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Abstract. The critical properties of the stochastic susceptible-exposed-infected
model on a square lattice is studied by numerical simulations and by the use of
scaling relations. In the presence of an infected individual, a susceptible becomes
either infected or exposed. Once infected or exposed, the individual remains
forever in this state. The stationary properties are shown to be the same as
those of isotropic percolation so that the critical behavior puts the model into
the universality class of dynamic percolation.
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1. Introduction

Spatio-temporal structures as well as fluctuations are essential features of epidemic
spreading [1-4]. A description of epidemic spreading that takes into account these essential
features is provided by stochastic lattice models [5-16] in which each site of a lattice
is occupied by an individual that can be in one of a certain number of states. In the
susceptible-infected-recovered (SIR) model [13-15], an important model in this context,
the possible states are susceptible (S), infected (I) or recovered (R). The SIR model is
composed by two processes. One in which a susceptible becomes infected by a catalytic
reaction, S+1 — I+1, and another in which an infected becomes recovered spontaneously,
I — R. Another model, the one that will be the object our study here, is the susceptible-
exposed-infected (SEI), introduced by Tomé and de Oliveira [15], in which each individual
can be susceptible (S), exposed (E) or infected (I). This model has also two processes. In
the presence of an infected individual, a susceptible individual may become either infected
or exposed, processes represented by the reactions S+ 1 — I +Tand S+1 — E 4+ 1,
respectively.

The distinguish features of these two models are as follows. The spreading of the
epidemic occurs as long as there are active sites, which are the sites occupied by
a susceptible individual next to an infected individual. When the active sites have
disappeared, the infection reaction S+ 1 — I+ I no longer takes place, that is, no new
infected individuals are created, and the whole process eventually stops. The system finds
itself in one of many absorbing states which, in the SIR model, are the configurations
formed by R and S sites and, in the SEI model, are the configurations without any pair
of neighboring SI sites. Starting from a configuration full of susceptible individuals except
for a single infected site, the process generates a cluster of inactive sites, which are the
R sites of the SIR model and the I sites of the SEI model. In the stationary state, which
is an absorbing state, these clusters have the same properties as the clusters occurring
in isotropic percolation model so that the stationary properties of these two models are
similar to percolation.
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When the rate of infection is small there is no epidemic spreading, that is, the generated
clusters are all finite. If however the infection rate is large enough, an infinite cluster of
inactive sites is generated and the epidemic spreading takes place. The transition from
non-spreading to spreading is regarded as a continuous phase transition with critical
behavior within the universality class of dynamical percolation [9-14, 17-20]. In fact, the
clusters generated by the rules of the SEI model can be exactly mapped into the clusters
of site percolation so that the stationary properties of the SEI model are identical to
the properties of site percolation. In this sense, it is similar to the model introduced by
Alexandrowicz [21] to generate percolation clusters. The SEI model can thus be regarded
as a standard example of a model belonging to the dynamical percolation universality
class. Here we are concerned with the critical behavior of the SEI model on a square
lattice, particularly with the numerical calculation of the dynamic critical exponents. As
to the static critical exponents, they are the same as the percolation in two dimensions and
known exactly [22]. Here we perform calculation for the SEI model with results for the
dynamic critical exponents that are very accurate, and in agreement with the exponents
of the dynamic percolation universality class [13,20].

2. Model

The SEI model is a continuous time stochastic markovian process defined on a lattice
where each site can be in one of three states: S, I or E. The allowed transitions are those
in which just one site changes its state. The transition rate of the process S — I is bf,
where f is the fraction of I sites in the neighborhood of the site to be updated and b
is the infection parameter. The transition rate of the process S — E is af, where a is
the exposition parameter. Other transitions are forbidden so that sites in states I or E
remain forever in these states. For convenience, we define the parameters p = b/(a + b)
and ¢ = a/(a + b) so that p + ¢ = 1. The model displays two regimes. One in which
there is no epidemic spreading, occurring for small infection rate, and the other in which
the epidemic spreading takes place, occurring for large infection rate. The stationary
properties are close related to site percolation model. In fact, the cluster of I sites can
be exactly mapped into the cluster of site percolation in the same lattice, in which each
site is occupied with probability p, as will be shown below. It is well known that the
percolation model [22] shows a phase transition from a state with finite clusters, occurring
for p < p., to a state with an infinite cluster, or percolating state, for p > p., where p,
is the critical concentration. We thus expect for the SEI model, a transition from a non-
spreading regime, for p < p., to a spreading regime, for p > p..

