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In time-to-event studies it is common the presence of a fraction of individuals not expecting to experience the 
event of interest; these individuals who are immune to the event or cured for the disease during the study are 
known as long-term survivors. In addition, in many studies it is observed two lifetimes associated to the same 
individual, and in some cases there exists a dependence structure between them. In these situations, the usual 
existing lifetime distributions are not appropriate to model data sets with long-term survivors and dependent 
bivariate lifetimes. In this study, it is proposed a bivariate model based on a Weibull standard distribution with 
a dependence structure based on fifteen different copula functions. We assumed the Weibull distribution due to 
its wide use in survival data analysis and its greater flexibility and simplicity, but the presented methods can be 
adapted to other continuous survival distributions. Three examples, considering real data sets are introduced to 
illustrate the proposed methodology. A Bayesian approach is assumed to get the inferences for the parameters of 
the model where the posterior summaries of interest are obtained using Markov Chain Monte Carlo simulation 
methods and the Openbugs software. For the data analysis considering different real data sets it was assumed 
fifteen different copula models from which is was possible to find models with satisfactory fit for the bivariate 
lifetimes in presence of long-term survivors.
1. Introduction

In medical research, usual parametric and non-parametric tools are 
widely used for the data analysis of time-to-event data. These tools are 
useful when some observations are censored and the event of interest 
has not occurred for all patients at the follow-up time. The procedures 
most commonly used include the life-table method, the Kaplan-Meier 
estimator for the survival function, the Cox proportional hazards model, 
and parametric survival models. These techniques are described in text-

books such as Klein and Moeschberger [1] and Kalbfleisch and Pren-

tice [2].

A common situation in the data analysis of time-to-event data, par-

ticularly in cancer research, occurs when it is expected that a fraction 
of subjects will not experience the event of interest. In this situation, 
usually it is considered frailty models [3], or it is assumed that the pop-

ulation is a mixture of susceptible individuals who experience the event 
of interest and non-susceptible individuals that supposedly will never 
experience it. Statistical methods have been developed to analysis such 
data, see Lambert et al. [4] and Yu et al. [5]. Following Maller and 
Zhou [6], a mixture model for these data assumes that the probability 
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that the time-to-event is larger than some specified time 𝑡 is given by 
the survival function

𝑆(𝑡) = 𝑃 (𝑇 > 𝑡) = 𝑝+ (1 − 𝑝)𝑆0(𝑡), (1)

where 𝑇 is a nonnegative random variable denoting the lifetime of 
an individual, 𝑝 is a parameter denoting the proportion of “long-term 
survivors” or “cured patients” (0 < 𝑝 < 1) and 𝑆0(𝑡) is the baseline sur-

vival function for the susceptible individuals. Usual choices for 𝑆0(𝑡)
are based on the Weibull, gamma, Rayleigh and lognormal distribu-

tions, among many others. In the expression (1) it is observed that 𝑆(𝑡)
converges to 𝑝 as 𝑡 tends to infinite, given that 𝑆0(𝑡) converges to 0 as 𝑡
tends to infinite. The correspondent probability density function for the 
lifetime 𝑇 is given by

𝑓 (𝑡) = −𝑑𝑆(𝑡)
𝑑𝑡

= (1 − 𝑝)𝑓0(𝑡),

where 𝑓0(𝑡) is the density function for the susceptible individuals.

In the last decades a large number of studies have been developed 
with the purpose of dealing with bivariate time-to-event data, such as 
the ones from Hanagal and Bhambure [7] and Emura and Chen [8]. 
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Many of these studies have been conducted using copula functions, that 
express joint distributions for multivariate random variables. Copula 
functions were introduced by Sklar [9] where, in the bivariate case, 
they are related to bivariate distribution functions whose marginal dis-

tributions are univariate uniform distributions in the interval [0, 1]. 
Bivariate models for the lifetime data analysis based on copula func-

tions have been introduced by a number of authors, such as Kundu and 
Gupta [10], Achcar et al. [11], Peres et al. [12], Nair et al. [13] and 
Romeo et al. [14].

In this paper, we present a review on the copula functions that can 
be useful to the construction of bivariate distributions to be used in the 
lifetime data analyses. These distributions include the presence of long-

term survivors and censored data. The standard two-parameter Weibull 
distribution is assumed for the marginal univariate lifetimes in pres-

ence of cure fraction. This distribution is chosen because it is one of 
the most widely used distributions in survival analysis, and due its sim-

plicity and versatility. The paper is organized as follows: in Section 2, 
it is presented different existing copula functions together with their 
correspondent dependence parameters, the corresponding parametrical 
models assuming cure fraction and some selection models criteria to be 
used to choose the best model in each application. In Section 3, it is in-

troduced the Bayesian approach used to estimate the model parameters. 
Section 4 illustrates the efficiency of the proposed method with appli-

cations to three real data sets. Finally, in Section 5 it is presented some 
conclusions and discussion of the obtained results.

2. Methods

2.1. Copula functions

A copula function is used to describe the dependence structure 
among continuous random variables. Copula functions allow us to gen-

erate multivariate distributions that have different probability marginal 
distributions. The theoretical foundation for the application of copu-

las is provided by the Sklar’s theorem, that states that a 𝑚-dimensional 
copula is a function 𝐶 from [0, 1]𝑚 to the interval [0, 1], satisfying the 
following conditions: (i) 𝐶(1, ..., 1, 𝑎𝑛, 1, ..., 1) = 𝑎𝑛 for every 𝑛 < 𝑚 and all 
𝑎𝑛 in [0, 1]; (ii) 𝐶(𝑎1, ..., 𝑎𝑚) = 0 if 𝑎𝑛 = 0 for any 𝑛 ≤ 𝑚 and (iii) 𝐶 is 𝑚-

increasing [15, 16]. Considering a 𝑚 -variate function 𝐹 , the respective 
copula is a function 𝐶 ∶ [0, 1]𝑚 → [0, 1] that satisfies

𝐹 (𝑦1, ..., 𝑦𝑚) = 𝐶(𝐹1(𝑦1), ..., 𝐹𝑚(𝑦𝑚);𝜙) = 𝐶𝜙(𝐹1(𝑦1), ..., 𝐹𝑚(𝑦𝑚)), (2)

where 𝜙 is a parameter which measures the dependence between the 
marginals. When the random variables are independent, we have

𝐶𝜙(𝐹1(𝑦1), ..., 𝐹𝑚(𝑦𝑚)) =
𝑚∏
𝑖=1

𝐹𝑖

(
𝑦𝑖

)
.

In the bivariate case (𝑚 = 2) and in the context of survival (time-

to-event) data, let (𝑇1, 𝑇2) be the paired failure times with observa-

tions given by (𝑡1, 𝑡2). In addition, 𝑆𝑗 (𝑡𝑗 ) = 𝑃 (𝑇𝑗 > 𝑡𝑗 ) and 𝑓𝑗 (𝑡𝑗 ) are 
the marginal survival functions and the marginal density functions of 
𝑇𝑗 , 𝑗 = 1, 2, respectively. The joint distribution function of the survival 
times is given by

𝐹 (𝑡1, 𝑡2) = 𝑃 (𝑇1 ≤ 𝑡1, 𝑇2 ≤ 𝑡2)

= 1 − 𝑃 (𝑇1 > 𝑡1) − 𝑃 (𝑇2 > 𝑡2) + 𝑃 (𝑇1 > 𝑡1, 𝑇2 > 𝑡2)

= 1 − 𝑆1(𝑡1) −𝑆2(𝑡2) +𝑆(𝑡1, 𝑡2),

where 𝑆(𝑡1, 𝑡2) = 𝑃 (𝑇1 > 𝑡1, 𝑇2 > 𝑡2) is the joint survival function of 
(𝑇1, 𝑇2). From the equation above, it is obtained the joint survival func-

tion given by,

𝑆(𝑡1, 𝑡2) = 𝑆1(𝑡1) +𝑆2(𝑡1) + 𝐹 (𝑡1, 𝑡2) − 1. (3)

To simplify the notation, let us consider that 𝑢 = 𝐹1(𝑡1) and 𝑣 = 𝐹2(𝑡2). 
From (2), the joint distribution function of (𝑇1, 𝑇2) is given by
2

𝐹 (𝑡1, 𝑡2) = 𝐶𝜙(𝐹1(𝑡1), 𝐹2(𝑡2)) = 𝐶𝜙(𝑢, 𝑣),

for 𝑡1 > 0 and 𝑡2 > 0. Thus, the joint density function is given by

𝑓 (𝑡1, 𝑡2) = 𝑓1(𝑡1)𝑓2(𝑡2)𝑐𝜙(𝑢, 𝑣),

where 𝑓1(𝑡1) and 𝑓2(𝑡2) are the marginal densities and 𝑐𝜙(𝑢, 𝑣) is the 
copula density defined by

𝑐𝜙(𝑢, 𝑣) =
𝜕2

𝜕𝑢𝜕𝑣
𝐶𝜙(𝑢, 𝑣).

Two usual correlation measures between the two random variables 
are the Kendall’s tau (𝜏) and Spearman’s rho (𝜌), which can be expressed 
respectively by the equations

𝜏 = 4

1

∫
0

1

∫
0

𝐶𝜙(𝑢, 𝑣)𝑑𝐶𝜙(𝑢, 𝑣) − 1 = 4

1

∫
0

1

∫
0

𝐶𝜙(𝑢, 𝑣)𝑐𝜙(𝑢, 𝑣)d𝑢d𝑣− 1 =

= 1 − 4

1

∫
0

1

∫
0

𝜕𝐶𝜙(𝑢, 𝑣)
𝜕𝑢

𝜕𝐶𝜙(𝑢, 𝑣)
𝜕𝑣

d𝑢d𝑣 = 4𝐸[𝐶𝜙(𝑈,𝑉 )] − 1 (4)

and

𝜌 = 12

1

∫
0

1

∫
0

𝑢𝑣𝑑𝐶𝜙(𝑢, 𝑣) − 3 = 12

1

∫
0

1

∫
0

𝐶𝜙(𝑢, 𝑣)d𝑢d𝑣− 3 =

= 3 − 12

1

∫
0

1

∫
0

𝑢
𝜕𝐶𝜙(𝑢, 𝑣)

𝜕𝑢
d𝑢d𝑣 = 12𝐸(𝑈𝑉 ) − 3. (5)

For more details on these expressions, we can refer to Schweizer 
et al. [17], Joe [18], Nelsen [19] and Joe [20]. The expectations in 
these expressions can sometimes be computed in closed form according 
to the choice of 𝐶𝜙(𝑢, 𝑣). However, when 𝐶𝜙(𝑢, 𝑣) does not have a closed 
form, the measures 𝜏 and 𝜌 are computable by numerical integration or 
Monte Carlo simulation.

There are many families of copula functions which differ in the de-

tail of the dependence they represent. The main families of copulas used 
in this study are described briefly as follows:

(1) Archimedean Copulas: If a copula can be written in the form

𝐶(𝑢, 𝑣) = 𝜑−1(𝜑(𝑢) +𝜑(𝑣)),

this copula is called Archimedean copula with generating function 
𝜑(𝑥). In this case, 𝜑(𝑥) ∶ [0, 1] → [0, ∞) is a real valued function 
satisfying

(a) 𝜑(0) = 0;

(b) lim𝑥→0 𝜑(𝑥) =∞;

(c)
𝑑𝜑

𝑑𝑥
< 0 for all 𝑥 ∈ (0, 1) and

(d)
𝑑2𝜑
𝑑𝑥2

> 0 for all 𝑥 ∈ (0, 1).
The Archimedean copulas was studied and popularized by Genest 
and MacKay [21].

(2) Extreme-Value Copulas: An extreme-value copula is defined by 
the expression

𝐶(𝑢, 𝑣) = exp
[
log(𝑢𝑣)𝜑

(
log(𝑢)
log(𝑢𝑣)

)]
,

where 𝜑(𝑥) ∶ [0, 1] → [1∕2, 1] is a convex function satisfying

max(𝑥, 1 − 𝑥) ≤ 𝜑(𝑥) ≤ 1 for all 𝑥 ∈ [0, 1] [22].

(3) FGM Copulas: this copula family is based on generalizations of 
Farlie-Gumbel-Morgenstern (FGM) copula.

