ( ( ( ( ( ( · .. ( (u;vJ1 )vh ). · · )v)k-1 )vik)vk,-1) · · · )vj;)vJ, rl ). · · )v;J vis+1 = 
(( ... ((( ((u'vik)vJk+J .. )vJk)vJ1+1) ... )vJJvini = (( ... (Fvi1+J .. )v1JvJ,+i E L, 
where u' = ( ... ((u;vJ1)v12) ... )v1k_1 E U and I'= ( ... ((u'vik)vik+1) ... )v)k E L. Therefore 
uv(s+I) <:;;:Land consequently uv(s+k) <:;;: L, for every integer k 2 1, since L is an ideal. 
It follows now that U(Uv(n)) = 0, for some not negative integer n~ s + I. D 

3. On the Subspace UV + V2 

ln this section we calculate an upper bound for the dimension of the subspace UV + V2 in 
algebras with degree of exceptionality ~ J. 

Throughout this paper, we denote by R: Z+ --; lR and I l : IR--; Z the mappings defined 
by R(z) = ½(-! + /T+Tz) and fxl = n, where n- I <x~ n and n is an integer. 

Proposition J /.f A = F e r::B U; (I) Ve is Bernstein of type ( J + r, s) with r, s 2 I, the n dimL _ 
r - ! R( dim U;) l. R and I l as previously defined. 

Proof Let M; be a subspace of U; complementary of L, that is, U; = M; !I) L. As the 
dimensions of U; and L are invariant under change of the idempotent, the dimension 
of M; also is invariant. Moreover, U; = M;. Let z = dimU; and k = dimMe. Then 
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z = dimU; = dimM~ :S ½k(k + I). Thus k satisfies the inequality k2 + k - 2z 2': 0. 
As k is a not negative integer and less than or equal to r, it follows that [R(z), r] n Z 
contains the possible solutions for dirnMe, that is, fR(z)l ::; dim M; ::; r and therefore 
dimL :S r - fR(dimU;)l D 

The next step will calculate some upper bound to the dimension of the subspace UV + 
v2_ 

Proposition 2 Jf A= Fe EB U EB V is an n-e.xceptional Bernstein algebra of type ( J + r,s) 
with n :S I, then (UV + V2) ~ L. 

Proof As n '.S I, then UV ~Land by identity (6) it follows that V2 ~ L. Therefore UV + 
V2 ~ L. D 

Corollary 1 f/A = Fe EB U EB V is an n-e.xceptional Bernstein algebra of type ( I + r, s) with 
n :S 1, then dim(UV + V2) '.S r- fR(dimU2)l 

The case exceptional is imrnediate. Given integers (r,s,t) with r 2': I, s = t = 0 or 
s 2': I and 0 :S t :::; r, is known that is possible construct an exceptional Bemstein algebra 
A = Fe EB U EB V of type ( l + r,s) and subtype (t, 0) defining freely the products, with the 
condition that the UV and V2 lie in U. 

4. Subtypes of 1-exceptional Algebras 

In the study of l-exceptional algebras let us consider firstly the case in which such algebras 
are 11011 nuclear. 

4.1. Non Nuclear 1-exceptional Algebras 

The next lemma shows that there exists 11011 nuclear l-exceptional Bernstein algebra where 
the dimension of UV + V2 can reach the upper bound given in Corollary I. 

Lemma 2 Given integers (r,s,t ,z) with r 2': J, s 2': 2, I :S z :S min{ ½r(r + I ),s - I} 
and O S t '.S r- I R(z)l there exists a nan nuclear i-exceptional Bernstein a/gebra oftype 
(1 +r,s) andsubtype (t,z). 

