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Abstract

Given a Bernstein algebra A — Fe (h U &3V, the ordered pairs of integers (1 +
dimU,dim¥) and (dim(UV + V?),dimU?) are called, respectively, the type and the
subtype of A. It 1s well known that given integers 7,5 > 0 there exists a Bernstein
algebra of type (1 +r,5). The similar question for subtypes has no simple answer.
In this paper, we generalize the well known concept of exceptional Bernstein algebra
(U — 0) introducing n-exceptionality. In this context, we study under which condi-
tions, given a quadruple of non negative integers (r,s,1,z) there exists an n-exceptional
algebra of type (1 + r.s) and subtype (¢,z). Results are obtained for the cases 0-
exceptional and 1-exceptional.

I. Introduction

A Bernstein algebra over a field F is a pair (A ), where A 1s a commutative (not nec-
essarily associative) F-algebra and o @ A — [ 1s a nonzero algebra homomorphism that
satisfies

(x*)? = w(x)%x* (1)
for every x € A.

From (1) it follows that N :— ker @ 1s nil and thus o, called the weight homomorphism,
1s uniquely determined. Every Bernstein algebra possesses at least one nonzero idempotent.
If /15 a field of characteristic not 2, then for every nonzero idempotent ¢, A has a Peirce
decomposition relative to e, A = Fe > U, ®V,, where U, = {x € A | 2ex =x}, V., = {x € A |
ex=0}and N =U, D V,.

The Peirce subspaces U, and V, (relative to the idempotent e) satisty the relations

Ul c, UV, C U, v2ic U, 2)

¢ ¢ ( ( ¢
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and also the following identities hold for all u € U, and v € V.
W =0, w?=0, uw)=0, w)?=0, (u*)*=0. (3)

By lincarizations of (3), we obtain the following identities for all u,uy,u2,u3 € U,

v, vi,v2 € V,:

iy 4 2uy (uyuz) = 0, (4)
wy (upu3) 4 (uru3) + us(uruz) = 0, )
u(viva) =0, (6)
uy (uav) +ua (uyv) = 0, (7)
(u1v)(u2v) =0, (8)
(uvy)(uvy) =0, (9)
(uyu)(viva) = 0. (10)
Also forallxe N=U, DV,
(x*)? =0 (11)

We will use also the following linearized form of this identity:

x3(x1%2) = 0, (12)
X2 (xa3) 4+ 2(x1x2) (x1x3) = 0, (13)
(r1x2) (x3x4) 4 (x103) (x2x4) + (x1x4) (x2x3) = 0, (14)

for all x;,x,x3,x4 €N.

In this paper, F"is a field with car(F') # 2,3 and A a finite dimensional Bernstein algebra
over . If e is any idempotent of A, Ip(A) = {e+u+u? | u € U,} is the set of nonzero
idempotents of A. For any idempotent /= e+ ug + uj (uy € U,) the mappings 6 : U, — Uy,
1:V, — Vy defined by o(u) = u+ 2uou and 1(v) = v — 2ugv — 2u}v are isomorphisms of
vectors spaces. Thus Uy = {u+ 2upu | u € U,} and Vy = {v —2ugv — 2ugv | v € V. }. Tt
follows that the dimensions of U, and ¥, do not depend on the idempotent e. The ordered
pair (1 4+ dimU,,dimV,) is called the type of A.

A Bernstein algebra A is said Jordan-Bernstein if is also Jordan, that is, it satisfies
x(yx) = (x?y)x for all x,y in A. In [5] it is proved that A = Fe & U, & ¥, is Jordan-Bernstein
ifand only if ¥? = 0 and (uv)v =0, forall u € U,, v € V,. Let A = Fe® U, 1V, be a Peirce
decomposition of a Bernstein algebra A. The set L = {x € U, | xu = 0 for all u € U, } is
an ideal of A contained in U,, which is independent on the idempotent and the quotient
algebra (A, ®), where A = A/L and ®(a+ L) = w(a), forall a € A, is Jordan-Bernstein. In
the Peirce decomposition A = Fe & U, (b V, relative to the idempotent ¢ = ¢ + L, we have
Us=U,:=U,JLand V; =V, := (V,+L)/L. For a subspace X of a Bernstein A, we will
denote by X the quotient (X + L) /L. All these facts are well known and can be found in [6],
[8] and [9].
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If X and Y are subspaces of a Bernstein algebra A, we define XY(©) = X and Xy®%) =
(XY® )Y | kinteger > 1, where XY = (xy | x € X,y € Y). Fora € A, we write simply aX
in place of (a)X.