The copula functions considered in this study are as follows:

(a) Farlie-Gumbel-Morgenstern (FGM) copula: the Farlie–Gumbel–

Morgenstern copula was originally proposed by Morgenstern [23]
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and further studied by Gumbel [24] and Farlie [25]. The FGM cop-

ula takes the form

𝐶𝜙(𝑢, 𝑣) = 𝑢𝑣 [1 + 𝜙 (1 − 𝑢) (1 − 𝑣)] ,

where −1 ≤ 𝜙 ≤ 1. When 𝜙 = 0, the joint survival function becomes 
𝐶𝜙(𝑢, 𝑣) = 𝑢𝑣 = 𝐹01(𝑡1)𝐹02(𝑡2), suggesting independence between 𝑇1
and 𝑇2. Considering the FGM copula, from (4) and (5), the Kendall’s 
and Spearman’s correlation measures are given by 𝜏 = 2𝜙∕9 and 
𝜌 = 𝜙∕3, respectively [26]. The respective copula density function 
is given by

𝑐𝜙(𝑢, 𝑣) = 1 + 𝜙 (1 − 2𝑢) (1 − 2𝑣) .

(b) Generalized Farlie-Gumbel-Morgenstern (GFGM) copula: the 
GFGM copula was introduced by Bairamov and Kotz [27]. Its form 
is given by

𝐶𝜙(𝑢, 𝑣) = 𝑢𝑣
[
1 + 𝜙 (1 − 𝑢𝑝)𝑞 (1 − 𝑣𝑝)𝑞

]
,

where 𝑝, 𝑞 ≥ 1 are additional parameters [28]. In this case, the pos-

sible range of the dependence parameter 𝜙 is

−min

{
1, 1

𝑝2𝑞

(
1 + 𝑝𝑞

𝑞 − 1

)2(𝑞−1)
}

≤ 𝜙 ≤ 1
𝑝𝑞

(
1 + 𝑝𝑞

𝑞 − 1

)𝑞−1

and the respective copula density function is given by

𝑐𝜙(𝑢, 𝑣) = 1 + 𝜙 (1 − 𝑢𝑝)𝑞−1
[
1 − (1 + 𝑝𝑞)𝑢𝑝

]
×

×(1 − 𝑣𝑝)𝑞−1
[
1 − (1 + 𝑝𝑞)𝑣𝑝

]
.

If 𝑝 = 𝑞 = 1, it is obtained the original FGM copula. The Kendall’s 
and Spearman’s correlation measure are given respectively by

𝜏 = 8𝜙
[

𝑞

2 + 𝑝𝑞
𝐵

(
2
𝑝
, 𝑞

)]2
and 𝜌 = 12𝜙

[
𝑞

2 + 𝑝𝑞
𝐵

(
2
𝑝
, 𝑞

)]2
,

where 𝐵(𝑎, 𝑏) = Γ(𝑎)Γ(𝑏)∕Γ(𝑎 + 𝑏) is the beta function and Γ(𝑎) is the 
gamma function.

(c) Type 1 Huang–Kotz FGM (HKFGM1) copula: the HKFGM1 copula 
is a special case of the GFGM copula with 𝑝 = 1 [29]. In this case, 
the possible range of the dependence parameter 𝜙 is

−1 ≤ 𝜙 ≤
(

𝑞 + 1
𝑞 − 1

)𝑞−1
.

(d) Type 2 Huang–Kotz FGM (HKFGM2) copula: in a similar way, 
the HKFGM2 copula is a special case of the GFGM copula with 𝑞 = 1
[29]. For this case, the possible range of the dependence parameter 
𝜙 is

−(max{1, 𝑝})−2 ≤ 𝜙 ≤ 𝑝−1.

(e) Fischer and Köck FGM (FKFGM) copula: Fischer and Köck [30]

proposed some extensions of the FGM copula. One of them is de-

fined by

𝐶𝜙(𝑢, 𝑣) = 𝑢𝑣

[
1 +𝜙

(
1 − 𝑢

1
𝑝

)(
1 − 𝑣

1
𝑝

)]𝑝

,

where 𝑝 ≥ 1 and −1 ≤ 𝜙 ≤ 1. Independence between 𝑇1 and 𝑇2 cor-

responds to 𝜙 = 0. The respective copula density function is given 
by

𝑐𝜙(𝑢, 𝑣) =
[
𝑟𝜙(𝑢, 𝑣)

]𝑝 + [
𝑟𝜙(𝑢, 𝑣)

]𝑝−1
𝜙 ×

×
{

𝑢
1
𝑝 𝑣

1
𝑝

𝑝
−

(
1 − 𝑢

1
𝑝

)
𝑣

1
𝑝 −

(
1 − 𝑣

1
𝑝

)
𝑢
1
𝑝 +

+𝜙

(
1 − 𝑢

1
𝑝

)(
1 − 𝑣

1
𝑝

)
𝑢
1
𝑝 𝑣

1
𝑝

𝑟𝜙(𝑢, 𝑣)

[
1 − 1

𝑝

]}
,

where

𝑟𝜙(𝑢, 𝑣) = 1 +𝜙

(
1 − 𝑢

1
𝑝

)(
1 − 𝑣

1
𝑝

)
. (6)
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(f) Clayton copula: the Clayton copula takes the form

𝐶𝜙(𝑢, 𝑣) =
(
𝑢−𝜙 + 𝑣−𝜙 − 1

)− 1
𝜙 ,

where 𝜙 ∈ (0, ∞). This copula was first introduced by Clay-

ton [31] and subsequently studied by Cook and Johnson [32] and 
Oakes [33]. In this case, the marginals become independent when 
𝜙 tends to zero. For this copula function, the relationship between 
the dependence copula parameter 𝜙 and the Kendall’s tau is given 
by 𝜏 = 𝜙∕(𝜙 + 2). If 𝜙 tends to infinite, then 𝜏 tends to 1 indicat-

ing perfect positive dependence. Some authors have shown that the 
expression for 𝜌 assuming the Clayton copula is very complicated. 
The respective copula density function is given by

𝑐𝜙(𝑢, 𝑣) = (1 +𝜙) (𝑢𝑣)−(1+𝜙) (𝑢−𝜙 + 𝑣−𝜙 − 1
)−(

1
𝜙
+2

)
.

This copula belongs to the Archimedean family, with 𝜑(𝑥) =
1
𝜙
(𝑥−𝜙 − 1).

(g) Burr copula: The Burr copula [34] is given by

𝐶𝜙(𝑢, 𝑣) = 𝑢+ 𝑣− 1 +
[
(1 − 𝑢)−

1
𝜙 + (1 − 𝑣)−

1
𝜙 − 1

]−𝜙

,

where 𝜙 > 0. The relationship between the dependence copula pa-

rameter 𝜙 and the Kendall’s tau given by 𝜏 = 1∕(2𝜙 +1). When 𝜙 → 0
it is indicated the total dependence between 𝑇1 and 𝑇2. The copula 
density function for the Burr copula is given by

𝑐𝜙(𝑢, 𝑣) =
(𝜙+ 1) (1 − 𝑢)−

(
1+ 1

𝜙

)
(1 − 𝑣)−

(
1+ 1

𝜙

)

𝜙

[
(1 − 𝑢)−

1
𝜙 + (1 − 𝑣)−

1
𝜙 − 1

]2+𝜙
.

This copula does not belong to the families mentioned in this study.

(h) Gumbel-Hougaard (GH) copula: the GH copula [35, 36] is de-

fined as

𝐶𝜙(𝑢, 𝑣) = exp
{
−

[
(− log𝑢)𝜙 + (− log𝑣)𝜙

] 1
𝜙

}
,

where the parameter 𝜙 is restricted to the interval [1, ∞). When 
𝜙 tends to 1, it is obtained 𝐶𝜙(𝑢, 𝑣) = 𝑢𝑣. This copula function does 
not allow for negative dependence. The relationship between 𝜙 and 
Kendall’s tau is given by 𝜏 = 1 − 𝜙−1. The copula density function 
for the Gumbel-Hougaard copula is given by

𝑐𝜙(𝑢, 𝑣) =
𝐶𝜙(𝑢, 𝑣)

𝑢𝑣 (log𝑢) (log𝑣)
[
(− log 𝑢)𝜙 + (− log𝑣)𝜙

]−2+ 1
𝜙 ×

[
(− log𝑢) (− log𝑣)

]𝜙 {
(𝜙− 1) +

[
(− log𝑢)𝜙 + (− log𝑣)𝜙

] 1
𝜙

}
.

This copula belongs to the Archimedean family, with 𝜑(𝑥) =[
−log(𝑥)

]𝜙
. It is interesting to note that this copula is at the same 

time Archimedean and extreme-value, see Genest and Rivest [37].

(i) Gumbel-Barnett (GB) Copula: The GB Copula studied by Gum-

bel [24] and Barnett [38] is defined by

𝐶𝜙(𝑢, 𝑣) = 𝑢𝑣 exp{−𝜙(log𝑢)(log𝑣)} ,

where 𝜙 ∈ (0, 1]. When 𝜙 tends to zero, there is independence be-

tween the two random variables. Fredricks and Nelsen [39] show 
that the GB copula measures negative dependence, and the re-

lationship between the dependence copula parameter 𝜙 and the 
Kendall’s tau and Spearman’s rho are given respectively by

𝜏 = exp
(
2
𝜙

)
Ei

(
− 2

𝜙

)
and 𝜌 = −3 − 12

𝜙

[
exp

(
4
𝜙

)
Ei

(
− 4

𝜙

)]
,

where Ei(.) is the exponential integral given by

Ei(𝑥) =

𝑥

∫
exp(𝑡)

𝑡
d𝑡.
−∞
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)

The copula density function for the Gumbel-Barnett copula is given 
by

𝑐𝜙(𝑢, 𝑣) = exp (−𝜙(log𝑢)(log𝑣)) ×

×
{[

𝜙2(log𝑣) −𝜙
]
(log𝑢) − 𝜙

[
(log𝑣) + 1

]
+ 1

}
.

This copula belongs to the Archimedean family, with 𝜑(𝑥) =
log

[
1 − 𝜙 log(𝑥)

]
.

(j) Galambos Copula: The Galambos copula defined by Galam-

bos [40], is given by

𝐶𝜙(𝑢, 𝑣) = 𝑢𝑣 exp
([

(− log𝑢)−𝜙 + (− log𝑣)−𝜙
]− 1

𝜙

)
,

where 𝜙 > 0. Independence between 𝑇1 and 𝑇2 corresponds to 𝜙 → 0
and the high dependence when 𝜙 →∞. The relationship between 
𝜙 and Spearman’s rho is given by

𝜌 = 12

1

∫
0

{
2 −

[
𝑡−𝜙 + (1 − 𝑡)−𝜙

]− 1
𝜙

}−2
d𝑡− 3,

and the relationship between 𝜙 and Kendall’s tau is very compli-

cated (see, for example, Joe [20]). The respective copula density 
function is given by

𝑐𝜙(𝑢, 𝑣) =
exp

{[
ℎ𝜙(𝑢, 𝑣)

]− 1
𝜙

}
(log𝑢) (log𝑣)

[
ℎ𝜙(𝑢, 𝑣)

]2 × (7

×
{[

ℎ𝜙(𝑢, 𝑣)
]− 2

𝜙 (− log𝑢)−𝜙 (− log𝑣)−𝜙 +

+
[
(log𝑣) (− log𝑢)−2𝜙 +

+ (− log 𝑢)−𝜙 (− log𝑣)−𝜙 (𝜙+ (log𝑢) + (log𝑣) + 1)

+ (log𝑢) (− log𝑣)−2𝜙
] [

ℎ𝜙(𝑢, 𝑣)
]− 1

𝜙 + (log𝑢) (log𝑣)
[
ℎ𝜙(𝑢, 𝑣)

]2}
where

ℎ𝜙(𝑢, 𝑣) = (− log𝑢)−𝜙 + (− log𝑣 )−𝜙 . (8)

This copula belongs to the extreme-value copula family, with 
𝜑(𝑥) = 1 −

[
𝑥−𝜙 + (1 − 𝑥)−𝜙

]−1∕𝜙
.