Proof The proof is an algorithm to construct such algebra. Let k = I R(z)l and let A the 
F-vcctor spacc of dimcnsion I +r+s spanncd by {e,u1, .•. ,u,.,v1, ..• ,v5}. We define in A 
the commutativc product given by: 
(l)e2=e; 2eu;=u;; ev1=0; (i=l,2, .. ,r and j=l,2, ... ,s); 
(2)u;u1=vr.(i,J), if"l:::;i::;JSk and E(i,J)Sz, whcrer,(i,j)=½(2k-i)(i-l)+J; 
(3) u,v, = u;, i r k + I S i S k + t. The othcr products are zcro. 
Lct w : A ---. F defined by w(e) = J and w(u;) = w( v1) = 0 on the othcr clemcnts of 
thc basis. ThcnA=Fe(l)U(l)V,whcrcU=(u1,u2, ... ,u,.) and V=(v1,v2, ... ,v5). 
From(!) to (3) abovc, it follows that U2 = (v1, ... ,112) ~ (v1,v2, ... ,v5_1) ~ V; UV = 
(uk+t,Uk+2, ... ,uk+r) ~ U and V2 = 0. Morcovcr, U(UV) = (u;u1 \ I :Si '.S r,k+ I :S 
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j<:'.'. k + t) = 0, since u.u, = 0, for all i or j 2: k + I. Let x= w(x)e + u + v E A, where 
u = I;= 1 tuu, and v = I~= 1 ~ JVJ, with a 1, ..• , a,,~,, ... , ~s E F. By ( l) and commutativ­ 
ity of the product we have x2 = w(x)2 e + w(x)u + u2 + 2uv + v2, with w(x)u + 2uv + v2 E 
U + UV + V2 = U e u2 E U2 ~ V. Moreover, for any u E U e v E V, we have: u3 E U3 ~ 
U(v1, v2, ... , v2) = 0; u(uv) E U(UV) = 0; uv2 E UV2 = 0; (u2)2 E (U2)2 ~ V2 = 0; and 
(uv)2 E ( UV)2 ~ U(U V)= 0. By Theorern 3.4.8 of [6] , it follows that (A, w) is a Bemstein 
algebra with U, = U and Ve = V. For every idempotent f, dimU} = dimU; = z f= 0 and 
dim(UrVI + V}) = dim( UeVe + V/) = dimUeVe = t. Therefore A is 1-exceptional of type 
(J +r,s) and subtype (t,z). D 

Thcorcm 2 Given integers (r,s,t,z), there exists a nan nuclear 1-exceptional Bernstein 
algebra of type ( I + r,s) and subtype (t ,z) if and only if r 2'. l, s 2 2, l <:'.'. z <:'.'. min{ ½ r(r + 
l),s-1} and0 <:'.'. t <:'.'. r- 1R(z)l 

Proof Follows from Corollary 1 and Lemma 2. 0 
The next example exhibits a 11011 nuclear 1-exceptional Bemstein algebra as shown in 

Lemrna 2 for the quadruple (8, 9,4, 8). 

Example l Let A= Fe (!J U ffi V be the Bernstein algebra with U = (u,, u2, ... , ug), V= 
(v1, v2, ... , v9) and the following nonzero products in N= U EB V: 

u,u, = v,; u,u2 = v2; uiu , = v3; u1u4 = v4; uiu: = v5; u2u3 = v6; 
u2u4 = v7; U3U3 = v3; U5V9 = us; U6V9 = u6; U7V9 = u7; U3V9 = ug. 

4.2. Nuclear 1-excepcional Algebras 

In the investigation of nuclear 1-exceptional Bernstein algebras the next proposition will be 
useful. 

