

THE CONCEPT OF SUBTYPE IN BERNSTEIN ALGEBRAS

R. Costa^{1*} and **N. Bezerra**^{2†}

¹Instituto de Matemática e Estatística, Universidade de São Paulo
 Caixa Postal 66281 – Agência Cidade de São Paulo,
 05315-970 – São Paulo – Brazil

²Centro de Ciências Exatas e Naturais, Universidade Federal do Pará
 Campus do Guamá, 66075-000 – Belém – Brazil

Abstract

Given a Bernstein algebra $\mathbf{A} = Fe \oplus U \oplus V$, the ordered pairs of integers $(1 + \dim U, \dim V)$ and $(\dim(UV + V^2), \dim U^2)$ are called, respectively, the type and the subtype of \mathbf{A} . It is well known that given integers $r, s \geq 0$ there exists a Bernstein algebra of type $(1 + r, s)$. The similar question for subtypes has no simple answer. In this paper, we generalize the well known concept of exceptional Bernstein algebra ($U^2 = 0$) introducing n -exceptionality. In this context, we study under which conditions, given a quadruple of non negative integers (r, s, t, z) there exists an n -exceptional algebra of type $(1 + r, s)$ and subtype (t, z) . Results are obtained for the cases 0-exceptional and 1-exceptional.

1. Introduction

A Bernstein algebra over a field F is a pair (\mathbf{A}, ω) , where \mathbf{A} is a commutative (not necessarily associative) F -algebra and $\omega : \mathbf{A} \rightarrow F$ is a nonzero algebra homomorphism that satisfies

$$(x^2)^2 = \omega(x)^2 x^2 \quad (1)$$

for every $x \in \mathbf{A}$.

From (1) it follows that $N := \ker \omega$ is nil and thus ω , called the weight homomorphism, is uniquely determined. Every Bernstein algebra possesses at least one nonzero idempotent. If F is a field of characteristic not 2, then for every nonzero idempotent e , \mathbf{A} has a Peirce decomposition relative to e , $\mathbf{A} = Fe \oplus U_e \oplus V_e$, where $U_e = \{x \in \mathbf{A} \mid 2ex = x\}$, $V_e = \{x \in \mathbf{A} \mid ex = 0\}$ and $N = U_e \oplus V_e$.

The Peirce subspaces U_e and V_e (relative to the idempotent e) satisfy the relations

$$U_e^2 \subseteq V_e, \quad U_e V_e \subseteq U_e, \quad V_e^2 \subseteq U_e \quad (2)$$

*E-mail address: reosta@ime.usp.br. Sponsored by CNPq, Research Fellowship Proc. 300645/93-7

†E-mail address: nbezerra@ufpa.br. Sponsored by UFPa

and also the following identities hold for all $u \in U_e$ and $v \in V_e$:

$$u^3 = 0, \quad uv^2 = 0, \quad u(uv) = 0, \quad (uv)^2 = 0, \quad (u^2)^2 = 0. \quad (3)$$

By linearizations of (3), we obtain the following identities for all $u, u_1, u_2, u_3 \in U_e$, $v, v_1, v_2 \in V_e$:

$$u_1^2 u_2 + 2u_1(u_1 u_2) = 0, \quad (4)$$

$$u_1(u_2 u_3) + u_2(u_1 u_3) + u_3(u_1 u_2) = 0, \quad (5)$$

$$u(v_1 v_2) = 0, \quad (6)$$

$$u_1(u_2 v) + u_2(u_1 v) = 0, \quad (7)$$

$$(u_1 v)(u_2 v) = 0, \quad (8)$$

$$(u v_1)(u v_2) = 0, \quad (9)$$

$$(u_1 u_2)(v_1 v_2) = 0. \quad (10)$$

Also for all $x \in N = U_e \oplus V_e$

$$(x^2)^2 = 0 \quad (11)$$

We will use also the following linearized form of this identity:

$$x_1^2(x_1 x_2) = 0, \quad (12)$$

$$x_1^2(x_2 x_3) + 2(x_1 x_2)(x_1 x_3) = 0, \quad (13)$$

$$(x_1 x_2)(x_3 x_4) + (x_1 x_3)(x_2 x_4) + (x_1 x_4)(x_2 x_3) = 0, \quad (14)$$

for all $x_1, x_2, x_3, x_4 \in N$.

In this paper, F is a field with $\text{car}(F) \neq 2, 3$ and \mathbf{A} a finite dimensional Bernstein algebra over F . If e is any idempotent of \mathbf{A} , $\text{Ip}(\mathbf{A}) = \{e + u + u^2 \mid u \in U_e\}$ is the set of nonzero idempotents of \mathbf{A} . For any idempotent $f = e + u_0 + u_0^2$ ($u_0 \in U_e$) the mappings $\sigma : U_e \rightarrow U_f$, $\tau : V_e \rightarrow V_f$ defined by $\sigma(u) = u + 2u_0u$ and $\tau(v) = v - 2u_0v - 2u_0^2v$ are isomorphisms of vectors spaces. Thus $U_f = \{u + 2u_0u \mid u \in U_e\}$ and $V_f = \{v - 2u_0v - 2u_0^2v \mid v \in V_e\}$. It follows that the dimensions of U_e and V_e do not depend on the idempotent e . The ordered pair $(1 + \dim U_e, \dim V_e)$ is called the *type* of A .

A Bernstein algebra \mathbf{A} is said Jordan-Bernstein if is also Jordan, that is, it satisfies $x^2(yx) = (x^2y)x$ for all x, y in \mathbf{A} . In [5] it is proved that $\mathbf{A} = Fe \oplus U_e \oplus V_e$ is Jordan-Bernstein if and only if $V_e^2 = 0$ and $(uv)v = 0$, for all $u \in U_e, v \in V_e$. Let $\mathbf{A} = Fe \oplus U_e \oplus V_e$ be a Peirce decomposition of a Bernstein algebra \mathbf{A} . The set $L = \{x \in U_e \mid xu = 0 \text{ for all } u \in U_e\}$ is an ideal of \mathbf{A} contained in U_e , which is independent on the idempotent and the quotient algebra $(\bar{\mathbf{A}}, \bar{\omega})$, where $\bar{\mathbf{A}} = \mathbf{A}/L$ and $\bar{\omega}(a + L) = \omega(a)$, for all $a \in \mathbf{A}$, is Jordan-Bernstein. In the Peirce decomposition $\bar{\mathbf{A}} = F\bar{e} \oplus U_{\bar{e}} \oplus V_{\bar{e}}$ relative to the idempotent $\bar{e} = e + L$, we have $U_{\bar{e}} = \bar{U}_e := U_e/L$ and $V_{\bar{e}} = \bar{V}_e := (V_e + L)/L$. For a subspace X of a Bernstein \mathbf{A} , we will denote by \bar{X} the quotient $(X + L)/L$. All these facts are well known and can be found in [6], [8] and [9].