(k) Frank copula: the Frank copula [41] is given by

𝐶𝜙(𝑢, 𝑣) = − 1
𝜙
log

{
1 +

[
exp(−𝜙𝑢) − 1

] [
exp(−𝜙𝑣) − 1

]
exp(−𝜙) − 1

}
,

where 𝜙 ∈ (0, ∞). If 𝜙 → 0, the random variables 𝑇1 and 𝑇2 are in-

dependents, and if 𝜙 → ∞ there is an indication that 𝑇1 and 𝑇2
are correlated with each other. Nelsen [42] and Genest [43] have 
shown that the relationship between the dependence copula pa-

rameter 𝜙 and the Kendall’s and Spearman’s correlation measures 
are given respectively, by

𝜏(𝜙) = 1 + 4
𝜙

[
𝐷1(𝜙) − 1

]
and 𝜌(𝜙) = 1 + 12

𝜙

[
𝐷2(𝜙) −𝐷1(𝜙)

]
,

where 𝐷𝑘(.) is the Debye function given by

𝐷𝑘(𝛼) =
𝑘

𝛼𝑘

𝛼

∫
0

𝑡𝑘

exp(𝑡) − 1
d𝑡.

The copula density function for the Frank copula is given by

𝑐𝜙(𝑢, 𝑣) =
𝜙 exp(−𝜙𝑢−𝜙𝑣) (1 − exp(−𝜙))

(exp(−𝜙) − exp(−𝜙𝑢) − exp(−𝜙𝑣) + exp(−𝜙𝑢−𝜙𝑣))2
.

This copula belongs to the Archimedean family, with 𝜑(𝑥) =
log

[
exp(−𝜙𝑥)−1

]
.
exp(−𝜙)−1

4

(l) Ali-Mikhail-Haq (AMH) copula: the AMH copula introduced by 
Ali et al. [44] and Kumar [45] is defined by

𝐶𝜙(𝑢, 𝑣) =
𝑢𝑣

1 − 𝜙 (1 − 𝑢) (1 − 𝑣)
,

where the dependence copula parameter is 𝜙 ∈ [−1, 1). Thus, the 
AMH copula measures both positive and negative dependence. The 
independence between 𝑇1 and 𝑇2 occurs when 𝜙 = 0. The relation-

ship between 𝜙, the Kendall’s tau and Spearman’s rho are given 
respectively by

𝜏 = 1 − 2
3𝜙

− 2
3𝜙2 (1 − 𝜙)2 log (1 −𝜙)

and

𝜌 = 12
𝜙2 dilog(1 − 𝜙)(1 + 𝜙) − 24

𝜙2 log(1 −𝜙)(1 − 𝜙) − 3
𝜙
(12 + 𝜙),

where dilog(.) is the dilogarithm function defined by

dilog(𝑥) =

𝑥

∫
1

log 𝑡

1 − 𝑡
d𝑡.

Thus, the parameter 𝜏 ranges from −0.1817 to 0.3333 and 𝜌 ranges 
from −0.2710 to 0.4784. The copula density function for the AMH 
copula function is given by

𝑐𝜙(𝑢, 𝑣) =
1 −𝜙+ 2𝜙𝐶𝜙(𝑢, 𝑣)

[1 −𝜙 (1 − 𝑢) (1 − 𝑣)]2
.

This copula belongs to the Archimedean family, with 𝜑(𝑥) =
− log

[
1−𝜙(1−𝑥)

𝑥

]
.

(m) A12 copula: the A12 copula function is defined following the or-

der of appearance in Table 4.1 (one parameter Archimedean Copu-

las) presented in page 116 of the book “An Introduction to Copulas” 
by Nelsen [19]. It is defined by

𝐶𝜙(𝑢, 𝑣) =
1

1 +
[(

1
𝑢
− 1

)𝜙
+

(
1
𝑣
− 1

)𝜙
] 1

𝜙

,

where 𝜙 ∈ [1, +∞). For this copula function, the relationship be-

tween the dependence copula parameter 𝜙 and the Kendall’s tau is 
given by 𝜏 = 1 − 2

3𝜙 . If 𝜙 tends to infinite, then 𝜏 tends to 1 indi-

cating perfect positive dependence between 𝑇1 and 𝑇2. In this case 
it is observed that 𝜏 ∈ [1∕3, 1]. The copula density function for the 
A12 copula function is given by

𝑐𝜙(𝑢, 𝑣) =

[
𝑔𝜙 (𝑢, 𝑣)

] 1
𝜙
−2

(
1
𝑢
− 1

)𝜙 (
1
𝑣
− 1

)𝜙
{[

𝑔𝜙 (𝑢, 𝑣)
] 1

𝜙 (𝜙 + 1) +𝜙− 1
}

𝑣𝑢

{
1 +

[
𝑔𝜙 (𝑢, 𝑣)

] 1
𝜙

}3
(1 − 𝑢) (1 − 𝑣)

where

𝑔𝜙(𝑢, 𝑣) =
(1
𝑢
− 1

)𝜙

+
( 1
𝑣
− 1

)𝜙

. (9)

This copula belongs to the Archimedean family, with 𝜑(𝑥) =(
1
𝑥
− 1

)𝜙
.

(n) Joe copula: the Joe copula [46] function is defined by

𝐶𝜙(𝑢, 𝑣) = 1 −
[
(1 − 𝑢)𝜙 + (1 − 𝑣)𝜙 − (1 − 𝑢)𝜙 (1 − 𝑣)𝜙

] 1
𝜙 ,

where 𝜙 ∈ (1, ∞). Joe [20] shows that for this copula function the 
Kendall’s correlation measure is given by

𝜏 = 1 + 2
2 − 𝜙

[
digamma(2) − digamma

(
2
𝜙
+ 1

)]
.

When 𝜙 = 2 it is considered that 𝜏 = 1 − trigamma(2), where 
digamma(𝑧) = 𝑑 logΓ(𝑧), trigamma(𝑧) = 𝑑2

2 logΓ(𝑧) and Γ(𝑧) is the 

𝑑𝑧 𝑑𝑧
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gamma function. The copula density function for the Joe copula 
function is given by

𝑐𝜙(𝑢, 𝑣) =
{[
1 − (1 − 𝑢)𝜙

]
(1 − 𝑣)𝜙 + (1 − 𝑢)𝜙

} 1
𝜙

{[
1 − (1 − 𝑣)𝜙

]
(1 − 𝑢)𝜙 + 𝜙+ (1 − 𝑣)𝜙 − 1

}
[(1 − 𝑢)(1 − 𝑣)]1−𝜙

{[
(1 − 𝑣)𝜙 − 1

]
(1 − 𝑢)𝜙 − (1 − 𝑣)𝜙

}2 .

This copula belongs to the Archimedean family, with 𝜑(𝑥) =
− log

[
1 − (1 − 𝑥)𝜙

]
.

(o) Plackett Copula: Plackett [47] defined the following copula

𝐶𝜙(𝑢, 𝑣) =
[1 + (𝜙− 1) (𝑢+ 𝑣)] −

√
[1 + (𝜙− 1) (𝑢+ 𝑣)]2 − 4𝜙 (𝜙− 1)𝑢𝑣
2(𝜙− 1)

,

where 𝜙 > 0. Independence between 𝑇1 and 𝑇2 corresponds to 𝜙 =
1, while for 0 < 𝜙 < 1 we note negative correlation. The relationship 
between 𝜙 and the Spearman 𝜌 correlation coefficient is

𝜌 = 𝜙+ 1
𝜙− 1

−
2𝜙 log𝜙

(𝜙− 1)2
.

The copula density function for the Plackett copula function is 
given by

𝑐𝜙(𝑢, 𝑣) = − 2𝜙 [(𝜙− 1)(2𝑢− 1)𝑣+ 𝑢(1 − 𝜙) − 1]{
[1 + (𝜙− 1) (𝑢+ 𝑣)]2 − 4𝜙 (𝜙− 1)𝑢𝑣

} 3
2

.

This copula does not belong to the families mentioned in this study. 
In fact, it is considered in the literature that this function and its 
generalizations defines a special family of copulas [19, 48].

2.2. Bivariate models with long-term survivors

From (1), mixture formulations for the survival functions in the bi-

variate lifetime case are given by

𝑆
𝑗
(𝑡𝑗 ) = 𝑝𝑗 +

(
1 − 𝑝𝑗

)
𝑆0𝑗 (𝑡𝑗 ), 𝑗 = 1,2, (10)

where 𝑝𝑗 ∈ (0, 1) and 𝑆0𝑗 (𝑡𝑗 ) denotes the survival function for the suscep-

tible individuals in the entire population. From (3) and (10), the joint 
survival function considering the mixture formulation is given by

𝑆(𝑡1, 𝑡2) = 𝑝1 + 𝑝2 +
(
1 − 𝑝1

)
𝑆01(𝑡1) +

(
1 − 𝑝2

)
𝑆02(𝑡2) + 𝐹 (𝑡1, 𝑡2) − 1.

Let us define two indicator variables denoted by 𝑉1 and 𝑉2, consid-

ering 𝑉𝑗 = 1 for a susceptible individual in the lifetime 𝑇𝑗 and 𝑉𝑗 = 0 for 
an immune or cured individual in 𝑇𝑗 , 𝑗 = 1, 2. In this way, 𝑃 (𝑉𝑗 = 0) = 𝑝𝑗

and 𝑃 (𝑉𝑗 = 1) = 1 −𝑝𝑗 . The observed data for any individual satisfies one 
of the following cases, in accordance with the susceptibility pattern:

(a) The individual is not susceptible to both events of interest. The 
respective probability is 𝜓00 = 𝑃 (𝑉1 = 0, 𝑉2 = 0) = 𝑃 (𝑉1 = 0)𝑃 (𝑉2 =
0) + 𝑐𝑜𝑣(𝑉1, 𝑉2) = 𝑝1𝑝2 +𝜔.

(b) The individual is susceptible to event 1 but is not susceptible to 
event 2. The respective probability is 𝜓10 = 𝑃 (𝑉1 = 1, 𝑉2 = 0) =
𝑃 (𝑉1 = 1)𝑃 (𝑉2 = 0) − 𝑐𝑜𝑣(𝑉1, 𝑉2) = (1 − 𝑝1)𝑝2 −𝜔.

(c) The individual is not susceptible to event 1 but is to event 2. The 
respective probability is 𝜓01 = 𝑃 (𝑉1 = 0, 𝑉2 = 1) = 𝑃 (𝑉1 = 0)𝑃 (𝑉2 =
1) − 𝑐𝑜𝑣(𝑉1, 𝑉2) = 𝑝1(1 − 𝑝2) −𝜔.

(d) The individual is susceptible to both events. The respective prob-

ability is given by 𝜓11 = 𝑃 (𝑉1 = 1, 𝑉2 = 1) = 𝑃 (𝑉1 = 1)𝑃 (𝑉2 = 1) +
𝑐𝑜𝑣(𝑉1, 𝑉2) = (1 − 𝑝1)(1 − 𝑝2) +𝜔.

Observe that 𝜔 = 𝑐𝑜𝑣(𝑉1, 𝑉2) is the covariance between the random 
variables 𝑉1 and 𝑉2, such that 0 ≤ 𝜔 ≤ 𝑚𝑖𝑛(𝑝1, 𝑝2) − 𝑝1𝑝2 [49]. In addi-

tion, it is possible to note that 𝜓00 + 𝜓10 + 𝜓01 + 𝜓11 = 1, 𝜓00 + 𝜓01 = 𝑝1
and 𝜓00 + 𝜓10 = 𝑝2. The covariance 𝜔 takes the zero value when there 
is independence between the probabilities of cure associated to the life-

times 𝑇1 and 𝑇2. Wienke et al. [50] showed that the general bivariate 
survival function after integrating out the random variables 𝑉1 and 𝑉2
is given by
5

𝑆(𝑡1, 𝑡2) = 𝜓00 +𝜓10𝑆01(𝑡1) +𝜓01𝑆02(𝑡2) +𝜓11𝑆0(𝑡1, 𝑡2), (11)

where 𝑆0(𝑡1, 𝑡2) is the joint survival function for 𝑇1 and 𝑇2 for the sus-

ceptible individuals, by the copula functions presented in subsection 2.1

considering 𝑢 = 𝑆01 and 𝑣 = 𝑆02.