Given integers p 2: I and k1, k2, ... , k; E {l, 2, ... ,p}, all distinct, let (kj
1
, kh, ... , ki,,) be 

a sequence ofthese integers, with kj1 < kh < ... < kJ,,· Let ok;(k1k2 ... ki···kn) denote the po­ 
sition of k, in this sequence. With this convention, given M ~ U, a nonzero subspace of the 
Bemstein algebra A= Feffi U EB V, {u, ,u2, ... ,up} an arbitrary basis of M and n, .nr.ns.n« 
distinct integers, we define the following subspaces: 
i) Forn,,n2,n3 E {1,2,3}: 

M(n1n2)n3 = ((u!u;)uk I J <:'.'. i,j,k <:'.'. p; oi(i)k) = n1, OJ(ijk) = n2, ok(ijk) = n3) ; 
M11i(112113) = (u!(ujuk) / J <:'.'. i,j,k <:'.'. p; oi(ijk) =n,, o1(ijk) = n2, ok(ijk) = n3); 

ii) Forn1,n2,n3,n4 E {1,2,3,4}: 
Mn1n2nJ114 = (((u;u1)uk)u1 / I <:'.'. i,j,k,l <:'.'. p; oi(ijkl) =n,, Oj(ijk!) = n2, 

ok(ijkl) = n3, 01(ijk!) = n4); 
M(n1112)(n3114) = ((uiuj)(uku1) / 1 <:'.'. i,j,k,f <:'.'. p; oi(ijk/) =n,, Oj(ijk!) = 112, 

ok(ijk/) = n3, 01(ijkl) = n4). 

Proposition 3 Let M ~ U be an arbitrary subspace of the Bernstein algebra A = F e CB U CD 
Voftype(l+r,s) wuh r > I. lfdimM=p, then 
(i) dimM3 <:'.'. min{r- I, 1p(p2- !)}; 
(ii) dimM4 <:'.'. min{s1 !(p-2)(p- l)p(p+ !)}; 
(iii) dim(M2)2 <:'.'. min{r- 1,f;_p2(p2- J)}. 
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Proof If A is exceptional or p = 0, M3 = M4 = (M2)2 = 0 and the proposition is trivially 
true. Let us to assume that A is not exceptional and p :::: I. Let { iq, u2, ... , u P} be a basis 
of M. If X= (u; I I S i S p) and Y = iu.u, I ! <i-. j S p), then M3 = M(X + Y). By 
identities (3) and (4) we have MX = (u;ui I I S i,j S p, i i- j) and MY= (u;ui I IS i.] S 
p, i i-J)+ ((u;uJ)uk I I <i-. j S p, I S k S p, k i- i,j) = MX + ((u;uJ)uk I IS k <i< j S 
p) + ( ( u;uj)uk I I S i < k < j S p) + ( ( u;uJ )uk I I S i < j < k S p) = M, + M2 + M3 + M4, 
whcre M, = (u;ui I IS i.i S p, i i- j); M2 = ((u;uJ)uk I l <i-: j< k S p); M3 = ((u;u1)uk I 
I S k <i< j S p) and M4 = ((u;u1)u1c I I <i-. k < j S p). By identity (5), if i,j,k are 
such that 1 <i=: k < j S p, then (u;uj)uk = -(u;uk)u1-(uku1)u;. Hence M4 ~ M2 +M3 
and M3 = M, + M2 + M3. It follows that dimM3 S 1P(p2 - l ). Now, M4 = M(M, + M2 + 
M3), with M,, M2 and M3 as defined above. Using the identities (3), (4), (7) we have: 
MM, = M(l2)3 + M(31)2 + M(21)3; MM2 = M(t2)3 + M(2t)3 + M2341 + M1342 + M1234 + M1243 
and MM3 = M(23)t + M(32)t + M2413 + M2314 + M3412 + M3421- Therefore M4 = (M(l2)3 + 
M(2t)3 +M(31)2 +M(23)t + M(32)t) + (M1234 +M1243 +M1342 +M2341 +M2314 +M2413 + 
M3412+M3421 ). By identities (5) and (7) and commutativity of the product we have: 