A Bernstein algebra A = Fe & U, &V, 1s said to be normal if U,V, + V(,2 =0 and 1s said
to be exceptional if U? = 0, for some idempotent e. The algebra A is called nuclear if
U? = V,. These definitions do not depend on the choice of the idempotent element. It is
known also that dim(U,V, + V?) and dim U? are invariant under change of the idempotent
(see [7]). We will use the dimensions of these subspaces to define the subtype of a Bernstein
algebra.

Definition 1 Given a Bernstein algebra A = Fe U, b V,, the ordered pair of integers
(dim(U,V, + V2*), dimU?) will be called the subtype of A.

Given non negative integers r and s there exists a Bernstein algebra of type (1 +r,s).
It is enough to consider a trivial Bernstein algebra A = Fe® U, ® V, with dimU, = r and
dimV, = s (see [9]). But this does not hold for the subtype. In this paper we try to determine
the conditions satisfied by a quadruple of non negative integers (r,s,#,z) such that there
exists a Bernstein algebra of type (14 r,s) and subtype (7,z). The study is made using as a
tool the degree of exceptionality of the algebra.

IfA=Fed U, DV, is Bernstein, from (2), it follows that U, V, + VL2 C U, and Ue2 C Ve,
furthermore as A is commutative, dim(U,V, + ¥?2) < r and dimU? < min{%r(r+ 1),s}.
Morcover if r = 0 or s = 0 then U,V, = V? = U? = 0, thus the only possible subtype for
A is (0,0). Therefore we consider only quadruples of integers (r,s,t,z) with r > 1, s > 1,
0<t<rand0 <z < min{ %r(r+ 1),s}. Unless necessary, we omit the subscript e in U,
and V,.

2. n-exceptionality

In this section we generalize the concept of exceptional algebra introducing the n-
exceptionality. This will made using the subspaces of the chain

U2 D UWUY)DUWUVV) D ... 2Uuv®y o ur®hy s .
which have invariant dimension under change of the idempotent.

Definition 2 A Bernstein algebra A = Fe U, bV, is called exceptional of degree n, or
n-exceptional, if n is the least non negative integer such that the subspace U, (U, Ve ")) =0,
Jor some e € Ip(A). The integer n will called the degree of exceptionality of A.

It was proved in |4, Cor. 4] that every subspace of a Bernstein algebra A = Fe
U &V contained i V| has invariant dimension under change of the idempotent. Thus this
definition does not depend of the idempotent, since for every integer n > 0, U(UV™) C V.
Note that the 0-exceptional algebras, such that U? = 0, are just exceptional.

For every element x of an arbitrary algebra A, R, denotes the right multiplication by x,
that is, R, (a) = ax, forall a € A.
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Lemma 1 In a Bernstein algebra A = Fe U &V foreveryue U, vvi €V (i=1,2,...)

and for every integer k > 2 we have:
(i) R(u) € L; |
(i) T, Rug Rug) -+ Rug sy () € L, where Sy is the symmetric group of degree k;

(iii) Ry, Ry, Ry, _,...R\, Ry, (u) € L.

Proof. From (2) it follows that UV¥) C U for every integer k > 0. 1f u; € U then by (7)
and (8), u; ((uv)v) = —(uv)(uyv) = 0. Thus (i) is true for k = 2. If R¥(u) =/ € L, for some
k > 2, then R&+! (u) = R,(R*(u)) = Iv € L. By means of consecutive linearizations of Rk (u)
in v, we obtain (ii). From (ii), for every u € U, vy, v, € V, there is [ € L, such that

(uvy)vy =1 — (uvy)v2 (15)

In particular, taking u as uv; and using (i), we have ((uvi)va)vy =1~ ((uvi)vi)v2 € L.
Therefore (iii) is true for k = 2. If ((...((uvy)va)...)vx)vy = 1" € L, for some Kk > 2,
using (15) with u as (...((uvy)v2)...)vx and vo as vx1, we have R, Ry, Ry,...R\, Ry, (1) =
(((...((uvl)vz)...)vk)ka)v1 =[/- (((...((uvl)vz)...)v/‘.)vl)v/\., | = [— I/Vk, 1€ L. ]
Theorem 1 Every Bernstein algebra of type (1 +r,s) is n-exceptional for some integer n,
with) <n<s+1.