The contribution of the i-th subject from a random sample (𝑡1𝑖, 𝑡2𝑖,
𝛿1𝑖, 𝛿2𝑖), 𝑖 = 1, ..., 𝑛, for the likelihood function is given by

𝐿𝑖 =
[
𝜕2𝑆(𝑡1, 𝑡2)
𝜕𝑡1𝑖𝜕𝑡2𝑖

]𝛿1𝑖𝛿2𝑖 [
𝑆(𝑡1, 𝑡2)

](
1−𝛿1𝑖

)(
1−𝛿2𝑖

)
×

×
[
−

𝜕𝑆(𝑡1, 𝑡2)
𝜕𝑡1𝑖

]𝛿1𝑖
(
1−𝛿2𝑖

) [
−

𝜕𝑆(𝑡1, 𝑡2)
𝜕𝑡2𝑖

](
1−𝛿1𝑖

)
𝛿2𝑖

, (12)

where 𝛿𝑗𝑖 is a censoring indicator variable, that is, 𝛿𝑗𝑖 = 1 for an ob-

served lifetime and 𝛿𝑗𝑖 = 0 for a censored lifetime. In this expression,

𝜕2𝑆(𝑡1, 𝑡2)
𝜕𝑡1𝜕𝑡2

= 𝑓01(𝑡1)𝑓02(𝑡2)𝜓11𝑐𝜙(𝑢, 𝑣),

−
𝜕𝑆(𝑡1, 𝑡2)

𝜕𝑡1
= 𝑓01(𝑡1)

[
𝜓10 +𝜓11

𝜕

𝜕𝑢
𝐶𝜙(𝑢, 𝑣)

]
and

−
𝜕𝑆(𝑡1, 𝑡2)

𝜕𝑡2
= 𝑓02(𝑡2)

[
𝜓01 +𝜓11

𝜕

𝜕𝑣
𝐶𝜙(𝑢, 𝑣)

]
,

considering 𝑢 = 𝑆01(𝑡1) and 𝑣 = 𝑆02(𝑡2). The derivatives 𝜕

𝜕𝑢
𝐶𝜙(𝑢, 𝑣) and 

𝜕

𝜕𝑣
𝐶𝜙(𝑢, 𝑣) for each studied copula function are presented below.

(a) FGM copula:

𝜕

𝜕𝑢
𝐶𝜙(𝑢, 𝑣) = 𝑣{1 + 𝜙 [(1 − 𝑣) (1 − 2𝑢)]} , and

𝜕

𝜕𝑣
𝐶𝜙(𝑢, 𝑣) = 𝑢{1 + 𝜙 [(1 − 𝑢) (1 − 2𝑣)]} ;

(b) GFGM copula:

𝜕

𝜕𝑢
𝐶𝜙(𝑢, 𝑣) = 𝑣

{
1 + 𝜙 (1 − 𝑣𝑝)𝑞 (1 − 𝑢𝑝)𝑞

[
1 − 𝑝𝑞𝑢𝑝 (1 − 𝑢𝑝)−1

]}
, and

𝜕

𝜕𝑣
𝐶𝜙(𝑢, 𝑣) = 𝑢

{
1 + 𝜙 (1 − 𝑢𝑝)𝑞 (1 − 𝑣𝑝)𝑞

[
1 − 𝑝𝑞𝑣𝑝 (1 − 𝑣𝑝)−1

]}
;

(c) HKFGM1 copula: the derivatives are obtained replacing 𝑝 by 1 in 
the previous equations;

(d) HKFGM2 copula: the derivatives are obtained replacing 𝑞 by 1 in 
the equations for the GFGM copula;

(e) FKFGM copula:

𝜕

𝜕𝑢
𝐶𝜙(𝑢, 𝑣) = 𝑣

[
𝑟𝜙(𝑢, 𝑣)

]𝑝 ⎡⎢⎢⎢⎢⎣
1 −

𝜙𝑢
1
𝑝

(
1 − 𝑣

1
𝑝

)
𝑟𝜙(𝑢, 𝑣)

⎤⎥⎥⎥⎥⎦
, and

𝜕

𝜕𝑣
𝐶𝜙(𝑢, 𝑣) = 𝑢

[
𝑟𝜙(𝑢, 𝑣)

]𝑝 ⎡⎢⎢⎢⎢⎣
1 −

𝜙𝑣
1
𝑝

(
1 − 𝑢

1
𝑝

)
𝑟𝜙(𝑢, 𝑣)

⎤⎥⎥⎥⎥⎦
,

where 𝑟𝜙(𝑢, 𝑣) is given by (6);

(f) Clayton copula:

𝜕

𝜕𝑢
𝐶𝜙(𝑢, 𝑣) = 𝑢−(𝜙+1)

(
𝑢−𝜙 + 𝑣−𝜙 − 1

)−(
1+ 1

𝜙

)
, and

𝜕

𝜕𝑣
𝐶𝜙(𝑢, 𝑣) = 𝑣−(𝜙+1)

(
𝑢−𝜙 + 𝑣−𝜙 − 1

)−(
1+ 1

𝜙

)
;

(g) Burr Copula:

𝜕

𝜕𝑢
𝐶𝜙(𝑢, 𝑣) = 1 − (1 − 𝑢)−

(
1+ 1

𝜙

)
[
(1 − 𝑢)−

1
𝜙 + (1 − 𝑣)−

1
𝜙 − 1

]1+𝜙
, and

𝜕

𝜕𝑣
𝐶𝜙(𝑢, 𝑣) = 1 − (1 − 𝑣)−

(
1+ 1

𝜙

)
[
(1 − 𝑢)−

1
𝜙 + (1 − 𝑣)−

1
𝜙 − 1

]1+𝜙
;
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(h) Gumbel-Hougaard (GH) Copula:

𝜕

𝜕𝑢
𝐶𝜙(𝑢, 𝑣) = − (− ln𝑢)𝜙

𝑢 (ln𝑢)
𝐶𝜙(𝑢, 𝑣)

[
(− ln𝑢)𝜙 + (− ln𝑣)𝜙

]−(
1− 1

𝜙

)
, and

𝜕

𝜕𝑣
𝐶𝜙(𝑢, 𝑣) = − (− ln𝑣)𝜙

𝑣 (ln𝑣)
𝐶𝜙(𝑢, 𝑣)

[
(− ln𝑢)𝜙 + (− ln𝑣)𝜙

]−(
1− 1

𝜙

)
;

(i) Gumbel-Barnett (GB) Copula:

𝜕

𝜕𝑢
𝐶𝜙(𝑢, 𝑣) = 𝑣 exp{−𝜙(log𝑢)(log𝑣)}

[
𝜙(log𝑣) − 1

]
, and

𝜕

𝜕𝑣
𝐶𝜙(𝑢, 𝑣) = 𝑢 exp{−𝜙(log𝑢)(log𝑣)}

[
𝜙(log𝑢) − 1

]
;

(j) Galambos Copula:

𝜕

𝜕𝑢
𝐶𝜙(𝑢, 𝑣) = 𝑣 exp

{[
ℎ𝜙(𝑢, 𝑣)

]− 1
𝜙

}
×

×
{
1 −

[
ℎ𝜙(𝑢, 𝑣)

]−(
1+ 1

𝜙

)
(− log 𝑢)−(𝜙+1)

}
, and

𝜕

𝜕𝑣
𝐶𝜙(𝑢, 𝑣) = 𝑢 exp

{[
ℎ𝜙(𝑢, 𝑣)

]− 1
𝜙

}
×

×
{
1 −

[
ℎ𝜙(𝑢, 𝑣)

]−(
1+ 1

𝜙

)
(− log𝑣)−(𝜙+1)

}
;

where ℎ𝜙(𝑢, 𝑣) is given by (8).

(k) Frank copula:

𝜕

𝜕𝑢
𝐶𝜙(𝑢, 𝑣) =

exp(−𝜙𝑢)(exp(−𝜙𝑣) − 1)
exp(−𝜙) − exp(−𝜙𝑢) − exp(−𝜙𝑣) + exp(−𝜙𝑢− 𝜙𝑣)

, and

𝜕

𝜕𝑣
𝐶𝜙(𝑢, 𝑣) =

exp(−𝜙𝑣)(exp(−𝜙𝑢) − 1)
exp(−𝜙) − exp(−𝜙𝑢) − exp(−𝜙𝑣) + exp(−𝜙𝑢− 𝜙𝑣)

;

(l) AMH copula:

𝜕

𝜕𝑢
𝐶𝜙(𝑢, 𝑣) =

𝑣 [𝜙(𝑣− 1) + 1]
[1 − 𝜙(1 − 𝑢)(1 − 𝑣)]2

, and

𝜕

𝜕𝑣
𝐶𝜙(𝑢, 𝑣) =

𝑢 [𝜙(𝑢− 1) + 1]
[1 − 𝜙(1 − 𝑢)(1 − 𝑣)]2

;

(m) A12 copula:

𝜕

𝜕𝑢
𝐶𝜙(𝑢, 𝑣) =

[
𝑔𝜙(𝑢, 𝑣)

] 1
𝜙
−1

(
1
𝑢
− 1

)𝜙

𝑢

{
1 +

[
𝑔𝜙(𝑢, 𝑣)

] 1
𝜙

}2
(1 − 𝑢)

and

𝜕

𝜕𝑣
𝐶𝜙(𝑢, 𝑣) =

[
𝑔𝜙(𝑢, 𝑣)

] 1
𝜙
−1

(
1
𝑣
− 1

)𝜙

𝑣

{
1 +

[
𝑔𝜙(𝑢, 𝑣)

] 1
𝜙

}2
(1 − 𝑣)

,

where 𝑔𝜙(𝑢, 𝑣) is given by (9).

(n) Joe copula:

𝜕

𝜕𝑢
𝐶𝜙(𝑢, 𝑣) = (1 − 𝑢)𝜙−1

[
1 − (1 − 𝑣)𝜙

]
×

×
{[
1 − (1 − 𝑢)𝜙

]
(1 − 𝑣)𝜙 + (1 − 𝑢)𝜙

} 1
𝜙
−1

and

𝜕

𝜕𝑣
𝐶𝜙(𝑢, 𝑣) = (1 − 𝑣)𝜙−1

[
1 − (1 − 𝑢)𝜙

]
×

×
{[
1 − (1 − 𝑢)𝜙

]
(1 − 𝑣)𝜙 + (1 − 𝑢)𝜙

} 1
𝜙
−1 ;

(o) Plackett Copula:

𝜕

𝜕𝑢
𝐶𝜙(𝑢, 𝑣)

=
(𝑣− 𝑢)𝜙+

√
(1 + (𝜙− 1) (𝑢+ 𝑣))2 − 4𝜙 (𝜙− 1)𝑢𝑣+ 𝑢− 1 + 𝑣

2
√

(1 + (𝜙− 1) (𝑢+ 𝑣))2 − 4𝜙 (𝜙− 1)𝑢𝑣

and

𝜕
𝐶𝜙(𝑢, 𝑣)
𝜕𝑣

6

=
(𝑢− 𝑣)𝜙+

√
(1 + (𝜙− 1) (𝑢+ 𝑣))2 − 4𝜙 (𝜙− 1)𝑢𝑣+ 𝑢− 1 + 𝑣

2
√

(1 + (𝜙− 1) (𝑢+ 𝑣))2 − 4𝜙 (𝜙− 1)𝑢𝑣
;

2.3. Bivariate Weibull model with long-term survivors

Let 𝑇 be a random variable denoting the time to the occurrence of 
some event of interest. The survival function of the Weibull standard 
distribution with two parameters, introduced by Fréchet [51] and de-

scribed in detail by [52], is given by

𝑆0(𝑡) = exp
(
−𝛼𝑡𝛽

)
,

where 𝑡 ≥ 0, 𝛼 > 0 and 𝛽 > 0. The corresponding probability density and 
hazard function are given respectively by

𝑓0(𝑡) = 𝛼𝛽𝑡𝛽−1 exp
(
−𝛼𝑡𝛽

)
and ℎ0(𝑡) =

𝑓0(𝑡)
𝑆0(𝑡)

= 𝛼𝛽𝑡𝛽−1,

where the hazard function may be of increasing or decreasing forms 
depending on 𝛽 > 1 or 𝛽 < 1, respectively. If 𝛽 = 1, we have a exponential 
distribution.