for all l S i,j,k,l S p. lf follows that Mn1n2n3n4 = Mn2n1n3n4 = Mn2n1n4n3 and 
Mn1 ninsn« ~ Mn4nJ112n3 + Mn4n2n1 n3' for all l s n I 'n2' n3) n4 s 4. Also from (16), for i = j' 
we obtain M(n1112)nJ = M(n1n3)n2, for every I S n..ni.»: S 3. Therefore M4 = M(l2)3 + 
M(21)3+M(31)2+M1234+Mrn4+M3412 and thus dimM S ½(p-2)(p-l)p(p+ J). 
Finally, (M2)2 =(X+ Y)2 = X2 + XY + Y2, X and Y as defined above. Using the identities 
(11), (12) and (13) we have: X2 = (u7u7 I IS i< j S p), XY = M1(23) +M2(13) +M3(t2) 
and Y2 = X2 + M1r23) + M2r,3) + M3r,2) + Mr12)(J4) + M(tJ)(24) + Mr,4)(23). Therefore 
(M2)2 = Y2. From identity (14), it follows that (u;uJ)(uku1) = -(u;uk)(u,uj)-(u;u1)(ukuj), 
for every l S i,j,k,f S p. Thus M(n1n2)(n3n4) ~ M(nJ113)(114112) + M(n1n4)(n3112), for ev­ 
ery I S n1,n2,n3,n4 S 4. In particular, M(t4)(23) ~ Mr12)(34) + M(t])(24)· (M2)2 = 
X2 + M1(23) + M2(13) + M3(12) + M(12)(34) + M(l3)(24)· Therefore dim(M2)2 S /2p2(p2 - 1 ). 
Moreover, as M ~ U we have from (2) and Proposition 9 of [3] than M3 ~ U , M4 ~ V and 
(M2)2 ~ U. This ends the proof of (i), (ii) and (iii). D 

We will see in Example 2 that there exists Bernstein algebras such that the upper bound 
given in (i) and (iii) is reached. 

Let A= Fe EB U EB V be a l-cxceptional Bernstein algebra of type (I+ r,s) and let M 
be a subspace of A such that U = M 8) L. lf A is nuclear, then U2 = V, thus U V+ V2 = 
U3 + (U2)2 = M3 + (M2)2. Thcrcforc dim(UV + V2) = dim(M3 + (M2)2) S dirnM3 + 
dim(M2)2. On the other hand, as A is l-exceptional by Proposition 2, dim(UV + V2) S 
diml=r-dirnM. ByProposition l,wcmighthave 1R(s)l SdimMSr. Thusdim(UV+ 
V2) S max{min{r- dimM, dimM3 + dim(M2)2} I 1R(s)l S dimM S r}. If dimM = p 
and dim M2 = ½P(P + I), then wc can have a Bernstein algebra with dim M3 + dim(M2)2 
as givcn in Proposition 3 (scc Examplc 2). If dimM2 < ½P(P + l) this may be impossible. 
Wc will scc this in the ncxt proposition. 

Proposition 4 let A be a l-exceptional Bernstein algebra of type ( J + r, s) and subtype 
(t,s), wuh s > I. !l r> /2p((p2- l)(p+4)+ 12), where p= P?(s)l, thenl <r-1R(s)l 
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Proo.f Let A = Fe E9 U EB V and let M <;-;; U be such that U = M EB L. By previous 
remark, t 'S_ max{min{r- dimM, dimM3 + dim(M2)2} I p 'S_ dimM 'S. r} }. If dimM = p, 
by Proposition 3, dimM3 + dim(M2)2 'S. -h_p(p2 - J )(p + 4) < r - p. On the other 
hand, min{ dimM3 + dim(M2)2, r - dimM} :S: r - dimM < r - p, for every M such that 
p + 1 'S_ dimM 'S_ r. Therefore t < r- p = r- 1R(s)l D 

We show, by construction, that there is an 1-exceptional nuclear Bemstein algebra with 
dim(UV + V2) = dimU - 1 R(dimU2)l . 
Theorem 3 For every triple of integers (r,s,t) with s = ½P(P + l ), for some integer p 2' 
I, l 'S_ r 'S_ 1 (s2 + (p - 2)s + 3 p) and O 'S. t 'S. r - p, there exists 1-exceptional Bernstein 
algebras oftype (1 +r,s) andsubtype (t,s). 