Proof. Let A = Fed® U @V be Bemnstein of type (1 + r,s). Initially we show that
Uvs+k) C L for every integer k > 1. If r = 0 or s = 0, this is obviously true. Let us assume
r,s > 1. Let {uy,uz,...,u,} and let {v),v2,..., v} be a basis of U and V, respectively. Then
UV = (v v )- i i 11 S TS5 1S 1,y < 8). Letus
show that every spanning of UV ¢V is an element of L. As 1 < Friadas nifss er S8, thche
exist jx and j;, with 1 <k </ <s+1, such that j; = j;,. By Lemma I, item (iii) we have:
(TR T W D 0 D O 00 10 W O I

((...(((...((ZA’,V/'k)iji I )...)v»,-k)vj,\ | )...)V,‘_\)V_,‘_HI = ((...(/’V_/h | )...)V/‘A)V/“H ) S L,

where o' = (..((uv,)vj,)...)vj, , € U and I' = (...((u'vj,)v},.,)---)vj, € L. Therefore
UVG+) € L and consequently UV C L, for every integer k > 1, since L is an ideal.
It follows now that U(UV (") = 0, for some not negative integer n < s+ 1. ]

3. On the Subspace UV + V2

In this section we calculate an upper bound for the dimension of the subspace UV + V?in
algebras with degree of exceptionality < 1.

Throughout this paper, we denote by R : 7, — R and [ | : R — 7 the mappings defined
by R(z) = 3(—1+/T+82) and [x] = n, where n— | < x < nand n is an integer.

Proposition 1 IfA = Fec U, )V, is Bernstein of type (1 + r,s) with r,s > 1, then dimL <
r— [R(dimU?)], R and [ | as previously defined.

Proof. Let M, be a subspace of U, complementary of L, that is, U, — M, b L. As the
dimensions of U, and L are invariant under change of the idempotent, the dimension
. 2 . . 2) o) ¥ . p—
of M, also is invariant. Morcover, U; = M-. Let z = dnn(/‘,2 and & — dimM,. Then
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z = dimU; = dimM; < Jk(k+1). Thus k satisfies the inequality &> + k — 2z > 0.
As k is a not negative mtcgcr and less than or equal to r, it follows that [R(z), 7] NZ
contains the possible solutions for dimM,, that is, [R(z)| < dimM, < r and therefore
dimZ < r— [R(dimU?)]. O

The next step will calculate some upper bound to the dimension of the subspace UV +
.

Proposition 2 I[f A = Fe® U ® V is an n-exceptional Bernstein algebra of type (1 + r,s)
withn <1, then (UV +V?) C L.

Proof. As n < 1, then UV C L and by identity (6) it follows that V2 C L. Therefore UV +
F*C L. O

Corollary 1 I[f A =Fe®U DV is an n-exceptional Bernstein algebra of type (1 +r,s) with
n <1, then dim(UV + V?) <r— [R(dimU?)].

The case exceptional is immediate. Given integers (r,s,7) with r > 1, s =1 =0 or
s > land 0 <1 < r, is known that is possible construct an exceptional Bernstein algebra

A =FedbU®dV of type (1+r,s) and subtype (¢,0) defining freely the products, with the
condition that the UV and V2 lie in U.

4. Subtypes of 1-exceptional Algebras

In the study of 1-exceptional algebras let us consider firstly the case in which such algebras
are non nuclear.

4.1. Non Nuclear 1-exceptional Algebras

The next lemma shows that there exists non nuclear 1-exceptional Bernstein algebra where
the dimension of UV + V2 can reach the upper bound given in Corollary 1.