The simulation of the model is carried out as follows. Each site of a regular lattice
with NNV sites can be in one of three states: occupied by a susceptible (S), by an infected
(I) or by an exposed (E) individual. At each time step a site is chosen at random. If it
is in the I or E states nothing happens. If it is in the state S then with probability pf it
becomes I and with probability ¢f it becomes E, where f is the fraction of I sites in the
neighborhood of the chosen site and p + ¢ = 1. Equivalently, if the chosen site is in state
S, we may randomly choose a neighboring site; if it is in the I state then the chosen site
becomes I with probability p or E with the complementary probability ¢ = 1 — p. The
time is increased by an amount equal to 1/N. The neighborhood of a site is defined as its
nearest neighbor sites.
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An alternative approach, useful for time dependent simulations, is carried out as
follows. At each time step, a site is chosen at random from a list comprising the I sites
only. Next, one of its neighbors is chosen at random. If this neighbor is in state I or E
nothing happens. If it is in state S, then it changes to I with probability p or to E with
probability ¢ = 1 — p. The time is increased by an amount equal to 1/n; where ny is the
number of sites in the list, which is the total number of I sites in the lattice, and the list
is updated. An even more efficient algorithm is set up by using a list of active pair of
sites, more precisely, a list of nearest neighbor pairs of susceptible-infected sites. At each
time step, a pair of the list is chosen at random and the S site of the pair becomes I with
probability p or E with probability ¢ = 1 — p. The time is increased by an amount 1/ng;
where ngy is the number of entries in the list, which is the total number of SI pairs in the
lattice, and the list is updated.

Let us consider a finite lattice full of susceptible individual except for one site which is
occupied by an infected individual. The system evolves in time and eventually reaches its
final state which comprises a connected cluster of infected sites in addition to exposed and
susceptible sites. The exposed sites are found at the boundary of the cluster separating
the infected sites from the susceptible sites, so that active sites are absent. The clusters
generated by the SEI rules are the same clusters of site percolation, as we show next, in
which the sites are occupied independently with probability p.

The mapping of the stationary properties of the SEI model into the site percolation
model can be understood as follows. Suppose that a cluster C of infected sites of a lattice
has been generated by one of the algorithm above, starting from an infected site at the
origin. Suppose moreover that the dynamics has come to a halt so that there are no pairs
of the type SI. The boundary B of this cluster is therefore composed only by E sites.
During the dynamics, whenever the site ¢ becomes either I or E, we keep the used random
number &;. It is clear that, if site ¢ has turned into an I site then &; < p; if site ¢ has turned
into an E site then &; > p. Let us now consider a replica of the lattice, with all sites empty
except the site at the origin which is occupied. Next the site ¢ of the replica is occupied if
& < p and remains empty if & > p. By means of this procedure, which is the procedure
used in site percolation, a cluster of occupied sites is generated, which is thus identical to
the cluster of I sites of the original lattice.

3. Scaling relations

Around the critical point, the quantities that characterize the system are assumed to obey
a scaling relation. We assume two types of scaling relation. The first one is a finite-size
scaling relation, valid at the stationary state. A certain quantity ¢) depends on the linear
size of the system L and on the deviation € = p — p. according to

Q(e, L) = L*/"+®(c LY, (1)
where v, is the critical exponents related to the spatial correlation length and x is the
critical exponent related to ) in the thermodynamic limit, that is, @) ~ ™ when L — oo.

The second type is a time dependent scaling relation, valid for an infinite system, and
given by

Qlet) = L/ w(et /), 2)
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where 1| is the critical exponents related to the time correlation length. When ¢t — oo,
we get the same behavior Q) ~ ¢*. At the critical point, relations (1) and (2) predict the
following scaling forms

Q ~ LM, Q~1, (3)

respectively, where y = z/y.

The behavior of the SEI model is characterized by a set of quantities. We define the
average N1 = (nj) where nj is the number of infected sites and the average Ng; = (ng)
in the number of active pair of sites defined as the number ng; of pairs of neighboring
sites of type SI. Another relevant quantity is the surviving probability P(t), defined as
the probability that at time ¢ the system is active, that is, as long ng; # 0. Starting from
one infected site in a infinite lattice full of susceptible, we expect the following asymptotic
time behavior, at the critical point,

NI<t) ~t, (4>
Ngi(t) ~ t°, (5)
P(t) ~ 1", (6)
E(t) ~ 1'%, (7)

where ¢ is the spatial correlation length and z = v/v, .