Assuming the bivariate model with long-term survivors given in 
equation (11), and considering 𝑢 = 𝑆01(𝑡1) = exp

(
−𝛼1𝑡1

𝛽1
)

and 𝑣 =
𝑆02(𝑡2) = exp

(
−𝛼2𝑡2

𝛽2
)
, we have

𝑆(𝑡1, 𝑡2) = 𝜙00 + 𝜙10 exp
(
−𝛼1𝑡1

𝛽1
)
+ 𝜙01 exp

(
−𝛼2𝑡2

𝛽2
)
+𝜙11𝑆0(𝑡1, 𝑡2),

where 𝑆0(𝑡1, 𝑡2) is a survival copula function described in subsection 2.1, 
with 𝑢 = exp

(
−𝛼1𝑡1

𝛽1
)

and 𝑣 = exp
(
−𝛼2𝑡2

𝛽2
)
.

2.4. Bivariate Kaplan-Meier estimator

Comparisons between the estimated values and empirical estimates 
can be used to assess the fit of a model. Similarly to the study from To-

var Cuevas et al. [53], we observed the proximity between the bivariate 
parametric survival function estimates from the proposed copula mod-

els and the empirical estimates of the survival function based on the 
non-parametric bivariate Kaplan-Meier method. Several authors sug-

gested different non-parametric estimators for the bivariate survival 
curve, such as Cambell and Földes [54], Tsai et al. [55], Dabrowska 
et al. [56], Prentice and Cai [57], Van Der Laan [58] and Prentice [59]. 
However, these estimators do not presented good numerical properties 
or they are very complicated and difficult for practical use. In this pa-

per, we consider the Lin and Ying [60] estimator, due the simple form 
and good numerical performance [61].

Let (𝑇 0
1𝑖, 𝑇

0
2𝑖), 𝑖 = 1, ..., 𝑛, be pairs of 𝑛 independent and identically 

distributed failure times with join survival function 𝑆(𝑡1, 𝑡2) = 𝑃 (𝑇 0
1 ≥

𝑡1, 𝑇 0
2 ≥ 𝑡2) and let 𝐶𝑖, 𝑖 = 1, ..., 𝑛, be random variables from 𝑛 indepen-

dent and identically distributed censoring times following an univariate 
survival function 𝐺(𝑡) = 𝑃 (𝐶 ≥ 𝑡). Let us assume that 𝐶𝑖 are independent 
of the pairs of survival times (𝑇 0

1𝑖, 𝑇
0
2𝑖), 𝑖 = 1, ..., 𝑛. Thus, the observed 

data is (𝑇1𝑖, 𝑇2𝑖, 𝛿1𝑖, 𝛿2𝑖), 𝑖 = 1, ..., 𝑛, where 𝑇1𝑖 = 𝑇 0
1𝑖 ∧ 𝐶𝑖, 𝑇2𝑖 = 𝑇 0

2𝑖 ∧ 𝐶𝑖, 
𝛿1𝑖 = 𝐼(𝑇 0

1𝑖 ≤ 𝐶𝑖), 𝛿2𝑖 = 𝐼(𝑇 0
2𝑖 ≤ 𝐶𝑖), 𝐼(.) denotes the indicator function, 

𝑎 ∧ 𝑏 = min(𝑎, 𝑏) and 𝑎 ∨ 𝑏 = max(𝑎, 𝑏). In this way, Lin and Ying [60]

suggested as an estimator of the joint survival function 𝑆(𝑡1, 𝑡2), the fol-

lowing expression:

𝑆(𝑡1, 𝑡2) =
𝑛−1

∑𝑛
𝑖=1 𝐼(𝑇𝑖1 ≥ 𝑡1, 𝑇𝑖2 ≥ 𝑡2)∏

𝑖∶𝑇1𝑖∧𝑇2𝑖<𝑡1∧𝑡2

(
𝑛𝑐
𝑖
−𝛿𝑐

𝑖

𝑛𝑐
𝑖

) ,

where, 𝛿𝑐
𝑖 = 1 − 𝛿1𝑖𝛿2𝑖 and 𝑛𝑐

𝑖 =
∑𝑛

𝑗=1 𝐼(𝑇1𝑗 ∧ 𝑇2𝑗 ≥ 𝑇1𝑖 ∧ 𝑇2𝑖).

2.5. Model comparison criteria

Under a Bayesian approach it is often considered for comparison 
among different Bayesian models the use of the deviance information 
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criterion (DIC) proposed by Spiegelhalter et al. [62]. The DIC value is 
given by

DIC =𝐷(𝜃̂) + 2𝑝𝐷 = 2𝐷(𝜃) −𝐷(𝜃̂),

where 𝐷(𝜃̂) is the deviance calculated in the posterior mean of the pa-

rameter of interest obtained using MCMC simulation methods and 𝑝𝐷 is 
the effective number of parameters in the model, with 𝑝𝐷 =𝐷(𝜃)−𝐷(𝜃̂), 
where 𝐷(𝜃) = 𝐸[𝐷(𝜃)] is the posterior mean of the deviance and can 
be approximated using a MCMC simulation by taking the sample mean 
of the simulated values of 𝐷(𝜃). Smaller values of DIC indicate better 
model fit.

Another criteria for comparison among Bayesian models is given 
by the logarithms of pseudo marginal likelihood functions (LPML). The 
LPML is obtained from the conditional predictive ordinates (𝐶𝑃𝑂) [63]. 
For the 𝑖-th observation the CPO𝑖 is given by

𝐶𝑃𝑂𝑖 = ∫ 𝑓
(
D𝑖|𝜽)

𝑓
(
𝜽|D[−𝑖]

)
d𝜽,

where 𝜽 is the complete vector of parameter, D[−𝑖] is the sample without 
the 𝑖-th observation and 𝑓

(
𝜽|D[−𝑖]

)
is the posterior density of 𝜽 given 

D[−𝑖], 𝑖 = 1, … , 𝑛. Usually the 𝐶𝑃𝑂𝑖 does not have a closed form and it 
is very complicated to be calculated. However an approximation based 
on MCMC methods for the 𝐶𝑃𝑂𝑖 [64], is given by

𝐶𝑃𝑂𝑖 =

[
1
𝑁

𝑁∑
𝑛=1

1
𝑓

(
D𝑖|𝜽𝑛

)]−1

, 𝑖 = 1,… , 𝑛,

where 𝑁 is the number of iterations during the implementation of the 
MCMC procedure after a burn-in period used to eliminate the effect of 
the initial values of the iterative algorithm and where 𝜽𝑛 is the vector 
of the samples obtained at the 𝑛-th iteration [65]. In this way, as a 
numerical criterion, the LPML value is obtained by

𝐿𝑃𝑀𝐿 =
𝑛∑

𝑖=1
ln𝐶𝑃𝑂𝑖.

Larger values of LPML indicate better fit of the model [66].

2.6. Distance between two matrices

In the discrimination of different bivariate lifetime distributions in 
presence of cure rates constructed using the different copula functions 
introduced in subsection 2.1, it is also proposed the use of discrimina-

tion methods based on the distance between two matrices. Let 𝑨= (𝑎𝑖𝑗 ), 
𝑩 = (𝑏𝑖𝑗 ) two matrices of size 𝑚 × 𝑛, 𝑚 rows and 𝑛 columns, and ‖.‖ de-

noting the matrix norm. Thus, ‖𝑨−𝑩‖ measures the distance between 
the matrices 𝑨 and 𝑩, denoted by 𝑑(𝑨, 𝑩) = ‖𝑨−𝑩‖. Several norms can 
be considered, as the following:

Absolute sum norm: this norm is calculated by absolute sums of the 
differences of matrix elements, expressed by

𝑑𝑎(𝑨,𝑩) =
𝑚∑
𝑖=1

𝑛∑
𝑗=1

|||𝑎𝑖𝑗 − 𝑏𝑖𝑗
||| .

Frobenius norm: this norm is equivalent to the Euclidean norm in ma-

trices, given by

𝑑𝐹 (𝑨,𝑩) =

(
𝑚∑
𝑖=1

𝑛∑
𝑗=1

|||𝑎𝑖𝑗 − 𝑏𝑖𝑗
|||2

)1∕2

.

Maximum column sum norm: this norm is calculated by the maxi-

mum value of the sum of the absolute values of the differences 
in each column, given by

𝑑𝑐(𝑨,𝑩) = max
1≤𝑗≤𝑛

(
𝑚∑|||𝑎𝑖𝑗 − 𝑏𝑖𝑗

|||
)

.

𝑖=1

7

Table 1

Description of the presence of censoring in diabetic retinopathy data set.

𝑇1 𝑇2 %

Censored data (𝛿1 = 0) Censored data (𝛿2 = 0) 40%

Completed data (𝛿1 = 1) Censored data (𝛿2 = 0) 32%

Censored data (𝛿1 = 0) Completed data (𝛿2 = 1) 8%

Completed data (𝛿1 = 1) Completed data (𝛿2 = 1) 20%

Maximum rows sum norm: this norm is calculated by the maximum 
value of the sum of the absolute values of the differences in each 
row, given by

𝑑𝑟(𝑨,𝑩) = max
1≤𝑖≤𝑚

(
𝑛∑

𝑗=1

|||𝑎𝑖𝑗 − 𝑏𝑖𝑗
|||
)

.

Maximum absolute norm: this norm is calculated by the maximum 
absolute value of the differences of matrix elements, given by

𝑑𝑚(𝑨,𝑩) = max
1≤𝑗≤𝑛

max
1≤𝑖≤𝑚

|||𝑎𝑖𝑗 − 𝑏𝑖𝑗
||| .

In this study, for each adjusted model was obtained a matrix from 
bivariate Kaplan-Meier estimator (see subsection 2.4). This “empirical” 
matrix is compared to adjusted matrix obtained by copulas models. 
Lower distance values indicate similar matrices.

3. A Bayesian approach

Assuming the proposed bivariate Weibull distributions with long-

term survivors based on different copula functions (see subsection 2.1), 
under a Bayesian framework, the joint posterior distributions for the 
model parameters are obtained by combining the joint prior distribu-

tion of the parameters and the likelihood function given by equation 
(12). To simulate samples from the joint posterior distribution, we could 
consider the use of MCMC (Markov Chain Monte Carlo) algorithms im-

plemented in the OpenBUGS software, where we only need to specify 
the data distribution and the prior distributions for the parameters of 
each assumed model.

Under a Bayesian approach, it is assumed independent prior dis-

tributions for the parameters. For the parameters 𝛼1, 𝛽1, 𝛼2 and 𝛽2, 
of the Weibull distributions, let us assume gamma prior distributions 
since these parameters are defined for positive values, that is, 𝛼𝑘 ∼
𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏) and 𝛽𝑘 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏), 𝑘 = 1, 2, where 𝑎 and 𝑏, are known 
hyperparameters, and 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏) denotes a gamma distribution with 
mean 𝑎∕𝑏 and variance 𝑎∕𝑏2.