Lemma 2 Given integers (r,s,t,z) withr > 1, s>2 1<z< min{%r(r +1),s— 1}
and 0 <t <r— [R(z)]| there exists a non nuclear 1-exceptional Bernstein algebra of type
(1+r,s) and subtype (t,z).

Proof. The proof is an algorithm to construct such algebra. Let k = [R(z)] and let A the
F-vector space of dimension 1+ r+ s spanned by {e,u),....u,,vy,...,vs}. We define in A
the commutative product given by:

(1) & =¢; 2eu; = uj; ev; =0; (I=132,..r and j= 1, 2,...,8);

(2) it = vg(; jy, 1 <i<j<k and €(i,j) <z, where¢(i,j) ("/\ —i(i—1)

(3) wjvg = u;, ifk+1<i< k+t. The other products are zero.

Let @ A — [/ defined by o(e) = 1 and o(u;) = o(v;) = 0 on the other clements of
the basis. Then A = Fe® U ®V, where U = (uy,uz,...,u,) and V = (vi,vy,...,v).
From (1) to (3) above, it follows that U? = (v;,....v.) C (v;,v2,...,vs. GV, Uy =
(U1, Uk 42y oy ttk) C U and V2 = 0. Moreover, U(UV) = (uu; | 1 <i<rk+1<
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j<k+1t) =0, since wiu; =0, forall i or j > k+1. Let x = o(x)e+u+v € A, where
u=Y_,ouu and v= Z';-;,] Bjvj, with o, ..., 0(,,[31, ,Bs € F. By (1) and commutativ-
ity of the product we have x* = w(x)%e + O(x)u + u* + 2uv+ v?, with o(x)u + 2uv +v? €
U+UV+V:=Ueu? € U? CV. Moreover, foranyueUch V, we have: u? € U3 C

U(vl,vz,. L) =0; u(w) eUUYV)=0; w?eUV*=0; (u*)* € (U? 2Cy2=0; and
(uv)? € (UV)* CU(UV) = 0. By Theorem 3.4.8 of [6] , it follows that (A, ®) is a Bernstein
algebra with U, = U and V, = V. For every idempotent f, dim Uf = dimU? =z # 0 and
dim(U/Vy + V/) = dim(U,V, + V?) = dimU,V, = 1. Therefore A is 1-exceptional of type
(1+r,s) and subtype (7,z). OJ

Theorem 2 Given integers (r,s,t,z), there exists a non nuclear [-exceptional Bernstein
algebra of type (1 +r,s) and subtype (t,z) if and only if r > 1, s > 2, 1 <z < min{ %r(r +
1),s — 1} and 0 <t <r—[R(2)].

Proof. Follows from Corollary 1 and Lemma 2. )
The next example exhibits a non nuclear I-exceptional Bernstein algebra as shown in

Lemma 2 for the quadruple (8,9,4,8).

Example 1 Let A = Fe® U @V be the Bernstein algebra with U = (uy,uz,...,ug), V =
(vi,Vv2,...,v9) and the following nonzero products in N = U b V:

UIUY = V], UU) = V2, UIU3 = V3, UIU4 = V4, UUY = V5, UU3 = Vg,
UpUy = V7, UIUF = V8, USV9 = U5, UeV9 = Ue, UTV9 = U7, UKV = Ug.

4.2. Nuclear 1-excepcional Algebras

In the investigation of nuclear 1-exceptional Bernstein algebras the next proposition will be
useful.

Given integers p > 1 and ky,ky,...,k, € {1,2,..., p}, all distinct, let (k;,,kj,,...,k;,) be
a sequence of these integers, with k;, < kj;, < ... <k;, . Let oy, (kik;...k;...k,) denote the po-
sition of 4; in this sequence. With this convention, given M C U, a nonzero subspace of the
Bernstein algebra A = Fed® U &V, {uy,uy,...,u,} an arbitrary basis of M and ny,ny,n3,ny
distinct integers, we define the following subspaces:
i) Forny,m,ny € {1,2,3}:

Moy = ((WPuj)u | 1 < i, j k < p; oi(ijk) = m, 0j(ijk) = na, ox(ijk) = n3) ;

My, (nany) = (2 (wjug) | 1 <, j k < p; 0i(ijk) = my, 0,(ijk) = na, ok(ijk) = n3) ;
ii) For ny,ny,ny, ng € {].2,3,4}2

Monynyng = (((uiv)ug)uy | 1< i, j, k1 < p; 0i(ijkl) = ny, 0i(ijkl) = ny,

ox(ijkl) = ny, 0(ijkl) = ng);
M) nsng) = ((irej) (ugy) | 1 < 0, jo k1 < p; 0i(ijkl) = ny, 0(ijkl) = na,
or(ijkl) = n3, 0/(ijkl) = ny).