Proo.f The proof is a construction of a Bernstein algebra satisfies requirements of theorem. 
Let A be a vector space over a field F with { e, u,, u2, ... , u,, v1, v2, ... , vs} a basis of A. We 
define in A the following commutative products: 
(l).e2=e; eu;=½u;; ev1=0 (i=l,2, ... ,r; j=l, ... ,s); 
(2). U;UJ = VE(i,j), if 1 'S. i S: j S: P, where E(i,j) = ½(2p-i)(i- 1) + j; 
(3). u7u1 = -2u;(u;u1) = 2up1(i,J); 

u7u; = -2u1(u1u;) = 2up2(i,J), if I 'S. i< j 'S. p and Pw(i,j) :S: p + t for w = 1,2, 
where 

p,(i,j)=p+I~~'i[(p-x)(p-(x-l))]+(j-i) and 
P2(i,j) = p+ I~~\ [(p-x)(p- (x- J))]+ (p-i) + (j-i); 

(4). (u;u1)uk = U8i(i,j,k); 
(u1uk )u; = U82(i,J,k), if J :S: i < j < k 'S. p and Ow(i,j, k) 'S. p + t for w = I, 2, where 
Bw(i,j,k) = p+ I~~\ [(p-x)(p- (x- I)]+ 2(p- i)+ (2p- (i+ j))(j- i- I)+ 2(k­ 

J) + (w-- 2); 
(5). (u;uk)u1 = -[(u;u1)uk+ (u;uk)u;], if I 'S. i< j< k S: p; 
(6). u7u7 = -2(u;u1)

2 = 2u-c(i,j), if I 'S. i< j 'S. p and 1(i,j) :S: p+t, where 
1(i,j) = 1P(p2+2)+½(2p-i)(i- l)+(j-i); 

(7). u7(u1uk) = -2(u;u;)(u;uk) = 2u11(i,J,k); 
u7(u;uk) = -2(u;u;)(u;uk) = 2u12(i,J,k); 
uf(u;u1) = -2(u;uk)(uku;) = 2u13(i,j,k); 
if1-S.i<j<k:S:p and 1w(i,j,k)-S.p+t forw=l,2,3,where 
1w(i,j,k) = ¾p(2p + I )(p +I)+ I~~\~ [(p-x)(p- (x+ J))]+ 
~(2p - (i+ J))(j - i - 1) + 3(k- j)+ ( w- 3); 

(8). (u;u1)(uku1) = U01(i,j,k,I); 
(u;uk)(u;u1) = Uo2(i,j,k,I); 
if] S:i<j<k<IS:p and Gw(i,j,k,l)'S.p+t forw= 1,2,wherc 
Gw(i,j,k,l) = ¾p(5p2 - 6p + 7) + I~~\ 1[(p -x)(p- (x+ I )(p- (x+ 2)] + 
I~:;+ 1 [ (p - x) (p - ( x + I ) ] + ( 2 p - ( k +J)) ( k - j - I ) + 2 ( I - k) + ( w - 2); 

(9). (u;u1)(u;uk) = -[(u;u;)(uku1) + (u;uk)(u1u1)], if I :S: i j< k I_ p. 
Other products are zero. 