It is also assumed beta prior distributions for the cure fractions 𝑝1
and 𝑝2 observing that these parameters are defined for values in the in-

terval (0, 1). That is, 𝑝𝑘 ∼ 𝐵𝑒𝑡𝑎(𝑐, 𝑑), 𝑘 = 1, 2, where 𝐵𝑒𝑡𝑎(𝑐, 𝑑) denotes a 
beta distribution and 𝑐 and 𝑑 are known hyperparameters. Considering 
that 0 ≤ 𝜔 ≤𝑚𝑖𝑛(𝑝1, 𝑝2) − 𝑝1𝑝2, it is assumed a generalized beta prior dis-

tribution for the covariance parameter 𝜔. Thus, 𝜔 ∼𝐺𝐵(𝑒, 𝑓 ), where 𝐺𝐵

denotes a generalized beta distribution with known hyperparameters 𝑒
and 𝑓

For the FGM copula and AMH copula it was assume that the 
dependence parameter 𝜙 follows an uniform prior distribution, that 
is, (1 − 𝜙)∕2 ∼ 𝐵𝑒𝑡𝑎(1, 1), which ensures that 𝜙 ∈ (−1, 1). Considering 
the GFGM copula it is assumed that the parameters 𝑝 and 𝑞 follow 
an uniform prior distribution 𝑝 ∼ 𝑈𝑛𝑖𝑓 (1, 5) and 𝑞 ∼ 𝑈𝑛𝑖𝑓 (1, 5), and 
the dependence parameter 𝜙 follows an uniform prior distribution, 
that is, 𝜙 ∼ 𝑈𝑛𝑖𝑓 (𝑚, 𝑛), where 𝑚 and 𝑛 are known hyperparameters, 
𝑚 = − min

{
1, (1∕𝑝2𝑞)[(1 + 𝑝𝑞)∕(𝑞 − 1)]2(𝑞−1)

}
and 𝑛 = (1∕𝑝𝑞)[(1 + 𝑝𝑞)∕(𝑞 −

1)]𝑞−1. Under the HKFGM1 copula it is assumed that the parameter 𝑞
follows an uniform prior distribution as assumed for the GFGM copula 
and the dependence parameter 𝜙 follows an uniform prior distribution, 
that is, 𝜙 ∼ 𝑈𝑛𝑖𝑓 (−1, 𝑔), where 𝑔 = [(1 + 𝑞)∕(𝑞 − 1)]𝑞−1. It is assumed for 
the HKFGM2 copula that the parameter 𝑝 follows the same uniform 
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Table 2

Bayesian estimates for the parameters of the bivariate Weibull distribution with long-term survivors based on copula functions considering the diabetic retinopathy 
data set.

FGM copula GFGM Copula HKFGM1 Copula HKFGM2 Copula FKFGM Copula

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

𝛼1 0.3773 (0.2481, 0.5255) 0.4065 (0.2756, 0.5547) 0.3970 (0.2631, 0.5463) 0.3755 (0.2409, 0.5276) 0.3835 (0.2593, 0.5364)

𝛼2 0.3235 (0.1315, 0.5456) 0.3166 (0.1520, 0.5118) 0.3631 (0.1796, 0.5711) 0.3025 (0.1275, 0.5403) 0.3626 (0.1482, 0.5910)

𝛽1 0.9463 (0.7673, 1.1510) 0.9454 (0.7688, 1.1390) 0.9471 (0.7686, 1.143) 0.9462 (0.7656, 1.1540) 0.9475 (0.7742, 1.1490)

𝛽2 0.9996 (0.7057, 1.3520) 1.0340 (0.7494, 1.3550) 1.0538 (0.7433, 1.379) 0.9812 (0.6938, 1.3230) 1.0310 (0.7244, 1.3560)

𝜓00 0.2347 (0.0535, 0.3601) 0.2482 (0.0887, 0.3619) 0.2511 (0.0996, 0.3626) 0.2280 (0.0496, 0.3557) 0.2501 (0.0971, 0.3626)

𝜓10 0.3176 (0.0408, 0.5150) 0.3226 (0.0674, 0.4896) 0.3529 (0.1188, 0.5149) 0.2995 (0.0314, 0.4999) 0.3382 (0.0475, 0.5272)

𝜓01 0.0579 (0.0023, 0.1672) 0.0624 0.0049, 0.1503) 0.0521 (0.0022, 0.1309) 0.0610 (0.0032, 0.1765) 0.0498 (0.0021, 0.1550)

𝜓11 0.3898 (0.2332, 0.7151) 0.3668 (0.2320, 0.6476) 0.3437 (0.2232,0.5855) 0.4115 (0.2353, 0.7447) 0.3618 (0.2255, 0.6530)

𝜔 0.0701 (0.0128, 0.1351) 0.0688 (0.0153, 0.1289) 0.0664 (0.0154, 0.1245) 0.0720 (0.0114, 0.1431) 0.0727 (0.0186, 0.1412)

𝑝1 0.2925 (0.0927, 0.4316) 0.3106 (0.1369, 0.4409) 0.3033 (0.1222, 0.4321) 0.2890 (0.0867, 0.4333) 0.3000 (0.1285, 0.4342)

𝑝2 0.5523 (0.1770, 0.7184) 0.5708 (0.2405, 0.7132) 0.6041 (0.3344, 0.7247) 0.5275 0.1639, 0.7134) 0.5884 (0.2366, 0.7289)

𝑝 – – 2.9970 (1.1110, 4.8740) 1.0000 – 2.144 (1.0360, 4.6220) 5.0210 (1.1800, 9.6880)

𝑞 – – 3.2060 (1.2950, 4.9040) 1.8333 (1.0540, 2.8920) 1.0000 – – –

𝜙 0.5720 (-0.1937, 0.9790) 0.6585 (-0.0587, 2.0260) 1.4604 (1.2730, 3.0810) 0.5242 (-0.0548, 0.7841) 0.3801 (-0.8119, 0.9805)

𝜏 0.1907 (-0.0646, 0.3263) 0.1387 (-0.0061, 0.2629) 0.1101 (-0.0215, 0.2390) 0.1226 (-0.0332, 0.3493) 0.0494a (-0.0536, 0.1800)

𝜌 0.1271 (-0.0430, 0.2176) 0.2080 (-0.0092, 0.3944) 0.1652 (-0.0323, 0.3585) 0.2958 (-0.0498, 0.2329) 0.0741a (-0.0803, 0.2699)

DIC=895.1 DIC=894.6 DIC=896.3 DIC=895.8 DIC=896.6

LPML=-441.7 LPML=-442.4 LPML=-442.0 LPML=-441.8 LPML=-442.0

Clayton Copula Burr Copula GH Copula GB Copula Galambos Copula

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

𝛼1 0.3680 (0.2418, 0.5230) 0.3850 (0.2528, 0.5432) 0.3802 (0.2467, 0.5329) 0.3852 (0.2641, 0.5281) 0.3843 (0.2565, 0.5421)

𝛼2 0.2982 (0.1300, 0.5042) 0.2847 (0.1333, 0.5165) 0.2846 (0.1301, 0.5177) 0.3839 (0.1747, 0.6076) 0.3096 (0.1301, 0.5505)

𝛽1 0.9306 (0.7544, 1.1250) 0.9143 (0.7389, 1.1050) 0.9126 (0.7323, 1.1220) 0.9458 (0.7719, 1.1400) 0.9201 (0.7371, 1.1220)

𝛽2 0.9749 (0.7052, 1.2960) 0.9125 (0.6513, 1.2390) 0.9242 (0.6603, 1.2760) 1.0420 (0.7495, 1.3560) 0.9519 (0.6714, 1.3040)

𝜓00 0.1955 (0.0332, 0.3430) 0.2134 (0.0343, 0.3461) 0.2061 (0.0258, 0.3478) 0.2637 (0.1355, 0.3676) 0.2190 (0.0370, 0.3523)

𝜓10 0.3397 (0.0434, 0.5207) 0.2805 (0.0209, 0.4835) 0.2888 (0.0276, 0.4938) 0.3498 (0.0832, 0.5237) 0.3044 (0.0341, 0.5026)

𝜓01 0.0779 (0.0044, 0.1933) 0.0681 (0.0035, 0.1876) 0.0692 (0.0033, 0.1841) 0.0414 (0.0017, 0.1167) 0.0647 (0.0027, 0.1844)

𝜓11 0.3869 (0.2339, 0.7026) 0.438 (0.2471, 0.7667) 0.4359 (0.2415, 0.7702) 0.3451 (0.2253, 0.5992) 0.4120 (0.2361, 0.7456)

𝜔 0.0462 (0.0029, 0.1065) 0.0698 (0.0075, 0.1373) 0.0647 (0.0052, 0.1357) 0.0763 (0.0246, 0.1469) 0.0665 (0.0071, 0.1342)

𝑝1 0.2734 (0.0696, 0.4237) 0.2815 (0.0755, 0.4272) 0.2753 (0.0487, 0.4302) 0.3051 (0.1557, 0.4321) 0.2836 (0.0728, 0.4310)

𝑝2 0.5351 (0.1550, 0.7071) 0.4939 (0.1404, 0.6996) 0.4949 (0.1343, 0.7088) 0.6134 (0.3359, 0.7284) 0.5233 (0.1488, 0.7142)

𝜙 1.0950 (0.1572, 2.5090) 2.2940 (0.9907, 5.076) 1.2900 (1.0280,.7070) 0.1145 (0.0038, 0.3811) 0.4667 (0.0364, 0.9242)

𝜏 0.3297 (0.0729, 0.5564) 0.2002 (0.0896, 0.3354) 0.2109 (0.0276, 0.4142) 0.0000 (-0.0002, 0.0000) 0.1781a (0.1397, 0.5622)

𝜌 0.4649a (0.1044, 0.7426) 0.2938a (0.1342, 0.4808) 0.4084a (0.3334, 0.4698) -0.0815 (-0.2436, -0.0066) 0.2556 (0.0000, 0.5546)

DIC=894.8 DIC=896.7 DIC=896.3 DIC=899.1 DIC=896.6

LPML=-440.9 LPML=-442.4 LPML=-441.4 LPML=-443.6 LPML=-442.0

Frank Copula AMH Copula A12 Copula Joe Copula Plackett Copula

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

𝛼1 0.3736 (0.2407, 0.5334) 0.3786 (0.2471, 0.5318) 0.3700 (0.2413, 0.5192) 0.3863 (0.2574, 0.5428) 0.3736 (0.2422, 0.5289)

𝛼2 0.2864 (0.1283, 0.5058) 0.3219 (0.1376, 0.5459) 0.2775 (0.1275, 0.4509) 0.2965 (0.1313, 0.5410) 0.2752 (0.1332, 0.4773)

𝛽1 0.9364 (0.7529, 1.1360) 0.9457 (0.7587, 1.1480) 0.9114 (0.7320, 1.1110) 0.9162 (0.7393, 1.1160) 0.9331 (0.7540, 1.1390)

𝛽2 0.9683 (0.7111, 1.3090) 1.0040 (0.7195, 1.3370) 0.9330 (0.6841, 1.2280) 0.9311 (0.6548, 1.2870) 0.9615 (0.6955, 1.2820)

𝜓00 0.2085 (0.0331, 0.352) 0.2270 (0.0549, 0.3602) 0.1782 (0.0271, 0.3205) 0.2218 (0.0432, 0.3514) 0.2028 (0.0313, 0.3450)

𝜓10 0.3078 (0.0330, 0.4950) 0.3287 (0.0357, 0.5164) 0.3291 (0.0372, 0.5111) 0.2821 (0.0212, 0.4909) 0.3099 (0.0607, 0.4809)

𝜓01 0.0717 (0.0043, 0.1903) 0.0621 (0.0029, 0.1748) 0.0871 (0.0104, 0.1975) 0.0635 (0.0028, 0.1858 0.0742 (0.0055, 0.1829)

𝜓11 0.4119 (0.2405, 0.7471) 0.3821 (0.2298, 0.6908) 0.4057 (0.2423, 0.7233) 0.4326 (0.2401, 0.7526) 0.4131 (0.2435, 0.7163)

𝜔 0.0596 (0.0049, 0.1242) 0.0636 (0.0108, 0.1291) 0.0401 (0.0022, 0.0912) 0.0739 (0.0117, 0.1461) 0.0563 (0.0044, 0.1214)

𝑝1 0.2802 (0.0703, 0.4287) 0.2891 (0.0895, 0.4368) 0.2652 (0.0542, 0.4168) 0.2853 (0.0876, 0.4261) 0.2770 (0.0629, 0.4331)

𝑝2 0.5164 (0.1412, 0.7073) 0.5557 (0.1856, 0.7214) 0.5073 (0.1172, 0.6877) 0.5039 (0.1508, 0.7116) 0.5127 (0.1873, 0.6978)

𝜙 2.3180 (0.2934, 4.9460) 0.5916 (-0.1963, 0.9831) 1.1430 (1.0050, 1.4370) 1.3400 (1.0250, 1.8580) 4.0320 (1.2860, 9.2810)

𝜏 0.2366 (0.0325, 0.4528) 0.1713 (-0.0416, 0.3226) 0.4109 (0.3369, 0.5359) 0.1523 (0.0140, 0.3217) 0.2731a (0.0559, 0.4629)