If X and Y are subspaces of a Bernstein algebra \mathbf{A} , we define $XY^{(0)} = X$ and $XY^{(k)} = (XY^{(k-1)})Y$, k integer ≥ 1 , where $XY = \langle xy \mid x \in X, y \in Y \rangle$. For $a \in \mathbf{A}$, we write simply aX in place of $\langle a \rangle X$.

A Bernstein algebra $\mathbf{A} = Fe \oplus U_e \oplus V_e$ is said to be *normal* if $U_e V_e + V_e^2 = 0$ and is said to be *exceptional* if $U_e^2 = 0$, for some idempotent e . The algebra \mathbf{A} is called *nuclear* if $U_e^2 = V_e$. These definitions do not depend on the choice of the idempotent element. It is known also that $\dim(U_e V_e + V_e^2)$ and $\dim U_e^2$ are invariant under change of the idempotent (see [7]). We will use the dimensions of these subspaces to define the *subtype* of a Bernstein algebra.

Definition 1 Given a Bernstein algebra $\mathbf{A} = Fe \oplus U_e \oplus V_e$, the ordered pair of integers $(\dim(U_e V_e + V_e^2), \dim U_e^2)$ will be called the *subtype* of \mathbf{A} .

Given non negative integers r and s there exists a Bernstein algebra of type $(1+r, s)$. It is enough to consider a trivial Bernstein algebra $\mathbf{A} = Fe \oplus U_e \oplus V_e$ with $\dim U_e = r$ and $\dim V_e = s$ (see [9]). But this does not hold for the subtype. In this paper we try to determine the conditions satisfied by a quadruple of non negative integers (r, s, t, z) such that there exists a Bernstein algebra of type $(1+r, s)$ and subtype (t, z) . The study is made using as a tool the degree of exceptionality of the algebra.

If $\mathbf{A} = Fe \oplus U_e \oplus V_e$ is Bernstein, from (2), it follows that $U_e V_e + V_e^2 \subseteq U_e$ and $U_e^2 \subseteq V_e$, furthermore as \mathbf{A} is commutative, $\dim(U_e V_e + V_e^2) \leq r$ and $\dim U_e^2 \leq \min\{\frac{1}{2}r(r+1), s\}$. Moreover if $r = 0$ or $s = 0$ then $U_e V_e = V_e^2 = U_e^2 = 0$, thus the only possible subtype for \mathbf{A} is $(0, 0)$. Therefore we consider only quadruples of integers (r, s, t, z) with $r \geq 1$, $s \geq 1$, $0 \leq t \leq r$ and $0 \leq z \leq \min\{\frac{1}{2}r(r+1), s\}$. Unless necessary, we omit the subscript e in U_e and V_e .

2. *n*-exceptionality

In this section we generalize the concept of exceptional algebra introducing the *n*-exceptionality. This will be made using the subspaces of the chain

$$U^2 \supseteq U(UV) \supseteq U((UV)V) \supseteq \dots \supseteq U(UV^{(k)}) \supseteq U(UV^{(k+1)}) \supseteq \dots$$

which have invariant dimension under change of the idempotent.

Definition 2 A Bernstein algebra $\mathbf{A} = Fe \oplus U_e \oplus V_e$ is called *exceptional of degree n*, or *n-exceptional*, if n is the least non negative integer such that the subspace $U_e(U_e V_e^{(n)}) = 0$, for some $e \in \text{Ip}(\mathbf{A})$. The integer n will be called the *degree of exceptionality* of \mathbf{A} .

It was proved in [4, Cor. 4] that every subspace of a Bernstein algebra $\mathbf{A} = Fe \oplus U \oplus V$ contained in V , has invariant dimension under change of the idempotent. Thus this definition does not depend of the idempotent, since for every integer $n \geq 0$, $U(UV^{(n)}) \subseteq V$. Note that the 0-exceptional algebras, such that $U^2 = 0$, are just exceptional.

For every element x of an arbitrary algebra \mathbf{A} , R_x denotes the right multiplication by x , that is, $R_x(a) = ax$, for all $a \in \mathbf{A}$.

Lemma 1 *In a Bernstein algebra $\mathbf{A} = Fe \oplus U \oplus V$ for every $u \in U, v, v_i \in V$ ($i = 1, 2, \dots$) and for every integer $k \geq 2$ we have:*

- (i) $R_v^k(u) \in L$;
- (ii) $\sum_{\sigma \in S_k} R_{v_{\sigma(1)}} R_{v_{\sigma(2)}} \dots R_{v_{\sigma(k)}}(u) \in L$, where S_k is the symmetric group of degree k ;
- (iii) $R_{v_1} R_{v_k} R_{v_{k-1}} \dots R_{v_2} R_{v_1}(u) \in L$.

Proof. From (2) it follows that $UV^{(k)} \subseteq U$ for every integer $k \geq 0$. If $u_1 \in U$ then by (7) and (8), $u_1((uv)v) = -(uv)(u_1v) = 0$. Thus (i) is true for $k = 2$. If $R_v^k(u) = l \in L$, for some $k \geq 2$, then $R_v^{k+1}(u) = R_v(R_v^k(u)) = lv \in L$. By means of consecutive linearizations of $R_v^k(u)$ in v , we obtain (ii). From (ii), for every $u \in U, v_1, v_2 \in V$, there is $l \in L$, such that

$$(uv_2)v_1 = l - (uv_1)v_2 \quad (15)$$

In particular, taking u as uv_1 and using (i), we have $((uv_1)v_2)v_1 = l - ((uv_1)v_1)v_2 \in L$. Therefore (iii) is true for $k = 2$. If $((\dots((uv_1)v_2)\dots)v_k)v_1 = l' \in L$, for some $k \geq 2$, using (15) with u as $(\dots((uv_1)v_2)\dots)v_k$ and v_2 as v_{k+1} , we have $R_{v_1} R_{v_{k+1}} R_{v_k} \dots R_{v_2} R_{v_1}(u) = ((\dots((uv_1)v_2)\dots)v_k)v_{k+1})v_1 = l - (((\dots((uv_1)v_2)\dots)v_k)v_1)v_{k+1})v_{k+1} = l - l'v_{k+1} \in L$. \square

Theorem 1 *Every Bernstein algebra of type $(1+r,s)$ is n -exceptional for some integer n , with $0 \leq n \leq s+1$.*