If several trials are carried out, some survive up to time ¢, some do not. In the limit
t — o0, the cluster of a surving trial will be identified with the infinite percolating
cluster. Let ng be the variable that counts the number of infected sites in the surviving
trials. Denoting by M and M, the number of trials and the number of surviving trials,
respectively, and by ng the number of infected sites in the ¢th surviving trial, then the
average Ny of ng over the surving trials is given by

%o Y (3 5m). ®

The quantity between parentheses, which we denote by V{, is the average number of ny
over all trials because ng = 0 for a nonsurviving trial. Taking into account that P = M,/M
then Ny = NJ/P. Now, the quantity V] has a behavior similar to the average Ny of ny over
all trials. In fact, we found numerically that V] is proportional to Ny for large enough t.
Therefore, for large enough t we may write Ny ~ N;/P. Taking into account relations (4)
and (6),

Ny(t) ~ "+ (9)
The number of infected sites in surviving trials inside a region of linear size & is
proportional to the order parameter P. This amounts to say that the ratio N,/¢&¢ is
proportional to P. Writing thus N,/£¢ ~ P, and taking into account relations (6), (7) and
(9), we reach the following exponent relation

z(n+20) = d. (10)
At the critical point a surviving trial, which makes up the percolating cluster, has a fractal
structure with a fractal dimension dr defined by

Ny ~ &%, (11)
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Comparing (7) and (9) with (11), we see that the fractal dimension dp of the critical
cluster is related to n and by

z(n+0) = dy. (12)
The exponents 6 and 1 are connected by the relation
n=1+0, (13)

which can be understood by observing that the rate of increase in the average number of
infected sites is proportional to the number of active pair of sites, that is,

d b
aNI = ENSI (14)

where k is the number of neighbors. Replacing (5) into (14), it follows that Ny ~ ¢'*+?
from which we find relation (13). We should remark that in models belonging to direct
percolation (DP) universality class [12], Ny ~ Ng; so that the exponents  and 6 coincide.
In the case of models belonging to dynamical percolation universality class, such as the
SIR and SEI models, they are distinct and are related by (13).

When ¢t — oo, that is, in the stationary state, the surviving probability, which is
identified with the order parameter, behaves around the critical point as

and the exponent (3 is related to J by
oy =B, (16)
which is equivalent to dz = (/v,. Taking into account this relation and comparing

relations (12) and (10), we find nz = /v, where v = dv, — 2(, and (d — dp)v, = .
The density p of infected sites is equal to to Nj/N. Bearing in mind that N; = NP
and that Ny = PN, we conclude that p ~ P? so that
p e (17)

Let us define the quantity p, = (nf)/N?. Taking into account that (n?) = (nf)/P and
that (n?)/N? ~ P? around the critical point, we may conclude that p, ~ P3, or

pa ~ &% (18)
The quantity U, defined as the ratio U = (n?)/(n1)? = ps/p?* behaves as
U~e? (19)

Scaling relations can be written for the quantities defined above. For instance, the order
parameter obeys the scaling relation

P(e,L) = L%+ @ (e LY. (20)

From the above relations for U and P, it follows that the product UP approaches a
constant at the critical point and obeys the relation [14]

UP = ®y(s" L), (21)

so that, at the critical point, e = 0, a plot of UP versus p for several values of L will cross
at the same point, the critical point.

doi:10.1088/1742-5468/2015/04,/P04014 6
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Figure 1. Static properties of the SEI model from numerical simulations on a
square lattice. (a) Order parameter P versus p for several values of L indicated.
The inset is a data collapse showing y = PLS/VL versus & = eL'/¥L where
€ = p — pe. (b) The quantity UP versus p for several values of L indicated.
The inset is a data collapse showing UP versus x.

4. Simulations

We performed numerical simulation on a square lattice by using the algorithms explained
above. The stationary properties were obtained on lattices of several sizes, and for several
values of the parameter p. The order parameter P was obtained as follows [14]. We perform
several runs starting from an infected individual placed in the center of a finite lattice
full of susceptible individuals. The quantity P(p, L) is the fraction of runs such that an
infected individual reaches the border of the lattice of linear size L. In figure 1(a) we
show the order parameter P versus p for several values of L. The inset of figure 1(a)
shows a data colapse according to the scaling form (20). To get the data colapse we used
the exact values of the percolation exponents in two dimensions [22]: 8 = 5/36 and
v, = 4/3. We used also the numerical value of p at the critical point on a square lattice,
pe = 0.592746 06(5) obtained from Monte Carlo simulations [23].