𝜌 0.3456 (0.0488, 0.6387) 0.2525 (-0.0624, 0.4653) 0.5745a (0.4829, 0.7226) 0.2215a (0.0196, 0.4558) 0.3928 (0.0901, 0.5059)

DIC=895.2 DIC=894.8 DIC=895.0 DIC=896.8 DIC=895.1

LPML=-441.1 LPML=-441.4 LPML=-441.3 LPML=-442.4 LPML=-440.9

a Correlations obtained by numerical integration according to the equations (4) and (5). Bold values represent the better fit to the data.
prior distribution as assumed for the GFGM copula and the param-

eter 𝜙 follows an uniform prior distribution, that is, 𝜙 ∼ 𝑈𝑛𝑖𝑓 (ℎ, 𝑖), 
where ℎ = −(max{1, 𝑝})−2 and 𝑖 = 𝑝−1. Under the FKFGM copula it 
was assumed that the dependence parameter 𝜙 follows an uniform 
prior distribution, that is, the same prior assumed in the FGM cop-

ula and the parameter 𝑝 follows an uniform prior distribution, that is, 
𝑝 ∼𝑈𝑛𝑖𝑓 (1, 20).
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Under the Clayton copula, Burr copula, Galambos copula, Frank cop-

ula and Plackett copula it is assumed that the dependence parameter 𝜙
follows a Gamma prior distribution, that is, 𝜙 ∼𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏). Under the 
GH copula, A12 copula and Joe copula it is assumed for the depen-

dence parameter 𝜙 an uniform prior distribution, that is, 𝜙 ∼𝑈𝑛𝑖𝑓 (𝑟, 𝑠), 
and for the GB copula it is assumed 𝜙 ∼ 𝐵𝑒𝑡𝑎(𝑐, 𝑑). Also, it is assumed 
that 𝑎, 𝑏, 𝑟, 𝑠, 𝑐 and 𝑑 are known hyperparameters. The hyperparameter 
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values for of the prior distributions for the parameter 𝜙 are selected ac-

cording to the information about correlation between 𝑇1 and 𝑇2 for each 
data set.

Posterior summaries for the parameters of interest were obtained us-

ing Monte Carlo Markov Chain (MCMC) methods. It was run 200,000 
iterations of the MCMC algorithm where the first 20,000 runs were dis-

carded as burn-in samples in order to eliminate the effect of the initial 
values. In addition, it was stored each 50th simulated sample to reduce 
the autocorrelation between successive MCMC samples. The 95% cred-

ible intervals (95% CI) for each parameter were constructed based on 
the upper and lower 2.5% quantiles of the corresponding simulated val-

ues. Chain convergence was verified by inspecting trace plots and by 
examining autocorrelation between successive MCMC samples.

4. Applications to real data

4.1. An application to a diabetic retinopathy data set

In order to evaluate the proposed methodology, it is considered in 
this subsection, a data set of bivariate lifetimes introduced by Group 
et al. [67]. This data set is related to the occurrence times of visual 
losses of 197 diabetic patients under 60 years of age that were followed-

up for a fixed period of time. In the study, each patient had one eye 
randomized for laser treatment and the other eye receiving no treat-

ment. It was considered for the bivariate analysis that 𝑇1 is the time 
up to visual loss for the treated eye, while 𝑇2 is the time up to visual 
loss for the not treated or control eye. There was 43% censored data of 
treated eyes and 73% censored data of not treated eyes. Table 1 shows 
the percentage of censoring data in the diabetic retinopathy data. It is 
observed that only 20% are not censored in both 𝑇1 and 𝑇2, the most of 
the data are censored in both times.

In Table 2, it is presented the posterior Bayesian estimates for the bi-

variate Weibull distribution based from each copula function described 
in subsection 2.1 considering the diabetic retinopathy data set assum-

ing the prior distributions described in section 3 with hyperparameter 
values. It was assumed the following prior distributions for the parame-

ter 𝜙: 𝜙 ∼𝐺𝑎𝑚𝑚𝑎(1, 1) assuming Clayton copula, Burr copula, Galambos 
copula, Frank copula and Plackett copula, 𝜙 ∼ 𝑈𝑛𝑖𝑓 (1, 5) assuming GH 
copula and A12 copula, 𝜙 ∼ 𝐵𝑒𝑡𝑎(1, 1) assuming GB copula. Observing 
the mean estimates and the 95% credible intervals for the parameters 
𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝜓00, 𝜓10, 𝜓01, 𝜓11, 𝑝1 and 𝑝2 it is possible to see that for all 
assumed copula functions the estimated values are approximately close.

Following the model selection criteria DIC e LPML, the estimated 
GFGM model has better values for the LPML criteria; estimated Plack-

ett and Clayton copula models have the best values for DIC criteria. 
However, in all copulas the values of DIC and LPML are very close. The 
estimated GB copula model has different values for all discrimination 
criteria, presumably associated to their negative structure dependence, 
which does not seems appropriated for the assumed data set. Observing 
the parameter 𝜔 of the covariance between the indicator variables 𝑉1
and 𝑉2 of susceptible individual in cure fractions for the lifetimes 𝑇1 and 
𝑇2 in presence of cure fractions, it was observed small estimated values 
for this parameter, indicating a tendency of independence between the 
cure fractions to the two lifetimes.

It is observed that the correlation parameters 𝜏 and 𝜌 appear to be 
close to zero. In order to compare with an independent copula func-

tion, it was also estimated DIC and LPML, with estimates based on 
the simulated Gibbs samples given respectively, by DIC=897.4 and 
LPML=-442.9, that is, these values indicate that a dependency struc-

ture is needed to joint model 𝑇1 and 𝑇2, that is, the dependence between 
𝑇1 and 𝑇2 is small, but different of zero. In fact this can be confirmed by 
95% credibility intervals for the copula dependence parameters, where 
it is observed that zero is not included in the credible intervals.

Table 3 presents the distance measures between the bivariate 
Kaplan-Meier matrix and estimated bivariate lifetimes matrix estimated 
9

Table 3

Distance between the bivariate Kaplan-Meier and estimated bivariate Weibull 
survival function points with long-term survivors based on copula functions 
considering the diabetic retinopathy data set.

Copula 
Functions

Distances (norms)

Absolute 
Sum

Forbenius Maximum 
Column Sum

Maximum 
Row Sum

Maximum 
Absolute

FGM 1801.11 14.03 57.55 43.14 0.44

GFGM 1654.32 13.38 56.72 41.99 0.43

HKFGM1 1732.09 13.56 55.76 42.20 0.43

HKFGM2 1820.50 14.23 58.28 43.70 0.44

FKFGM 1837.15 13.98 56.45 42.49 0.43

Clayton 1539.06 13.18 56.79 43.11 0.43

Burr 1828.10 14.27 58.38 43.92 0.44

GH 1800.35 14.19 58.39 44.03 0.44

GB 2130.31 15.07 55.78 42.85 0.42

Galambos 1926.31 14.62 58.60 44.07 0.44

Frank 1706.60 13.88 57.93 43.98 0.44

AMH 1821.05 14.14 57.58 43.66 0.44

A12 1464.70 12.97 56.52 43.33 0.43

Joe 1886.84 14.47 58.72 43.66 0.44

Plackett 1562.55 13.38 57.20 43.73 0.44

Bold values represent the smaller distance.

by a Weibull distribution with long-term survivors based on the dif-

ferent copula functions presented in subsection 2.1 for the diabetic 
retinopathy data set. From the results of Table 3 it is observed that 
for four copulas there are lower distances, where it is observed that 
overall, copula A12 gives better results for the absolute e Forbenius 
norms, however this copula unlike other copulas is not appropriated to 
model small correlations. The GB copula exhibit a lower value for the 
maximum absolute norms, however this copula has only negative de-

pendence structure, not suitable for this real data set. Only the GFMF 
copula model gives some norm with small values and also better selec-

tion criteria estimates.

Fig. 4.1 presents the plots of the estimated bivariate Weibull sur-

vival functions based on the different copula functions in presence of 
cure fraction and the non-parametric Kaplan-Meier estimates consider-

ing diabetic retinopathy data set. It is possible to note that all copula 
functions display fitted curves suitable to the data. The estimated curves 
follow properly the empirical values related to the cure fraction plateau.

In fact for this application it is difficult to decide which copula func-

tion is more appropriate for the real data set, but bivariate models based 
from GFGM, HKFGM1, Clayton, A12 and Placket copulas were better 
fitted in general. However, under the proposed comparing criteria, dis-

tances and estimated survival functions, assuming the GFGM copula 
model seems to be the most appropriate model for this application, as 
showed by the different selection criteria used in this application, better 
results using comparative criteria indexes and in general, less distance 
between the empirical and the estimated values.

4.2. An application to a cervical cancer data set

In this subsection, it is considered an application of the bivariate 
Weibull with long-term survivors to a real medical set obtained from

a published study by Brenna et al. [68]. In this study, related to inva-

sive cervical cancer, 118 women received a standard treatment recom-

mended by the International Federation of Gynecology and Obstetrics 
(FIGO). The disease-free survival (DFS) is defined as the time from the 
date of surgery to the first event of disease recurrence and the over-

all survival (OS) is defined as the time from the date of surgery to the 
death. It was considered for the bivariate data analysis that 𝑇1 is the 
DFS time, while 𝑇2 is the OS time. There is 48% censored data in 𝑇1
and 53% censored data in 𝑇2. Table 4, presents the percentage of cen-

sored survival data for the cervical cancer data set. It is observed that 
about half of survival times are censored in both 𝑇1 and 𝑇2.

Table 5, it is showed the Bayesian posterior estimates for the pa-

rameters of the bivariate Weibull distribution with long-term sur-
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Fig. 4.1. Plots of the marginal survival functions estimated by the Kaplan-Meier method and assuming the bivariate Weibull distribution with long-term survivors 
based on copula functions considering the diabetic retinopathy data set. Treatment eye, panels (a), (c) and (d), and control eye, panels (b), (d) and (f).
Table 4

Description of the presence of censoring in cervical cancer data set.

DFS time (T1) OS time (T2) %

Censored data (𝛿1 = 0) Censored data (𝛿2 = 0) 48%

Completed data (𝛿1 = 1) Censored data (𝛿2 = 0) 5%

Censored data (𝛿1 = 0) Completed data (𝛿2 = 1) 0%

Completed data (𝛿1 = 1) Completed data (𝛿2 = 1) 47%

vivors based on copula functions in this study considering the cer-

vical cancer data. The posterior summaries of the parameters 𝛼1, 𝛼2, 
𝛽1, 𝛽2, 𝜓00, 𝜓10, 𝜓01, 𝜓11, 𝑝1 and 𝑝2 were obtained assuming the prior 
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distributions introduced in section 3 with hyperparameter values pre-

sented in subsection 2.1. In this application, it was considered for the 
parameter 𝜙 the following prior distributions: 𝜙 ∼𝐺𝑎𝑚𝑚𝑎(1, 0.1) assum-

ing Clayton copula, Burr copula, Galambos copula, Frank copula and 
Plackett copula, 𝜙 ∼ 𝑈𝑛𝑖𝑓 (1, 10) assuming GH copula and A12 copula, 
𝜙 ∼ 𝐵𝑒𝑡𝑎(1, 1) assuming GB copula.

It is noted that both the DIC and LPML values are very close together 
when considering the Clayton, GH, Galambos, Frank, A12 and Plackett 
copulas (these copula functions allow for high correlations between the 
lifetimes 𝑇1 and 𝑇2). However, the smaller DIC and the largest LPML 
are related to Frank copula.
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Table 5

Bayesian estimates for the parameters of the bivariate Weibull distribution with long-term survivors based on copula functions considering the cervical cancer data 
set.