Proof. Let $\mathbf{A} = Fe \oplus U \oplus V$ be Bernstein of type $(1+r,s)$. Initially we show that $UV^{(s+k)} \subseteq L$, for every integer $k \geq 1$. If $r = 0$ or $s = 0$, this is obviously true. Let us assume $r, s \geq 1$. Let $\{u_1, u_2, \dots, u_r\}$ and let $\{v_1, v_2, \dots, v_s\}$ be a basis of U and V , respectively. Then $UV^{(s+1)} = \langle \langle \dots \langle ((u_i v_{j_1}) v_{j_2}) \dots v_{j_s}) v_{j_{s+1}} \mid 1 \leq i \leq r, 1 \leq j_1, j_2, \dots, j_s, j_{s+1} \leq s \rangle \rangle$. Let us show that every spanning of $UV^{(s+1)}$ is an element of L . As $1 \leq j_1, j_2, \dots, j_s, j_{s+1} \leq s$, there exist j_k and j_l , with $1 \leq k < l \leq s+1$, such that $j_k = j_l$. By Lemma 1, item (iii) we have:

$$\begin{aligned} & \langle \langle \dots \langle \dots \langle ((u_i v_{j_1}) v_{j_2}) \dots v_{j_{k-1}}) v_{j_k}) v_{j_{k+1}} \dots v_{j_l}) v_{j_{l+1}} \dots v_{j_s}) v_{j_{s+1}} = \\ & \langle \langle \dots \langle \dots \langle (u' v_{j_k}) v_{j_{k+1}}) \dots v_{j_l}) v_{j_{l+1}} \dots v_{j_s}) v_{j_{s+1}} = \langle \dots (l' v_{j_{l+1}}) \dots v_{j_s}) v_{j_{s+1}} \in L, \end{aligned}$$

where $u' = (\dots((u_i v_{j_1}) v_{j_2}) \dots v_{j_{k-1}}) \in U$ and $l' = (\dots((u' v_{j_k}) v_{j_{k+1}}) \dots v_{j_l}) \in L$. Therefore $UV^{(s+1)} \subseteq L$ and consequently $UV^{(s+k)} \subseteq L$, for every integer $k \geq 1$, since L is an ideal. It follows now that $U(UV^{(n)}) = 0$, for some not negative integer $n \leq s+1$. \square

3. On the Subspace $UV + V^2$

In this section we calculate an upper bound for the dimension of the subspace $UV + V^2$ in algebras with degree of exceptionality ≤ 1 .

Throughout this paper, we denote by $R : \mathbb{Z}_+ \rightarrow \mathbb{R}$ and $\lceil \cdot \rceil : \mathbb{R} \rightarrow \mathbb{Z}$ the mappings defined by $R(z) = \frac{1}{2}(-1 + \sqrt{1 + 8z})$ and $\lceil x \rceil = n$, where $n - 1 < x \leq n$ and n is an integer.

Proposition 1 *If $\mathbf{A} = Fe \oplus U_e \oplus V_e$ is Bernstein of type $(1+r,s)$ with $r,s \geq 1$, then $\dim L \leq r - \lceil R(\dim U_e^2) \rceil$, R and $\lceil \cdot \rceil$ as previously defined.*

Proof. Let M_e be a subspace of U_e complementary of L , that is, $U_e = M_e \oplus L$. As the dimensions of U_e and L are invariant under change of the idempotent, the dimension of M_e also is invariant. Moreover, $U_e^2 = M_e^2$. Let $z = \dim U_e^2$ and $k = \dim M_e$. Then

$z = \dim U_e^2 = \dim M_e^2 \leq \frac{1}{2}k(k+1)$. Thus k satisfies the inequality $k^2 + k - 2z \geq 0$. As k is a not negative integer and less than or equal to r , it follows that $[R(z), r] \cap \mathbb{Z}$ contains the possible solutions for $\dim M_e$, that is, $[R(z)] \leq \dim M_e \leq r$ and therefore $\dim L \leq r - [R(\dim U_e^2)]$. \square

The next step will calculate some upper bound to the dimension of the subspace $UV + V^2$.

Proposition 2 *If $\mathbf{A} = Fe \oplus U \oplus V$ is an n -exceptional Bernstein algebra of type $(1+r,s)$ with $n \leq 1$, then $(UV + V^2) \subseteq L$.*

Proof. As $n \leq 1$, then $UV \subseteq L$ and by identity (6) it follows that $V^2 \subseteq L$. Therefore $UV + V^2 \subseteq L$. \square

Corollary 1 *If $\mathbf{A} = Fe \oplus U \oplus V$ is an n -exceptional Bernstein algebra of type $(1+r,s)$ with $n \leq 1$, then $\dim(UV + V^2) \leq r - [R(\dim U^2)]$.*

The case exceptional is immediate. Given integers (r,s,t) with $r \geq 1$, $s = t = 0$ or $s \geq 1$ and $0 \leq t \leq r$, is known that is possible construct an exceptional Bernstein algebra $\mathbf{A} = Fe \oplus U \oplus V$ of type $(1+r,s)$ and subtype $(t,0)$ defining freely the products, with the condition that the UV and V^2 lie in U .

4. Subtypes of 1-exceptional Algebras

In the study of 1-exceptional algebras let us consider firstly the case in which such algebras are non nuclear.

4.1. Non Nuclear 1-exceptional Algebras

The next lemma shows that there exists non nuclear 1-exceptional Bernstein algebra where the dimension of $UV + V^2$ can reach the upper bound given in Corollary 1.

Lemma 2 *Given integers (r,s,t,z) with $r \geq 1$, $s \geq 2$, $1 \leq z \leq \min\{\frac{1}{2}r(r+1), s-1\}$ and $0 \leq t \leq r - [R(z)]$ there exists a non nuclear 1-exceptional Bernstein algebra of type $(1+r,s)$ and subtype (t,z) .*

Proof. The proof is an algorithm to construct such algebra. Let $k = [R(z)]$ and let \mathbf{A} the F -vector space of dimension $1+r+s$ spanned by $\{e, u_1, \dots, u_r, v_1, \dots, v_s\}$. We define in \mathbf{A} the commutative product given by:

- (1) $e^2 = e$; $2eu_i = u_i$; $ev_j = 0$; $(i = 1, 2, \dots, r \text{ and } j = 1, 2, \dots, s)$;
- (2) $u_iu_j = v_{\varepsilon(i,j)}$, if $1 \leq i \leq j \leq k$ and $\varepsilon(i,j) \leq z$, where $\varepsilon(i,j) = \frac{1}{2}(2k-i)(i-1) + j$;
- (3) $u_i v_s = u_i$, if $k+1 \leq i \leq k+t$. The other products are zero.

Let $\omega : \mathbf{A} \rightarrow F$ defined by $\omega(e) = 1$ and $\omega(u_i) = \omega(v_j) = 0$ on the other elements of the basis. Then $\mathbf{A} = Fe \oplus U \oplus V$, where $U = \langle u_1, u_2, \dots, u_r \rangle$ and $V = \langle v_1, v_2, \dots, v_s \rangle$. From (1) to (3) above, it follows that $U^2 = \langle v_1, \dots, v_z \rangle \subseteq \langle v_1, v_2, \dots, v_{s-1} \rangle \not\subseteq V$; $UV = \langle u_{k+1}, u_{k+2}, \dots, u_{k+t} \rangle \subseteq U$ and $V^2 = 0$. Moreover, $U(UV) = \langle u_i u_j \mid 1 \leq i \leq r, k+1 \leq j \leq s \rangle$.