Proposition 3 Let M C U be an arbitrary subspace of the Bernstein algebra A = Fe U b
Voftype (1 +rs) withr > 1. If dimM = p, then

(i) dim M < min{r 1, ip(p? - 1)};

(ii) diim M* <mm{ (p 2)(/) l)/ (p+1)};

I
' 8
(iii) dim(M?)? < min{r — 1, T?l’ (p* - 1)}



The Concept of Subtype in Bernstein Algebras 135

Proof. If A is exceptional or p = 0, M* = M* = (M?)? = 0 and the proposition is trivially
true. Let us to assume that A is not exceptional and p > 1. Let {uy,u,...,u,} be a basis
of M. If X = (uf | 1 <i<p)and Y = (uu; | 1 <i< j<p),then M = M(X +7Y). By
identities (3) and (4) we have MX = (ufu_,- |[1<i,j<p,i#j) and MY = (u%u, |1<i,j<
pyiF J)H (g |1 <i<j<p, 1 <k<pk#ij)=MX+{(uu)u |1 <k<i<j<
p) (i )ug | 1< i<k < j<py+ ((uuj)ug | 1 <i<j<k<p)=M +M-+M+M,,
where My = (ufu; | 1 <i,j < p,i#j); My = ((ui))up | 1 <i<j<k<p),My= ((uajuaj)uay |
Il <k<i<j<p)and My = ((uu;)ux | 1 <i<k<j<p). By identity (5), if i, j, k are
such that 1 < i <k < j < p, then (uu;)uy = —(ujg)u; — (ugu;)u;. Hence My C My + M,
and M? = M, + M, + M. It follows that dim M® < 1p(p* —1). Now, M* = M(M, + M +
M), with My, My and M as defined above. Using the identities (3), (4), (7) we have:
MMy = M12)3 + M31)2 + M21)3; MMy = M(12)3 + M(21)3 + Mazar + Mizaa + Mioza + Mioas
and MM5 = M(23)) + M32)1 + Maars + Mazia + Msarz + Maazy. Therefore M* = (M1p); +
Ma1ys + Miarya + Maay + Mzay) + (Mi2za + Miaaz + Mizay + Mazay + Maszia + Maais +
Ms412 + Magp) ). By identities (5) and (7) and commutativity of the product we have:

((jui)u)uy = (i) )uy = — (e )ug Yug = ((ugug ) g + (g ) Yug, (16)

for all 1 < i,j k1 < p. If follows that Mynmn = Munmng = Munmn, and
Mnmgnyu g Mn.;n;nzn; I~ Mrunznlnga for all 1 < ny,nz,n3,ng S 4. Also from (16), fori= j,
we obtain M, .\, = My, ny)ny» for every 1 < ny,ny,n3 < 3. Therefore M = M3 +
M(2|)3 + M(_”)z + M\234 + Mh314 + M3412 and thus dimM* < %(p — 2)(p — l)p(p + 1).
Finally, (M?)? = (X +Y)? = X> + XY + Y2, X and Y as defined above. Using the identities
(11), (12) and (13) we have: X? = (u,»zuf |1 <i<j< p), XY = M3y + Myz) + Myip)
and Y2 = X2 + My (o3 + My13) + My(12) + Mu12)3a) + Myizy4) + Miay23)-  Therefore
(M?)? = Y2, From identity (14), it follows that (uu;) (uxur) = — (uiuag) (g ;) — (uany) (ugut ),
for cvery I < iajakvl < p Thus.M(mng)(nw‘;) C M(mn;)(nuu) + M(n,n.g)(n;nz)’ f()71‘ 2CV'
ery 1 < ny,m,m,ng < 4. In particular, M(14)(23) C M(IZ)(34) s M(|3)(24). (MY =
X2+ My 23)+ Mo13) + My12) + M(12)(34) + M(13)24)- Therefore dim(M?)? < 5 p?(p* = 1).
Morcover, as M C U we have from (2) and Proposition 9 of [3] than M> ¢ U, M* C V and
(M?)?> ¢ U. This ends the proof of (i), (ii) and (iii). [

We will see in Example 2 that there exists Bernstein algebras such that the upper bound
given in (7) and (iii) is reached.