In figure 1(b), we show the product UP as a function of p. As expected from scaling
relation (21) the curves for distinct L cross at the critical point. The value of UP at p,.
is estimated to be (UP). = 1.016 58(1), which is a linear extrapolation in 1/L? obtained
from the values 1.016 598, 1.016 585, 1.016 582 of this quantity for L = 256,512,1024
respectively. The quantity UP at p. is a universal quantity and may be compared to the
values 1.0167(1) obtained for percolation and SIR models [14]. The inset of figure 1(b)
shows the data collapse according to (21). Again we use the exact value v, = 4/3.

To get the dynamic exponents defined by relations (4)—(7), we performed time-
dependent Monte Carlo simulations at the critical point p. = 0.592 746 06(5) [23]. To
get the exponents 71, 6§ and d, we have estimated the number of infected sites Ny, the
number of active pair of sites Ng and the surviving probability P. The exponent z was
obtained by calculation the spreading of the infected sites R? [7], defined by

7= St (22)

doi:10.1088/1742-5468/2015/04,/P04014 7
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0 2 4 6 8 10

Int

Figure 2. Number of infected sites N1, number of active pair of sites Ngj,
surviving probability P and spreading of the infected sites R? as a function
of time ¢ in a double-log plot. The slopes of the curves for large enough time
give, respectively, 7, #, —d and 2/z.

where r; is the distance of site ¢ to the origin and 7; takes the value 1 when site ¢ is
occupied by an infected individual and zero otherwise. At the critical point

R? ~ 1Y, (23)

Figure 2 shows the quantities Ny, Ng;, P and R? as a function of time. Each curve
corresponds to an average over 10° runs obtained on a square lattice of linear size L = 2.
At each run, the lattice was full of susceptible sites except the central site, which is in an
infected state. Up to the maximum time shown in figure 2 no infected site reached the
border of the lattice, which amounts to say that the results shown in figure 2 are valid
for an infinite lattice. We remark that the quantity N{ was also calculated and we found
c¢N] = N for large enough ¢, as we have assume above, and that at the critical point
¢ =1.025(5).

To estimate the exponent y for a given quantity ) ~ t¥, we used a correction to scaling
of the form [7]

Q(t) = tY(c1 + cot™). (24)
The fitting of this form to the data points gives the exponent y and p in addition to the
constants ¢; and co. The fitting was done within a certain interval of time starting at time
to and ending at time ¢;. We have found that the best fittings give p around 1, but the
actual values found for the exponent y are not too sensitive to the value of the exponent
(. We used three values of ¢y, and the same value of ¢;. As seen in table 1, the three values
of a given exponent are distinct but very similar allowing the estimation of the statistical
error shown in the last row together with the average.

The estimated exponents can be checked by using relations nz = /v, and §z = /v,
From the values of n and z we get nz = 1.7920(7) which should be compared with the exact
result v/v; = 43/24 = 1.791666 . . . [22]. From the values of § and z we get 6z = 0.1042(4)
which should be compared with the exact result 3/v; = 5/48 = 0.104166... [22].

doi:10.1088/1742-5468/2015/04,/P04014 8
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Table 1. Critical exponents obtained by fitting the scaling form (4) to the curves
in figure 2 within the time interval between ¢y and ¢;.

In to In tl n 0 ) z

45 9.5 158462 058444  0.09217  1.13096
5.5 9.5 1.58457  0.58438  0.09208  1.13087
6.5 9.5 1.58454 0.58442 0.09196 1.13083

1.5846(2) 0.5844(2) 0.0921(3) 1.1309(3)

Note : The last row gives the average of the values in the previous rows, together
with the errors in the last digit.

We remark that our results are in agreement with results for the exponents of models
belonging to the universality class of dynamic percolation [13,20]. Notice that the critical
exponents 1 and 6 satisfy, within the statistical error, the relation (13), n =1+ 6.

5. Discussion

We have determined the critical properties of the SEI model on a square lattice by
numerical simulations. The model is an example of model belonging to the universality
class of dynamical percolation. The stationary properties are shown to be exactly the same
as those of isotropic percolation, so that the static exponents are the same as percolation,
which in two dimensions are known exactly. This is not the case of the dynamic exponents
which we have calculated here by using a time-dependent simulations. Our numerical
estimation, within the statistical errors, are in good agreement with the known relations
among the exponents. An important feature that distinguish this model from models
belonging to the DP universality class [12], such as the susceptible-infected-removed-
susceptible (SIRS) [13], rests on the relation between the number of infected sites and
the number of active pairs of sites. In the SIRS model these two quantities are closed
related leading to the identification of the exponents n and 6. In the SEI model they
are distinct leading to the relation n = 1 + 6, which was confirmed by our numerical
simulations.
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