$j \leq k+t \rangle = 0$, since $u_i u_j = 0$, for all i or $j \geq k+1$. Let $x = \omega(x)e + u + v \in \mathbf{A}$, where $u = \sum_{i=1}^r \alpha_i u_i$ and $v = \sum_{j=1}^s \beta_j v_j$, with $\alpha_1, \dots, \alpha_r, \beta_1, \dots, \beta_s \in F$. By (1) and commutativity of the product we have $x^2 = \omega(x)^2 e + \omega(x)u + u^2 + 2uv + v^2$, with $\omega(x)u + 2uv + v^2 \in U + UV + V^2 = U \oplus u^2 \in U^2 \subseteq V$. Moreover, for any $u \in U$ e $v \in V$, we have: $u^3 \in U^3 \subseteq U \langle v_1, v_2, \dots, v_z \rangle = 0$; $u(uv) \in U(UV) = 0$; $uv^2 \in UV^2 = 0$; $(u^2)^2 \in (U^2)^2 \subseteq V^2 = 0$; and $(uv)^2 \in (UV)^2 \subseteq U(UV) = 0$. By Theorem 3.4.8 of [6], it follows that (\mathbf{A}, ω) is a Bernstein algebra with $U_e = U$ and $V_e = V$. For every idempotent f , $\dim U_f^2 = \dim U_e^2 = z \neq 0$ and $\dim(U_f V_f + V_f^2) = \dim(U_e V_e + V_e^2) = \dim U_e V_e = t$. Therefore \mathbf{A} is 1-exceptional of type $(1+r, s)$ and subtype (t, z) . \square

Theorem 2 *Given integers (r, s, t, z) , there exists a non nuclear 1-exceptional Bernstein algebra of type $(1+r, s)$ and subtype (t, z) if and only if $r \geq 1$, $s \geq 2$, $1 \leq z \leq \min\{\frac{1}{2}r(r+1), s-1\}$ and $0 \leq t \leq r - [R(z)]$.*

Proof. Follows from Corollary 1 and Lemma 2. \square

The next example exhibits a non nuclear 1-exceptional Bernstein algebra as shown in Lemma 2 for the quadruple $(8, 9, 4, 8)$.

Example 1 Let $\mathbf{A} = Fe \oplus U \oplus V$ be the Bernstein algebra with $U = \langle u_1, u_2, \dots, u_8 \rangle$, $V = \langle v_1, v_2, \dots, v_9 \rangle$ and the following nonzero products in $N = U \oplus V$:

$$\begin{aligned} u_1 u_1 &= v_1; & u_1 u_2 &= v_2; & u_1 u_3 &= v_3; & u_1 u_4 &= v_4; & u_2 u_2 &= v_5; & u_2 u_3 &= v_6; \\ u_2 u_4 &= v_7; & u_3 u_3 &= v_8; & u_5 v_9 &= u_5; & u_6 v_9 &= u_6; & u_7 v_9 &= u_7; & u_8 v_9 &= u_8. \end{aligned}$$

4.2. Nuclear 1-exceptional Algebras

In the investigation of nuclear 1-exceptional Bernstein algebras the next proposition will be useful.

Given integers $p \geq 1$ and $k_1, k_2, \dots, k_n \in \{1, 2, \dots, p\}$, all distinct, let $(k_{j_1}, k_{j_2}, \dots, k_{j_n})$ be a sequence of these integers, with $k_{j_1} < k_{j_2} < \dots < k_{j_n}$. Let $o_{k_i}(k_1 k_2 \dots k_i \dots k_n)$ denote the position of k_i in this sequence. With this convention, given $M \subseteq U$, a nonzero subspace of the Bernstein algebra $\mathbf{A} = Fe \oplus U \oplus V$, $\{u_1, u_2, \dots, u_p\}$ an arbitrary basis of M and n_1, n_2, n_3, n_4 distinct integers, we define the following subspaces:

i) For $n_1, n_2, n_3 \in \{1, 2, 3\}$:

$$M_{(n_1 n_2) n_3} = \langle (u_i^2 u_j) u_k \mid 1 \leq i, j, k \leq p; o_i(ijk) = n_1, o_j(ijk) = n_2, o_k(ijk) = n_3 \rangle;$$

$$M_{n_1 (n_2 n_3)} = \langle u_i^2 (u_j u_k) \mid 1 \leq i, j, k \leq p; o_i(ijk) = n_1, o_j(ijk) = n_2, o_k(ijk) = n_3 \rangle;$$

ii) For $n_1, n_2, n_3, n_4 \in \{1, 2, 3, 4\}$:

$$M_{n_1 n_2 n_3 n_4} = \langle (((u_i u_j) u_k) u_l \mid 1 \leq i, j, k, l \leq p; o_i(ijkl) = n_1, o_j(ijkl) = n_2, o_k(ijkl) = n_3, o_l(ijkl) = n_4 \rangle;$$

$$M_{(n_1 n_2) (n_3 n_4)} = \langle (u_i u_j) (u_k u_l) \mid 1 \leq i, j, k, l \leq p; o_i(ijkl) = n_1, o_j(ijkl) = n_2, o_k(ijkl) = n_3, o_l(ijkl) = n_4 \rangle.$$

Proposition 3 *Let $M \subseteq U$ be an arbitrary subspace of the Bernstein algebra $\mathbf{A} = Fe \oplus U \oplus V$ of type $(1+r, s)$ with $r \geq 1$. If $\dim M = p$, then*

- (i) $\dim M^3 \leq \min\{r-1, \frac{1}{3}p(p^2-1)\}$;
- (ii) $\dim M^4 \leq \min\{s, \frac{1}{8}(p-2)(p-1)p(p+1)\}$;
- (iii) $\dim(M^2)^2 \leq \min\{r-1, \frac{1}{12}p^2(p^2-1)\}$.