Let A= Fed® U dV be a l-exceptional Bernstein algebra of type (1 +r,s) and let M
be a subspace of A such that U = M@ L. If A is nuclear, then U? = V, thus UV + V=
U’ + (U?)? = M® + (M?)?. Therefore dim(UV + V?) = dim(M> + (M?)?) < dimM> +
dim(M?)?. On the other hand, as A is 1-exceptional by Proposition 2, dim(UV + V?) <
dimL = r — dim M. By Proposition 1, we might have [R(s)| < dimM < r. Thus dim(UV +
V2) < max{min{r — dim M, diim M* + dim(M*)*} | [R(s)] < dimM < r}. If dimM = p
and dim M? = %p([) 4 1), then we can have a Bernstein algebra with dim M® + dim(M?)?
as given in Proposition 3 (scc Example 2). If dim M? < %p(p -+ 1) this may be impossible.
We will see this in the next proposition.

Proposition 4 Let A be a l-exceptional Bernstein algebra of type (1 + r,s) and subtype
(t,8), withs > 1. If r > Tlip((p2 ~1)(p+4)+12), where p=[R(s)]|, thent <r—[R(s)].
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Proof. Let A =Fe=U®V and let M C U be such that U = M@ L. By previous
remark, / < max{min{r — dim M, diim M +dim(M*)*} | p < dimM < r}}. If dim M = p,
by Proposition 3, dimM? + dim(M?)* < %p(p2 ~1)(p+4) <r—p. On the other
hand, min{dim M> + dim(M?)?, r — dimM} < r — dimM < r — p, for every M such that
p+1 <dimM < r. Therefore t <r—p=r—[R(s)]. O

We show, by construction, that there is an 1-exceptional nuclear Bernstein algebra with
dim(UV 4 V?) = dimU — [R(dimU?)] .

Theorem 3 For every triple of integers (r,s,t) with s = % p(p+1), for some integer p >
1, 1<r< %(sz +(p—2)s+3p) and 0 <t <r— p, there exists I-exceptional Bernstein
algebras of type (1 +r,s) and subtype (t,s).

Proof. The proof is a construction of a Bernstein algebra satisfies requirements of thcorem.
Let A be a vector space over a field F with {e,uy,uz,...,u,,vi,v2,...,vs} a basis of A. We
define in A the following commutative products:
(). & =g eu,-:%u,-; ev;=0 (i=12,.,r j=1,..8);
Q). wij = ve(ijy, if 1 <i<j<p, wheree(i,j) = 3(2p—i)(i— 1)+
(3). wPu; = —2u;(uju;) = 2up, i j);

u;u,- = —2uj(uju;) =2, j), 1 <i<j<p and py(i,j) < p+t forw=12,
where

p1(i, ) =p+Zi i [(p—x)(p—(x—=1)]+(j—i) and

p2(i, /) = p+ i [P =) — (x— D)+ (p— )+ (i — i)
(4). (wjuj)ug = ug, (i j k)>

(e )u; = us, (i j ), 1f 1 <i<j<k<p and 8,(ij,k) < p+t forw=1,2, where

5w(lvfak) = p+2:r_:ll [(p—x)(p— (X— l)]+ 2(p— I) W (2[)_ (l+1))(1_ i— l) + 2(k—
N+ w=2);
(5). (u uk)u/ —[(uiujYug + (uju)ui), if1 <i<j<k<p;
(6). u? u = —2(uu;)? = 21{1( ,if 1 <i<j<p and 1(i,j) < p+1t, where

(i, /) = 3P (pz+2) (2p - 1)+ (i)