Let ro : A-) F, defined by ffi(e) = I; ffi(u;) = ffi(v;) = 0, for i= 1,2, ... ,r and j= 
1,2, ... ,s. As in Lemma 2, in orclcr to show that (A, co) is Bcrnstcin wc will usc Thcorcrn 
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3.4.8 of[6]. Let U = (u,,u2, ... ,u,.) and V= (v,, v2, ... , vs), then: 
1) U2 = (u;u1 I I~ i,j ~ r) = (u;u1 I l ~i~ j~ p) = (v,, v2, ... , vs) = V, according to 

(2); 
2) UV = U3 = ((u;u))uk I J ~ i.], k ~ r) = (up+l, up+2, ... , uK) <;;; U, according to items 

(3), (4) and (5), where K = min{ ½p(p2 +2),p+t}; 
3) V2 = (U2)2 = ((u;u1)(uku1) 11::; i,j,k,I::; r) = (uK+l,uK+2,···,up+1) <;;; U, by items 

( 6), (7) and (8). We remark that if K = p + t, then V2 = 0. 
Moreover, as UV and V2 are included in (up+l,up+2 .... ,up+1), then U(UV) = 

(UV)2 = UV2 = 0, because u;u1 = 0 for every i or j 2:'. p+ l. Let x= ae+u+ v E A, 
where u = I~=I tuu, and v= I1=, ~1v1, with a,a;,~1 E F, for every i, j. From (1) 
and from the commutativity of the product we have x2 = a2e + ( ou + 2uv + v2) + u2, 
where ou + 2uv + v2 E U + UV + V2 = U and u2 E U2 = V. ]t remains to show that 
the identities (3) are valid. The identities u(uv) = (uv)2 = uv2 = 0 are immediate, 
because U(UV) = (UV)2 = UV2 = 0. Let u = I;=, cuu, E U, with a1, ... ,a, E F. 
By the rules of the product, it is enough to consider u = If=, o.u; We have 
2 p 2 2 b h d . . . ·p·"' 1 u = Ii=l a; u; + 2Iisi<J5.pa;a1u;u1, ecause t e pro uct 1s commutative. 11st y 

we show that u3 = 0. Using (3), (4) and (5), we have: u3 = If=, I;=I aya1uyu1 + 
2, ,P ( ) _ , 2 2 ,P 3 3 , 2 2 L..l5_i<j5_pL..k=l a;U/Xk U;Uj Uk - L..l5_i<J5.pa;ajU;Uj + L..i=l aiui + L..15.J<iSpa;ajU;Uj 

p 

+2 ( Ii Si<J<:op(aya1(u;u1 )u; + a;a7(u;u1 )uj) + L!Si<JSJJ L a;apk(u;u1 )uk) 
k=l 
~ 
kfi,j 

a7a1up1 (iJ) 2 L1 Si<j<:op ( a7CJ.jUp1 (i,j) + CJ.;CJ.JUp2(i,j) 
p 

LlSi<JSp L CJ.;CJ.1ak(u;u))uk 
k=l 
~ 
kfi,j 

2( L1Sk<i<JSpa;a1ak(u;u1)uk 

Ii Si<k<JSp CJ.;CJ.Jak( U;U j )uk) 
= 2 Ii Si<J<k<:op ( a1aka;uo2(i,J,k) + a;a1akuo1 (i,J,k) - a;a1ak (uo1 (i,J,k) + uo2(i,J,k))) = 0. 

Finally, we have: (u2)2 = ( If=, ayu; +2Lsi<JSpa;CJ.JUiUjf = ( If=l a7u7 r + 
4 L Si<JSJJ Ir=I CJ.;aja;(u;u J )u; + 4 ( Ii Si<JSp CJ.;CJ.jUiUjr = 0, because, according to (6), 

wc have: ( I;~ I a;u7 r = I;~I a; (u7 )2 + 2 Ll<i<JSp a7a7u;u7 = 4 Ii Si<jSp a7a7u1:(i,j); 
From (7) it follows: 4Lsi<JSJJir=I a;aia;(u;u1)uf 

4 ( Ii Sk<i<JSp a;a1az(u;u1 )u;+ Ii Si<k<JSp a;a1af iu.u, )ut 
Ii Si<j<k5_p CJ.;CJ.Jaz ( U;Uj )uz) 
= 8 ( Ii <i<J<k~p( a7aJaku11 (i,J,k) + a;a7ak111:2(i,J,k) + a;a1afu1:3(i,J,k)); 