Proof. If \mathbf{A} is exceptional or $p = 0$, $M^3 = M^4 = (M^2)^2 = 0$ and the proposition is trivially true. Let us to assume that \mathbf{A} is not exceptional and $p \geq 1$. Let $\{u_1, u_2, \dots, u_p\}$ be a basis of M . If $X = \langle u_i^2 \mid 1 \leq i \leq p \rangle$ and $Y = \langle u_i u_j \mid 1 \leq i < j \leq p \rangle$, then $M^3 = M(X + Y)$. By identities (3) and (4) we have $MX = \langle u_i^2 u_j \mid 1 \leq i, j \leq p, i \neq j \rangle$ and $MY = \langle u_i^2 u_j \mid 1 \leq i, j \leq p, i \neq j \rangle + \langle (u_i u_j) u_k \mid 1 \leq i < j \leq p, 1 \leq k \leq p, k \neq i, j \rangle = MX + \langle (u_i u_j) u_k \mid 1 \leq k < i < j \leq p \rangle + \langle (u_i u_j) u_k \mid 1 \leq i < k < j \leq p \rangle + \langle (u_i u_j) u_k \mid 1 \leq i < j < k \leq p \rangle = M_1 + M_2 + M_3 + M_4$, where $M_1 = \langle u_i^2 u_j \mid 1 \leq i, j \leq p, i \neq j \rangle$; $M_2 = \langle (u_i u_j) u_k \mid 1 \leq i < j < k \leq p \rangle$; $M_3 = \langle (u_i u_j) u_k \mid 1 \leq k < i < j \leq p \rangle$ and $M_4 = \langle (u_i u_j) u_k \mid 1 \leq i < k < j \leq p \rangle$. By identity (5), if i, j, k are such that $1 \leq i < k < j \leq p$, then $(u_i u_j) u_k = -(u_i u_k) u_j - (u_k u_j) u_i$. Hence $M_4 \subseteq M_2 + M_3$ and $M^3 = M_1 + M_2 + M_3$. It follows that $\dim M^3 \leq \frac{1}{3}p(p^2 - 1)$. Now, $M^4 = M(M_1 + M_2 + M_3)$, with M_1, M_2 and M_3 as defined above. Using the identities (3), (4), (7) we have: $MM_1 = M_{(12)3} + M_{(31)2} + M_{(21)3}$; $MM_2 = M_{(12)3} + M_{(21)3} + M_{2341} + M_{1342} + M_{1234} + M_{1243}$ and $MM_3 = M_{(23)1} + M_{(32)1} + M_{2413} + M_{2314} + M_{3412} + M_{3421}$. Therefore $M^4 = (M_{(12)3} + M_{(21)3} + M_{(31)2} + M_{(23)1} + M_{(32)1}) + (M_{1234} + M_{1243} + M_{1342} + M_{2341} + M_{2314} + M_{2413} + M_{3412} + M_{3421})$. By identities (5) and (7) and commutativity of the product we have:

$$((u_j u_i) u_k) u_l = ((u_i u_j) u_k) u_l = -((u_i u_j) u_l) u_k = ((u_l u_i) u_j) u_k + ((u_l u_j) u_i) u_k, \quad (16)$$

for all $1 \leq i, j, k, l \leq p$. If follows that $M_{n_1 n_2 n_3 n_4} = M_{n_2 n_1 n_3 n_4} = M_{n_2 n_1 n_4 n_3}$ and $M_{n_1 n_2 n_3 n_4} \subseteq M_{n_4 n_1 n_2 n_3} + M_{n_4 n_2 n_1 n_3}$, for all $1 \leq n_1, n_2, n_3, n_4 \leq 4$. Also from (16), for $i = j$, we obtain $M_{(n_1 n_2) n_3} = M_{(n_1 n_3) n_2}$, for every $1 \leq n_1, n_2, n_3 \leq 3$. Therefore $M^4 = M_{(12)3} + M_{(21)3} + M_{(31)2} + M_{1234} + M_{2314} + M_{3412}$ and thus $\dim M^4 \leq \frac{1}{8}(p-2)(p-1)p(p+1)$. Finally, $(M^2)^2 = (X+Y)^2 = X^2 + XY + Y^2$, X and Y as defined above. Using the identities (11), (12) and (13) we have: $X^2 = \langle u_i^2 u_j^2 \mid 1 \leq i < j \leq p \rangle$, $XY = M_{1(23)} + M_{2(13)} + M_{3(12)}$ and $Y^2 = X^2 + M_{1(23)} + M_{2(13)} + M_{3(12)} + M_{(12)(34)} + M_{(13)(24)} + M_{(14)(23)}$. Therefore $(M^2)^2 = Y^2$. From identity (14), it follows that $(u_i u_j) (u_k u_l) = -(u_i u_k) (u_l u_j) - (u_i u_l) (u_k u_j)$, for every $1 \leq i, j, k, l \leq p$. Thus $M_{(n_1 n_2) (n_3 n_4)} \subseteq M_{(n_1 n_3) (n_4 n_2)} + M_{(n_1 n_4) (n_3 n_2)}$, for every $1 \leq n_1, n_2, n_3, n_4 \leq 4$. In particular, $M_{(14)(23)} \subseteq M_{(12)(34)} + M_{(13)(24)}$. $(M^2)^2 = X^2 + M_{1(23)} + M_{2(13)} + M_{3(12)} + M_{(12)(34)} + M_{(13)(24)}$. Therefore $\dim(M^2)^2 \leq \frac{1}{12}p^2(p^2 - 1)$. Moreover, as $M \subseteq U$ we have from (2) and Proposition 9 of [3] than $M^3 \not\subseteq U$, $M^4 \subseteq V$ and $(M^2)^2 \not\subseteq U$. This ends the proof of (i), (ii) and (iii). \square

We will see in Example 2 that there exists Bernstein algebras such that the upper bound given in (i) and (iii) is reached.

Let $\mathbf{A} = Fe \oplus U \oplus V$ be a 1-exceptional Bernstein algebra of type $(1+r, s)$ and let M be a subspace of \mathbf{A} such that $U = M \oplus L$. If \mathbf{A} is nuclear, then $U^2 = V$, thus $UV + V^2 = U^3 + (U^2)^2 = M^3 + (M^2)^2$. Therefore $\dim(UV + V^2) = \dim(M^3 + (M^2)^2) \leq \dim M^3 + \dim(M^2)^2$. On the other hand, as \mathbf{A} is 1-exceptional by Proposition 2, $\dim(UV + V^2) \leq \dim L = r - \dim M$. By Proposition 1, we might have $\lceil R(s) \rceil \leq \dim M \leq r$. Thus $\dim(UV + V^2) \leq \max\{\min\{r - \dim M, \dim M^3 + \dim(M^2)^2\} \mid \lceil R(s) \rceil \leq \dim M \leq r\}$. If $\dim M = p$ and $\dim M^2 = \frac{1}{2}p(p+1)$, then we can have a Bernstein algebra with $\dim M^3 + \dim(M^2)^2$ as given in Proposition 3 (see Example 2). If $\dim M^2 < \frac{1}{2}p(p+1)$ this may be impossible. We will see this in the next proposition.