(D). u?(ujux) = —2(u; u,)(u,uk) = 2y, (i,j )5

uz(u ) = —2(uu ;) (ujug) = 2uryi j 1)

uk(u,uj) = —2(witty ) (Ut ) = 2ty (i j )5

ifl<i<j<k<p and 1,(i,j,k) < p+t forw=1,2 3, where

T (i, j.k) = 1pp+ )(p+ 1)+ X\ 3(p—x)(p— (x+ 1))+

(2 (i+ D)0 —i— 1) +3(k— )+ (w—3);

(8). (u ) (utir) = Ug, (i k1)

(uu;\)(u]u/) U, (i, k)5

ifl<i<j<k<I<p and o,(i,j,k /)< p+t forw=1,2, where

0)\(’ jal‘vl) ([)(51) 6/) i"7) £y 2’ i (/)* \)(I) - (»‘- t I)(/)(‘ 2 l

S ialp—x)(p— (x+ )]+ (2p— (k +./))(/< ~ = b} + AP — &) +Lw= 2N
9). (uiwy) (e jug) = —[(inay ) (ugray) + (i ) ()|, 16 1< i< j < k<1< p.
Other products are zcro.

Let w: A — F, defined by w(e) = 1; o(u;) = w(v;) = 0, for i = 1,2,...,r and j =

1,2,...,5. As in Lemma 2, in order to show that (A, ) is Bernstein we will use Theorem
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3.4.8 of [6]. Let U = (uy,u,...,u,) and V = (vy,v2,...,vy), then:
NP =um;| 1<t jL = (uiuj | 1 <i<j<p)=(vi,v2,...,vs) =V, according to

(2);

2) UV =U? = ((uuj)ug | 1 <i,j,k <r) = (upi1,upi2,....ux) C U, according to items
(3), (4) and (5) whcrc K = min{ 3p(p +2),p+t};
3) V2= (U*)? = ((uiu;) () | 1 < iy jokyd < F) = (i1, Ui,y -y Upss) C U, by items
)

(6), (7) and ( ). We remark that if k = p+ ¢, then V2 = 0.

Morcover, as UV and V? are included in (Upt1,Upy2. .. Upyr), then U(UV) =
(UV)? =UV?* =0, because uu; =0 for every i or j > p+ 1. Letx = oe+u+v € A,
where v = Y, ou; and v = ¥ Bjv;, with o, 0,,B; € F, for every i, j. From (1)
and from the commutativity of the product we have x* = o?e + (0w + 2uv + v?) + 12,
where ow + 2uv +Vv? € U+ UV +V? =U and v* € U? = V. 1t remains to show that
the identitics (3) are valid. The identities u(uv) = (uv)’> = w* = 0 arc immediate,
because U(UV) = (UV)? = UV? =0. Let u= 3,0 € U, with a,...,0, € F.

By the rulcs of the product, it is enough to consider wu = f’:l oud;. We have
w = e ,oc u? + 2%\ <icjepOi0uitt,  because the product is commutative. Firstly
we show that «? = 0. Using (3), (4) and (5), we have: o’ =37 30 ofovuiu; +

) 2 2 P 3.3 2 2
2% <icjcp T 00O (Uit )k = Fi<icj<p OOt U + 2 O U + Di<jeicp O O U

+2(21 Ci<j< ,,(0( o (wju j)u; + oo (u uju;)+ i<ic j< < Z 040t Ok (1 u,)u,\>

\,./
k#ij

= 2i<ici 2oy iy + 00Uy — OPOUy i — 0O i +
- 1<i<j<p \ Yi %l (i) %o, (i) i XiHp(i)) i1y (i)

p
Zlii/jfp Z ai@/ak(”i”j)uk

k=1

N~

ki, j
= 7—(21 < keic j< p OOk Ok (it ;) U + X< jeke p OO Ok (Ut )1t ¥

Zl/i(k//‘/p (xia/ak(“i“j)“k)
=23 1<icj<k<p (a,-(xka,‘uz;z(,-\/,k) + OO Ol s, (i j k) — 0 0L Ot (245, (i, ) + ”5z(i~ka))> =0.

