

1459291

ISOTOPIC STRONTIUM, CARBON AND OXYGEN STUDY ON NEOPROTEROZOIC MARBLES FROM SIERRA DE UMANGO, ANDEAN FORELAND, ARGENTINA

Varela, R.¹, Valencio, S.², Ramos, A.², Sato, K.³, González, P.¹,
Panarello, H.² and Roverano, D.¹

¹ Centro de Investigaciones Geológicas (CIG), UNLP-CONICET, Calle 1 N° 644, 1900 La Plata, Argentina; varela@cig.museo.unlp.edu.ar

² INGEIS, Pabellón INGEIS, Ciudad Universitaria, 1428 Buenos Aires, Argentina; susana@ingeis.uba.ar

³ Centro de Pesquisas Geocronológicas (CPGeo), Universidade de São Paulo, Brasil; keisato@usp.br

The Umango Hill (La Rioja Province, 29°00'S-68°40'W) is one of the mountain blocks of the Sierras Pampeanas Occidentales. The crystalline basement is composed of basic igneous rocks and a siliciclastic-limestone sequence, both affected by amphibolite facies metamorphism. The metamorphic complex carries relics of granitic orthogneisses (~1000 Ma) and granitic intrusions of several ages (~520 Ma for the oldest). The siliciclastic-limestone sequence belongs to the Neoproterozoic-Early Palaeozoic and was interpreted as a platform covering the Mesoproterozoic cratonic basement. The metamorphism and deformation of the complex took place during the Early Palaeozoic.

Compositional and isotopic data of strontium ($^{87}\text{Sr}/^{86}\text{Sr}$), carbon ($\delta^{13}\text{C}_{\text{PDB}}$) and oxygen ($\delta^{18}\text{O}_{\text{PDB}}$) of the marbles from the siliciclastic-limestone sequence are presented. The results are interpreted and correlated with the temporal variation curves of $^{87}\text{Sr}/^{86}\text{Sr}$ and $\delta^{13}\text{C}$ from Neoproterozoic marine carbonates.

Petrographic studies allowed identification of three types of marbles (Calcitic, Calcitic-dolomitic and Dolomitic) and Calc-silicate rocks. All these rocks are affected by prograde metamorphism that varies from upper greenschist up to upper amphibolite facies.

The samples containing high percentages of calcite (>85%) are those which have higher contents of Sr (498-1927 ppm) and the lowest contents of Mn (40-580 ppm). The samples containing Mn/Sr ratio between 0.03 and 0.76 might have constituted "closed systems" and could have kept the original isotopic composition, which corresponds to the seawater from which they were deposited.

The $^{87}\text{Sr}/^{86}\text{Sr}$ vs. Mn/Sr and $\delta^{18}\text{O}$ values of some samples lay close to the "Primary System" end. For these samples the $^{87}\text{Sr}/^{86}\text{Sr}$ ratios are between 0.7072 and 0.7075. In the curve of $^{87}\text{Sr}/^{86}\text{Sr}$ (Neoproterozoic time) the values for selected samples from Umango Hill fall between 640 and 580 Ma. The ^{13}C content of the analyzed samples varies between -2.0‰ and +10.2‰ and the ^{18}O between -25.7‰ and -4.7‰. The strongly positive $\delta^{13}\text{C}$ values are characteristic of the late Cryogenian interval (730-590 Ma).