Proposition 4 *Let \mathbf{A} be a 1-exceptional Bernstein algebra of type $(1+r, s)$ and subtype (t, s) , with $s \geq 1$. If $r > \frac{1}{12}p((p^2 - 1)(p + 4) + 12)$, where $p = \lceil R(s) \rceil$, then $t < r - \lceil R(s) \rceil$.*

Proof. Let $\mathbf{A} = Fe \oplus U \oplus V$ and let $M \subseteq U$ be such that $U = M \oplus L$. By previous remark, $t \leq \max\{\min\{r - \dim M, \dim M^3 + \dim(M^2)^2\} \mid p \leq \dim M \leq r\}\}$. If $\dim M = p$, by Proposition 3, $\dim M^3 + \dim(M^2)^2 \leq \frac{1}{12}p(p^2 - 1)(p + 4) < r - p$. On the other hand, $\min\{\dim M^3 + \dim(M^2)^2, r - \dim M\} \leq r - \dim M < r - p$, for every M such that $p + 1 \leq \dim M \leq r$. Therefore $t < r - p = r - \lceil R(s) \rceil$. \square

We show, by construction, that there is an 1-exceptional nuclear Bernstein algebra with $\dim(UV + V^2) = \dim U - \lceil R(\dim U^2) \rceil$.

Theorem 3 *For every triple of integers (r, s, t) with $s = \frac{1}{2}p(p + 1)$, for some integer $p \geq 1$, $1 \leq r \leq \frac{1}{3}(s^2 + (p - 2)s + 3p)$ and $0 \leq t \leq r - p$, there exists 1-exceptional Bernstein algebras of type $(1 + r, s)$ and subtype (t, s) .*

Proof. The proof is a construction of a Bernstein algebra satisfies requirements of theorem. Let \mathbf{A} be a vector space over a field F with $\{e, u_1, u_2, \dots, u_r, v_1, v_2, \dots, v_s\}$ a basis of \mathbf{A} . We define in \mathbf{A} the following commutative products:

- (1). $e^2 = e; \quad eu_i = \frac{1}{2}u_i; \quad ev_j = 0 \quad (i = 1, 2, \dots, r; \quad j = 1, \dots, s);$
- (2). $u_i u_j = v_{\epsilon(i, j)}$, if $1 \leq i \leq j \leq p$, where $\epsilon(i, j) = \frac{1}{2}(2p - i)(i - 1) + j$;
- (3). $u_i^2 u_j = -2u_i(u_i u_j) = 2u_{\rho_1(i, j)}$;
 $u_j^2 u_i = -2u_j(u_j u_i) = 2u_{\rho_2(i, j)}$, if $1 \leq i < j \leq p$ and $\rho_w(i, j) \leq p + t$ for $w = 1, 2$,

where

- (4). $u_i u_j u_k = u_{\delta_1(i, j, k)}$;
 $u_j u_k u_i = u_{\delta_2(i, j, k)}$, if $1 \leq i < j < k \leq p$ and $\delta_w(i, j, k) \leq p + t$ for $w = 1, 2$, where
 $\delta_w(i, j, k) = p + \sum_{x=1}^{i-1}[(p - x)(p - (x - 1))] + 2(p - i) + (2p - (i + j))(j - i - 1) + 2(k - j) + (w - 2)$;
- (5). $(u_i u_k) u_j = -[(u_i u_j) u_k + (u_j u_k) u_i]$, if $1 \leq i < j < k \leq p$;
- (6). $u_i^2 u_j^2 = -2(u_i u_j)^2 = 2u_{\tau(i, j)}$, if $1 \leq i < j \leq p$ and $\tau(i, j) \leq p + t$, where
 $\tau(i, j) = \frac{1}{3}p(p^2 + 2) + \frac{1}{2}(2p - i)(i - 1) + (j - i)$;
- (7). $u_i^2 (u_j u_k) = -2(u_i u_j)(u_i u_k) = 2u_{\tau_1(i, j, k)}$;
 $u_j^2 (u_i u_k) = -2(u_i u_j)(u_j u_k) = 2u_{\tau_2(i, j, k)}$;
 $u_k^2 (u_i u_j) = -2(u_i u_k)(u_k u_j) = 2u_{\tau_3(i, j, k)}$;
if $1 \leq i < j < k \leq p$ and $\tau_w(i, j, k) \leq p + t$ for $w = 1, 2, 3$, where
 $\tau_w(i, j, k) = \frac{1}{6}p(2p + 1)(p + 1) + \sum_{x=1}^{i-1} \frac{1}{2}[(p - x)(p - (x + 1))] + \frac{3}{2}(2p - (i + j))(j - i - 1) + 3(k - j) + (w - 3)$;
- (8). $(u_i u_j)(u_k u_l) = u_{\sigma_1(i, j, k, l)}$;
 $(u_i u_k)(u_j u_l) = u_{\sigma_2(i, j, k, l)}$;
if $1 \leq i < j < k < l \leq p$ and $\sigma_w(i, j, k, l) \leq p + t$ for $w = 1, 2$, where
 $\sigma_w(i, j, k, l) = \frac{1}{6}p(5p^2 - 6p + 7) + \sum_{x=1}^{i-1} \frac{1}{3}[(p - x)(p - (x + 1))(p - (x + 2))] + \sum_{x=i+1}^{j-1}[(p - x)(p - (x + 1))] + (2p - (k + j))(k - j - 1) + 2(l - k) + (w - 2)$;
- (9). $(u_i u_l)(u_j u_k) = -[(u_i u_j)(u_k u_l) + (u_i u_k)(u_j u_l)]$, if $1 \leq i < j < k < l \leq p$.

Other products are zero.

Let $\omega : \mathbf{A} \rightarrow F$, defined by $\omega(e) = 1$; $\omega(u_i) = \omega(v_j) = 0$, for $i = 1, 2, \dots, r$ and $j = 1, 2, \dots, s$. As in Lemma 2, in order to show that (\mathbf{A}, ω) is Bernstein we will use Theorem

3.4.8 of [6]. Let $U = \langle u_1, u_2, \dots, u_r \rangle$ and $V = \langle v_1, v_2, \dots, v_s \rangle$, then:

1) $U^2 = \langle u_i u_j \mid 1 \leq i, j \leq r \rangle = \langle u_i u_j \mid 1 \leq i \leq j \leq p \rangle = \langle v_1, v_2, \dots, v_s \rangle = V$, according to (2);

2) $UV = U^3 = \langle (u_i u_j) u_k \mid 1 \leq i, j, k \leq r \rangle = \langle u_{p+1}, u_{p+2}, \dots, u_{\kappa} \rangle \subseteq U$, according to items (3), (4) and (5), where $\kappa = \min\{\frac{1}{3}p(p^2+2), p+t\}$;

3) $V^2 = (U^2)^2 = \langle (u_i u_j)(u_k u_l) \mid 1 \leq i, j, k, l \leq r \rangle = \langle u_{\kappa+1}, u_{\kappa+2}, \dots, u_{p+t} \rangle \subseteq U$, by items (6), (7) and (8). We remark that if $\kappa = p+t$, then $V^2 = 0$.