And using (6), (7) and (8) wc obtain: 4( LlSi<JSpCJ.;a1u;u1)2 
4 LlSi<JSpa7a7(u;ui)2+ 

+ 

+ 

+ 

+ 
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8 L L a/J .. jaka1(u;uj)(uku1) = -4L::i</'.Spa7a7u1(i,i) 
l'.Si<j'.Sp ISk<l'.Sp 

(i,j)<(k,!) 

+8 Ii '.Si<J<kSp ( a7aJak(u;ui) (u;uk) + a;a7ak(u;uJ)(ujuk) + a;aial (u;uk) (uJuk)) 

+8 Ii Si<j<k<ISp a;aJaka/ ( (u;ui) (ukU/) + (u;uk) ( UjU/) + (u;u1) ( UjUk)) 

-4 Ii Si</S/J a7 a7u1(i,J) - 8 Ii '.Si<J<k'.S!J ( a7aJaku11 (i,J,k) + a;a--7aku12(i,J,k) + 

a;a1alu13(i,/,k)) 

+8 L.ISi<J<k<IS!J a;a/aka/ (ua1 (i,j,k,l) + Ua2(i,j,k,l) - (ua1 (i,J,k,l) + Ua2(i,j,k,I))) · 

It follows that (A,ffi) is Bernstein with U, = U and Ve = V. As UeVe + V} 
(up+l,Up+2,··,up+r), U; = (v,,v2, ... ,vs) = Ve # 0 and Ue(UeVe) = 0, then A is 1- 
exceptional of type ( I + r, s) and subtype (t, s). D 

The next exarnple exhibits a Bernstein algebra oftype (! +44, 10) and subtype (40, 10), 
constructed according to Theorem 3 for the triple ( 44, 10, 40). 

Exarnple 2 Let A= Fe© U (f} V, with U = (u,, u2 .... , U44), V= (v1, v2, ... , vro). and multi­ 
plication table in N= U © V given by the following table: 

Table of U2 

u, u2 U3 U4 U5 U6 U7 Ug U9 u,o ... U42 U43 U44 

u, v, v2 V3 V4 

u2 V2 V5 V6 V7 

U3 V3 V6 Vg V9 

U4 V4 V7 V9 v,o 

U5 

U43 

U44 

Table of UV + v2 

V1 v2 \13 V4 V5 \16 \17 Vg \19 V10 

U1 -u5 -l/6 -117 2ug u12 u14 2u9 U16 2u10 

u2 2u5 ·-Ug -u11 -u12 -U13 -U14 -1117 -1118 2u19 u22 2u20 

U3 2u6 UI I -119 -1115 -1116 2u17 -u19 -u21 -u22 -1123 2u24 

U4 2u7 1113 u15 -1110 2u18 u21 -u20 2u23 -u24 

U5 

U44 
VI 2u25 2u31 2u34 21.126 21.137 2u27 

v2 -u25 -U31 -u34 -u32 -l/35 21.133 l/43 21.136 

v3 -u31 -u26 -U37 2u32 -u33 l/44 -1.138 2u39 

V4 -1.134 -u37 -l/27 21.135 -u43 - u44 -/,13(, 2u3s -1139 

V5 21.125 2u32 2u35 21.12s 2u40 21.129 

\16 2u31 -1.132 -u33 -l/43 - U44 -un -1,140 1141 21142 

V7 21.134 -u35 1.144 -l/36 -u40 -u29 21.141 --1142 

v3 21.126 2u33 2u3g 2u28 2u41 2u30 

\19 2u37 1./43 -u3g -u39 2u40 -u41 -1.142 -1.130 

v10 2u27 2u36 2u39 2u29 2u42 2u30 
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