2 2
Finally, we have: (#°)? = ( L0202 + 23 < i p CLiOLUiU > = ( AT ) +

)

43 cicjcp Ty 0002 (uiu;)uf + 4(2,« i<j<p a,-op,-u,»u,) = 0, because, according to (6),

we have: (Zf’ l(x/zu,z>2 =P oV + 2 Ticics I,(X 0(‘11, u =43 <icj< ,,OL?(XZHT( )
From (7) it follows: 4%, ;- , ¥} | O4OL 0 (utd ) uy
= 4(2,. bk »/-,4,,(x,»(xj(x%(z,l,-u_,-)u,%flr il ,~(_._,\.,,,;,,(x,a_/(xlz\,(u,-u_,-)u,% +
Y <ic j<k /,(x,(x,(xf(zl,zl,)zf,f>
X(ZI' i< jke p (O OOty ;. k) + OO Ok, i 4y + (Xi“/“f”nu,;m)l

5

And using (6), (7) and (8) we obtain: 4(2,.7,_ A l,(x,-(x,»u,-u,'y =
42|4 i< I,(X,Z(Xﬁ(ll,'ll,')2+
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8

Z o0t 0 0 (wjna ) (ugay ) = ‘42151<j§;)0‘1'2a

1<i<j<pl<k<l<p
——
(i,))<(k.0)

+8%1<icjck<p <(x,.20(_,-0(k(u,»u_,-)(u,-uU + (x,'afak(u,»u,-)(u,-uk) + a,oc»,»ocf (u,-u/\.)(u,-u/\.)>

2

(i)

+8 X 1<ic jckei< p Oi0L OOl ((u,u_,-) (ugray) + (wing) (ujug) + (i) (ur,-u;\.)>

2 2
8 i<icj<k<p (06,' OOy, (i j k) OGO Olklin, (i j k)

2
42 <ic jep OO

2
O OL; Ol (i._j,k))

F8X )< jcker< p OLOL Ok O ("m (jokd) T Yo iy kot — (o (i k) + 1102(1\/"*»/))) .

<up+ LUpt2s - “p+l>7

2
7 Ui )

e

exceptional of type (1 + r,s) and subtype (,s).
The next example exhibits a Bernstein algebra of type (1444, 10) and subtype (40, 10),
constructed according to Theorem 3 for the triple (44,10, 40).

It follows that (A,m) is Bernstein with U, = U and V, = V. As UV, + V2
U2 = (v,v2,..,vs) = Vo # 0 and U,(U,V,) = 0, then A is

]=
U

Example 2 Let A = Fe b U@V, withU = (uy,uy....;usa), V = (vi,v2,...,v10), and multi-
plication table in N = U @& V' given by the following table:

Table of U?
uy Uy Uz Uy Us Us U7 U U9 Ul ... U U3 Ugq

Uuj Vi V2 V3 V4

u | v2 vs Ve V7

u3 V3 Ve 143 Vo

Uy Vg V7 V9 Vo

Us

Ug3

Ugs

Table of UV + V?
V] V2 V3 V4 Vs Vo V7 Vg Vg V1o
U —Us —ug —uy 2ug Uy ny 2uy Uy 2ujo
iy 2us —ug Uy — U —U)3— U —uy7 —uyg  2up9 uyy  2uyo
uy | 2ug up) —ug  —ups—uye  2up7 —ulg  —ux —up —uy3  2ug
Uy 2147 U3 ups —Uujp 2ll|x uy) —Uun( 21/3_; —U24
Us
Hag
Vi 21/25 2!43[ 2u3y 2112(, 2u3y 2uy7
V) — 15 —u3) —U3q4 —u3y —u3s 22Uy ugy U3
V3 — U3 —Ue —Uu3yy 2u 32 “U33 Ugq uig 2u39
V4 — 34 —u3y —uy1  2u3s Ug3 — Ugq ~u3y, 238 139
vs | 2uos 2u3y 2u3s 2ug 2ugy 29
Ve 21!}] u3) ~U33 U3 — Ugy Uz Uy Uy 2[!.;)
V7 211}4 Uuszs [ZEVY —U3e Uyq() U9 2!1“ ZEw
vy 21!3(, 21/}3 2[133 21/3}( 211.” 2u 30
V9 211;'/ Ugs —U3g U39 2)44() Ug) Uy U3
V10 2113'/ 2141(, 2u39 2!43() 21!42 2u3
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