Moreover, as UV and V^2 are included in $\langle u_{p+1}, u_{p+2}, \dots, u_{p+t} \rangle$, then $U(UV) = (UV)^2 = UV^2 = 0$, because $u_i u_j = 0$ for every i or $j \geq p+1$. Let $x = \alpha e + u + v \in \mathbf{A}$, where $u = \sum_{i=1}^r \alpha_i u_i$ and $v = \sum_{j=1}^s \beta_j v_j$, with $\alpha, \alpha_i, \beta_j \in F$, for every i, j . From (1) and from the commutativity of the product we have $x^2 = \alpha^2 e + (\alpha u + 2uv + v^2) + u^2$, where $\alpha u + 2uv + v^2 \in U + UV + V^2 = U$ and $u^2 \in U^2 = V$. It remains to show that the identities (3) are valid. The identities $u(uv) = (uv)^2 = uv^2 = 0$ are immediate, because $U(UV) = (UV)^2 = UV^2 = 0$. Let $u = \sum_{i=1}^r \alpha_i u_i \in U$, with $\alpha_1, \dots, \alpha_r \in F$. By the rules of the product, it is enough to consider $u = \sum_{i=1}^p \alpha_i u_i$. We have $u^2 = \sum_{i=1}^p \alpha_i^2 u_i^2 + 2 \sum_{1 \leq i < j \leq p} \alpha_i \alpha_j u_i u_j$, because the product is commutative. Firstly we show that $u^3 = 0$. Using (3), (4) and (5), we have: $u^3 = \sum_{i=1}^p \sum_{j=1}^p \alpha_i^2 \alpha_j u_i^2 u_j + \sum_{i=1}^p \alpha_i^3 u_i^3 + \sum_{1 \leq j < i \leq p} \alpha_i^2 \alpha_j u_i^2 u_j + 2 \left(\sum_{1 \leq i < j \leq p} (\alpha_i^2 \alpha_j (u_i u_j) u_i + \alpha_i \alpha_j^2 (u_i u_j) u_j) + \sum_{1 \leq i < j \leq p} \underbrace{\sum_{k=1}^p}_{k \neq i, j} \alpha_i \alpha_j \alpha_k (u_i u_j) u_k \right)$

$$\begin{aligned}
 &= 2 \sum_{1 \leq i < j \leq p} \left(\alpha_i^2 \alpha_j u_{\rho_1(i,j)} + \alpha_i \alpha_j^2 u_{\rho_2(i,j)} - \alpha_i^2 \alpha_j u_{\rho_1(i,j)} - \alpha_i \alpha_j^2 u_{\rho_2(i,j)} \right) + \\
 &\quad \sum_{1 \leq i < j \leq p} \underbrace{\sum_{k=1}^p}_{k \neq i, j} \alpha_i \alpha_j \alpha_k (u_i u_j) u_k \\
 &= 2 \left(\sum_{1 \leq k < i < j \leq p} \alpha_i \alpha_j \alpha_k (u_i u_j) u_k + \sum_{1 \leq i < j < k \leq p} \alpha_i \alpha_j \alpha_k (u_i u_j) u_k + \right. \\
 &\quad \left. \sum_{1 \leq i < k < j \leq p} \alpha_i \alpha_j \alpha_k (u_i u_j) u_k \right) \\
 &= 2 \sum_{1 \leq i < j < k \leq p} \left(\alpha_j \alpha_k \alpha_i u_{\delta_2(i,j,k)} + \alpha_i \alpha_j \alpha_k u_{\delta_1(i,j,k)} - \alpha_i \alpha_j \alpha_k (u_{\delta_1(i,j,k)} + u_{\delta_2(i,j,k)}) \right) = 0.
 \end{aligned}$$

Finally, we have: $(u^2)^2 = \left(\sum_{i=1}^p \alpha_i^2 u_i^2 + 2 \sum_{1 \leq i < j \leq p} \alpha_i \alpha_j u_i u_j \right)^2 = \left(\sum_{i=1}^p \alpha_i^2 u_i^2 \right)^2 + 4 \sum_{1 \leq i < j \leq p} \sum_{k=1}^p \alpha_i \alpha_j \alpha_k^2 (u_i u_j) u_k^2 + 4 \left(\sum_{1 \leq i < j \leq p} \alpha_i \alpha_j u_i u_j \right)^2 = 0$, because, according to (6), we have: $\left(\sum_{i=1}^p \alpha_i^2 u_i^2 \right)^2 = \sum_{i=1}^p \alpha_i^4 (u_i^2)^2 + 2 \sum_{1 \leq i < j \leq p} \alpha_i^2 \alpha_j^2 u_i^2 u_j^2 = 4 \sum_{1 \leq i < j \leq p} \alpha_i^2 \alpha_j^2 u_{\tau(i,j)}$;

From (7) it follows: $4 \sum_{1 \leq i < j \leq p} \sum_{k=1}^p \alpha_i \alpha_j \alpha_k^2 (u_i u_j) u_k^2 = 4 \left(\sum_{1 \leq k < i < j \leq p} \alpha_i \alpha_j \alpha_k^2 (u_i u_j) u_k^2 + \sum_{1 \leq i < j < k \leq p} \alpha_i \alpha_j \alpha_k^2 (u_i u_j) u_k^2 \right) = 8 \left(\sum_{1 \leq i < j < k \leq p} (\alpha_i^2 \alpha_j \alpha_k u_{\tau_1(i,j,k)} + \alpha_i \alpha_j^2 \alpha_k u_{\tau_2(i,j,k)} + \alpha_i \alpha_j \alpha_k^2 u_{\tau_3(i,j,k)}) \right)$;

And using (6), (7) and (8) we obtain: $4 \left(\sum_{1 \leq i < j \leq p} \alpha_i \alpha_j u_i u_j \right)^2 = 4 \sum_{1 \leq i < j \leq p} \alpha_i^2 \alpha_j^2 (u_i u_j)^2 +$

$$\begin{aligned}
& 8 \underbrace{\sum_{1 \leq i < j \leq p} \sum_{\substack{1 \leq k < l \leq p \\ (i,j) < (k,l)}} \alpha_i \alpha_j \alpha_k \alpha_l (u_i u_j) (u_k u_l)}_{-4 \sum_{1 \leq i < j \leq p} \alpha_i^2 \alpha_j^2 u_{\tau(i,j)}} = -4 \sum_{1 \leq i < j \leq p} \alpha_i^2 \alpha_j^2 u_{\tau(i,j)} \\
& + 8 \sum_{1 \leq i < j < k \leq p} \left(\alpha_i^2 \alpha_j \alpha_k (u_i u_j) (u_i u_k) + \alpha_i \alpha_j^2 \alpha_k (u_i u_j) (u_j u_k) + \alpha_i \alpha_j \alpha_k^2 (u_i u_k) (u_j u_k) \right) \\
& + 8 \sum_{1 \leq i < j < k < l \leq p} \alpha_i \alpha_j \alpha_k \alpha_l \left((u_i u_j) (u_k u_l) + (u_i u_k) (u_j u_l) + (u_i u_l) (u_j u_k) \right) \\
& = -4 \sum_{1 \leq i < j \leq p} \alpha_i^2 \alpha_j^2 u_{\tau(i,j)} - 8 \sum_{1 \leq i < j < k \leq p} \left(\alpha_i^2 \alpha_j \alpha_k u_{\tau_1(i,j,k)} + \alpha_i \alpha_j^2 \alpha_k u_{\tau_2(i,j,k)} + \alpha_i \alpha_j \alpha_k^2 u_{\tau_3(i,j,k)} \right) \\
& + 8 \sum_{1 \leq i < j < k < l \leq p} \alpha_i \alpha_j \alpha_k \alpha_l \left(u_{\sigma_1(i,j,k,l)} + u_{\sigma_2(i,j,k,l)} - (u_{\sigma_1(i,j,k,l)} + u_{\sigma_2(i,j,k,l)}) \right).
\end{aligned}$$

It follows that (\mathbf{A}, ω) is Bernstein with $U_e = U$ and $V_e = V$. As $U_e V_e + V_e^2 = \langle u_{p+1}, u_{p+2}, \dots, u_{p+t} \rangle$, $U_e^2 = \langle v_1, v_2, \dots, v_s \rangle = V_e \neq 0$ and $U_e(U_e V_e) = 0$, then \mathbf{A} is 1-exceptional of type $(1+r, s)$ and subtype (t, s) . \square

The next example exhibits a Bernstein algebra of type $(1+44, 10)$ and subtype $(40, 10)$, constructed according to Theorem 3 for the triple $(44, 10, 40)$.

Example 2 Let $\mathbf{A} = Fe \oplus U \oplus V$, with $U = \langle u_1, u_2, \dots, u_{44} \rangle$, $V = \langle v_1, v_2, \dots, v_{10} \rangle$, and multiplication table in $N = U \oplus V$ given by the following table:

Table of U^2

	u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8	u_9	u_{10}	\dots	u_{42}	u_{43}	u_{44}
u_1	v_1	v_2	v_3	v_4										
u_2		v_2	v_5	v_6	v_7									
u_3			v_3	v_6	v_8	v_9								
u_4				v_4	v_7	v_9	v_{10}							
u_5														
\dots														
u_{43}														
u_{44}														

Table of $UV + V^2$

	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9	v_{10}
u_1		$-u_5$	$-u_6$	$-u_7$	$2u_8$	u_{12}	u_{14}	$2u_9$	u_{16}	$2u_{10}$
u_2	$2u_5$	$-u_8$	$-u_{11} - u_{12}$	$-u_{13} - u_{14}$		$-u_{17}$	$-u_{18}$	$2u_{19}$	u_{22}	$2u_{20}$
u_3	$2u_6$	u_{11}	$-u_9$	$-u_{15} - u_{16}$	$2u_{17}$	$-u_{19}$	$-u_{21} - u_{22}$		$-u_{23}$	$2u_{24}$
u_4	$2u_7$	u_{13}	u_{15}	$-u_{10}$	$2u_{18}$	u_{21}	$-u_{20}$	$2u_{23}$	$-u_{24}$	
u_5										
\dots										
u_{44}										
v_1				$2u_{25}$	$2u_{31}$	$2u_{34}$	$2u_{26}$	$2u_{37}$	$2u_{27}$	
v_2		$-u_{25}$	$-u_{31}$	$-u_{34}$	$-u_{32}$	$-u_{35}$	$2u_{33}$	u_{43}	$2u_{36}$	
v_3		$-u_{31}$	$-u_{26}$	$-u_{37}$	$2u_{32}$	$-u_{33}$	u_{44}	$-u_{38}$	$2u_{39}$	
v_4		$-u_{34}$	$-u_{37}$	$-u_{27}$	$2u_{35}$	$-u_{43} - u_{44}$	$-u_{36}$	$2u_{38}$	$-u_{39}$	
v_5	$2u_{25}$		$2u_{32}$	$2u_{35}$				$2u_{28}$	$2u_{40}$	$2u_{29}$
v_6	$2u_{31}$	$-u_{32}$	$-u_{33}$	$-u_{43} - u_{44}$		$-u_{28}$	$-u_{40}$	$-u_{41}$	$2u_{42}$	
v_7	$2u_{34}$	$-u_{35}$	u_{44}	$-u_{36}$		$-u_{40}$	$-u_{29}$	$2u_{41}$	$-u_{42}$	
v_8	$2u_{26}$	$2u_{33}$		$2u_{38}$	$2u_{28}$		$2u_{41}$			$2u_{30}$
v_9	$2u_{37}$	u_{43}	$-u_{38}$	$-u_{39}$	$2u_{40}$	$-u_{41}$	$-u_{42}$		$-u_{30}$	
v_{10}	$2u_{27}$	$2u_{36}$	$2u_{39}$		$2u_{29}$	$2u_{42}$		$2u_{30}$		

References

- [1] Bezerra, M.N.C. *Sobre os subtipos nas álgebras de Bernstein*, PhD Thesis, Instituto de Matemática e Estatística da Universidade de São Paulo (2003).
- [2] Costa, R.; Ikemoto, L. S. On the multiplication algebra of a Bernstein algebra, *Comm. Algebra* **26** (11), 3727-3736 (1998).
- [3] Costa, R.; Ikemoto, L. S. Two numerical invariants for Bernstein algebras, *Comm. Algebra* **29** (11), 5261-5278 (2001).
- [4] Costa, R.; Picanço, J. Invariance of dimension of P-subspaces in Bernstein algebras, *Comm. Algebra* **27** (8), 4039 – 4055 (1999).
- [5] González, S.; Martínez, C. Idempotent elements in a Bernstein algebra, *J. London Math. Soc.* **(2)** 42, 430 – 436 (1990).
- [6] Lyubich, Y.I. Mathematical Structures in Population Genetics, *Biomathematics* **22**, Springer-Verlag Berlin, Heidelberg (1992).
- [7] Wörz-Busekros, A. *Algebras in Genetics, Lectures Notes in Biomathematics*, **36**, Springer-Verlag, Berlin-Heidelberg (1980).
- [8] Wörz-Busekros, A. Bernstein algebras, *Arch. Math.*, **48**, 388 – 398, (1987).
- [9] Wörz-Busekros, A. Further remarks on Bernstein algebras, *J. London Math. Soc.* **(3)** 58, 69 – 73 (1989).