FGM copula GFGM Copula HKFGM1 Copula HKFGM2 Copula FKFGM Copula

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

𝛼1 0.8343 (0.6216, 1.0840) 0.7441 (0.5551, 0.9661) 0.8675 (0.6578, 1.112) 0.7510 (0.5515, 0.9963) 0.8426 (0.6316, 1.0970)

𝛼2 0.2923 (0.1875, 0.4237) 0.2615 (0.1709, 0.3728) 0.2943 (0.1914, 0.4212) 0.2311 (0.1448, 0.3335) 0.2724 (0.1754, 0.3969)

𝛽1 0.8004 (0.6577, 0.9511) 0.7813 (0.6410, 0.9278) 0.7880 (0.6502, 0.9324) 0.8324 (0.6854, 0.9908) 0.8071 (0.6594, 0.9602)

𝛽2 1.3480 (1.1040, 1.6010) 1.3460 (1.1010, 1.6060) 1.3460 (1.1080, 1.6080) 1.4180 (1.1610, 1.6940) 1.3720 (1.1270, 1.6370)

𝜓00 0.3871 (0.2926, 0.4884) 0.3794 (0.2845, 0.4762) 0.3858 (0.2893, 0.486) 0.3799 (0.2859, 0.4817) 0.3864 (0.2880, 0.4858)

𝜓10 0.0263 (0.0012, 0.0769) 0.0386 (0.0066, 0.0886) 0.0399 (0.0080, 0.0908) 0.0378 (0.0054, 0.0894) 0.0383 (0.0066, 0.0890)

𝜓01 0.0108 (0.0002, 0.0400) 0.0108 (0.0003, 0.0397) 0.0105 (0.0003, 0.0384) 0.0109 (0.0003, 0.0396) 0.0107 (0.0003, 0.0386)

𝜓11 0.5757 (0.4736, 0.6743) 0.5711 (0.4717, 0.6722) 0.5637 (0.4627, 0.6647) 0.5714 (0.4679, 0.6679) 0.5646 (0.4618, 0.6661)

𝜔 0.2203 (0.1879, 0.2426) 0.2140 (0.1810, 0.2379) 0.2147 (0.1818, 0.2379) 0.2144 (0.1810, 0.2382) 0.2154 (0.1819, 0.2390)

𝑝1 0.3979 (0.3038, 0.4984) 0.3903 (0.2944, 0.4879) 0.3963 (0.2987, 0.4955) 0.3908 (0.2952, 0.4911) 0.3971 (0.2994, 0.4962)

𝑝2 0.4135 (0.3125, 0.5167) 0.4181 (0.3184, 0.5165) 0.4258 (0.3250, 0.5268) 0.4177 (0.3193, 0.5200) 0.4247 (0.3244, 0.5269)

𝑝 – – 3.1930 (1.6270, 4.8330) 1.0000 – 2.0060 (1.0460, 3.9640) 1.6700 (1.0190, 3.6850)

𝑞 – – 2.3260 (1.3530, 4.3390) 1.5350 (1.1270, 2.245) 1.0000 – – –

𝜙 0.8960 (0.6434, 0.9971) 0.7608 (0.4389, 1.3810) 2.0880 (1.2730, 3.0810) 0.5242 (0.2245, 0.9134) 0.9133 (0.6796, 0.9974)

𝜏 0.2987 (0.2145 0.3324) 0.2745 (0.1884, 0.3254) 0.2100 (0.1893, 0.3845) 0.2233 (0.1717, 0.2479) 0.1744a (0.0953, 0.2164)

𝜌 0.1991 (0.1430 0.2216) 0.4118 (0.2826, 0.4881) 0.3151 (0.1262, 0.2563) 0.3349 (0.2576, 0.3719) 0.2613a (0.1428, 0.3246)

DIC=488.3 DIC=462.7 DIC=485.2 DIC=494.0 DIC=493.6

LPML=-238.7 LPML=-232.7 LPML=-236.8 LPML=- 239.6 LPML=-241.2

Clayton Copula Burr Copula GH Copula GB Copula Galambos Copula

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

𝛼1 0.6423 (0.3634, 0.9210) 0.7106 (0.5133, 0.9503) 0.7610 (0.5066, 1.0190) 0.8431 (0.6272, 1.0970) 0.7676 (0.5446, 1.0250)

𝛼2 0.2900 (0.1743, 0.4259) 0.2481 (0.1617, 0.3636) 0.2703 (0.1681, 0.3898) 0.2823 (0.1804, 0.4087) 0.2683 (0.1721, 0.3869)

𝛽1 0.7205 (0.5452, 0.8890) 0.6723 (0.5366, 0.8167) 0.6880 (0.5379, 0.8347) 0.7616 (0.6194, 0.9087) 0.6924 (0.5544, 0.8448)

𝛽2 1.1010 (0.8508, 1.3510) 1.3520 (1.0750, 1.6220) 1.3020 (1.0190, 1.5760) 1.2770 (1.0290, 1.5490) 1.3130 (1.0600, 1.5890)

𝜓00 0.3003 (0.0571, 0.4438) 0.3585 (0.2551, 0.4612) 0.3470 (0.2180, 0.4611) 0.3936 (0.3002, 0.4893) 0.3516 (0.2432, 0.4619)

𝜓10 0.0491 (0.0128, 0.1097) 0.0412 (0.0092, 0.0926) 0.0451 (0.0106, 0.0980) 0.0342 (0.0030, 0.0846) 0.0439 (0.0117, 0.0946)

𝜓01 0.0115 (0.0003, 0.0417) 0.0111 (0.0003, 0.0399) 0.0110 (0.0003, 0.0419) 0.0114 (0.0003, 0.0420) 0.0108 (0.0003, 0.0402)

𝜓11 0.6390 (0.4979, 0.8558) 0.5893 (0.4852, 0.6970) 0.5969 (0.4853, 0.7216) 0.5608 (0.4617, 0.6606) 0.5937 (0.4858, 0.7049)

𝜔 0.1842 (0.1470, 0.2297) 0.2082 (0.1717, 0.2357) 0.2027 (0.1527, 0.2340) 0.2181 (0.1875, 0.2410) 0.2053 (0.1641, 0.2338)

𝑝1 0.3119 (0.0706, 0.4539) 0.3696 (0.2631, 0.4716) 0.3580 (0.2252, 0.4727) 0.4050 (0.3101, 0.5014) 0.3624 (0.2538, 0.4723)

𝑝2 0.3494 (0.1336, 0.4890) 0.3996 (0.2917, 0.5047) 0.3922 (0.2660, 0.5034) 0.4278 (0.3286, 0.5284) 0.3955 (0.2827, 0.5048)

𝜙 5.7260 (2.7200, 12.5900) 0.3241 (0.2141, 0.4799) 3.3120 (2.4640, 4.4880) 0.0204 (0.0006, 0.0748) 2.5700 (1.7870, 3.5670)

𝜏 0.7188 (0.5763, 0.8630) 0.6105 (0.5107, 0.7006) 0.6911 (0.5942, 0.7772) 0.0000 (-0.0001, 0.0000) 0.6895a (0.6009, 0.7684)

𝜌 0.8828a (0.7658,0.9701) 0.7923a (0.6920, 0.8709) 0.8665a (0.7789, 0.9280) -0.0191 (-0.0574, -0.0046) 0.8667 (0.7890, 0.9235)

DIC= 438.1 DIC= 444.8 DIC=438.8 DIC=507.2 DIC=438.6

LPML=-212.5 LPML=-217.7 LPML=-212.9 LPML=-254.1 LPML=-212.5

Frank Copula AMH Copula A12 Copula Joe Copula Plackett Copula

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

𝛼1 0.6415 (0.4260, 0.8541) 0.9550 (0.7231, 1.2160) 0.7468 (0.5130, 0.9971) 0.7035 (0.4968, 0.9387) 0.6905 (0.4952, 0.9060)

𝛼2 0.2519 (0.1642, 0.3575) 0.3174 (0.2059, 0.4547) 0.2745 (0.1763, 0.3943) 0.2588 (0.1645, 0.3717) 0.2671 (0.1762, 0.3801)

𝛽1 0.7594 (0.5886, 0.9322) 0.8541 (0.7125, 1.0040) 0.7168 (0.5647, 0.8718) 0.6430 (0.5098, 0.7837) 0.7724 (0.6226, 0.9385)

𝛽2 1.3060 (1.0210, 1.5770) 1.4030 (1.1830, 1.6350) 1.2370 (0.9975, 1.4820) 1.3190 (1.0550, 1.5920) 1.3370 (1.0930, 1.5980)

𝜓00 0.3377 (0.2019, 0.4538) 0.3880 (0.2873, 0.4893) 0.3401 (0.2203, 0.4536) 0.3534 (0.2422, 0.4612) 0.3538 (0.2456, 0.4616)

𝜓10 0.0460 (0.0116, 0.1040) 0.0414 (0.0112, 0.0908) 0.0459 (0.0129, 0.0996) 0.0423 (0.0098, 0.0972) 0.0404 (0.0084, 0.0894)

𝜓01 0.0106 (0.0003, 0.0386) 0.0103 (0.0003, 0.0379) 0.0107 (0.0003, 0.0401) 0.0109 (0.0003, 0.0408) 0.0106 (0.0003, 0.0388)

𝜓11 0.6058 (0.4900, 0.7395) 0.5603 (0.4591, 0.6589) 0.6032 (0.4889, 0.7260) 0.5935 (0.4851, 0.7069) 0.5952 (0.4877, 0.7063)

𝜔 0.2003 (0.1449, 0.2328) 0.2146 (0.1828, 0.2373) 0.2014 (0.1536, 0.2318) 0.2063 (0.1632, 0.2338) 0.2074 (0.1677, 0.2353)

𝑝1 0.3482 (0.2114, 0.4644) 0.3983 (0.3000, 0.4996) 0.3508 (0.2321, 0.4635) 0.3643 (0.2532, 0.4714) 0.3644 (0.2590, 0.4704)

𝑝2 0.3836 (0.2496, 0.4999) 0.4294 (0.3308, 0.5312) 0.3861 (0.2654, 0.5011) 0.3957 (0.2833, 0.5050) 0.3942 (0.2822, 0.5018)

𝜙 12.2800 (8.6390, 17.6700) 0.9868 (0.9430, 0.9998) 2.4110 (1.7350, 3.3470) 4.2640 (3.0720, 5.7240) 28.8800 (15.1400, 49.4000)

𝜏 0.7113 (0.6250, 0.7944) 0.3252 (0.3000, 0.3331) 0.7158 (0.6159, 0.8008) 0.6266 (0.5265, 0.7113) 0.6409a (0.5478, 0.7187)

𝜌 0.8933 (0.8246, 0.9471) 0.4684 (0.4362, 0.4781) 0.8849a (0.8016, 0.9433) 0.8079a (0.7094, 0.8830) 0.8133 (0.7299,0.8768)

DIC=437.8 DIC=462.7 DIC=438.1 DIC=450.0 DIC=439.6

LPML=-211.9 LPML=-225.9 LPML=-212.47 LPML=-218.4 LPML=-213.1

a Correlations obtained by numerical integration according to the equations (4) and (5). Bold values represent the better fit to the data.
It was also observed that the parameter 𝜔 related to for measure the 
covariance between of the cure fractions associated to lifetimes 𝑇1 and 
𝑇2, presented estimates close to 0.2 and 95% credible intervals with 
values close to this value assuming all copula functions which is an 
indication of dependence between both lifetimes assuming the presence 
of cure fraction. The estimated correlation coefficients 𝜏 and 𝜌 are high, 
reaching values close to 0.8; in this way, it was observed that assuming 
11
lower dependence copulas the estimated correlation was in all cases, 
close to their bounds. Furthermore, in this application, considering the 
models based on all copula functions, the estimates for the parameters 
𝜓00, 𝜓10, 𝜓01, 𝜓11 , 𝑝1 and 𝑝2 are close to each other.

In comparison with an independent copula function, it was also es-

timated DIC and LPML, with estimates based on the simulated Gibbs 
samples given respectively, by DIC=508.7 and LPML=-249.1. These 
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Table 6

Distance between the bivariate Kaplan-Meier matrix and estimated bivariate 
Weibull survival function points with long-term survivors based on copula func-

tions considering the cervical cancer data set.

Copula 
Functions

Distances (norms)

Absolute 
Sum

Forbenius Maximum 
Column Sum

Maximum 
Row Sum

Maximum 
Absolute

FGM 212.30 4.50 8.31 13.30 0.22

GFGM 190.38 4.24 8.15 13.06 0.22

HKFGM1 208.70 4.47 8.41 13.23 0.22

HKFGM2 191.66 4.23 8.12 12.92 0.22

FKFGM 209.99 4.49 8.43 13.26 0.22

Clayton 112.87 2.76 5.59 10.12 0.18

Burr 187.67 4.05 7.17 12.71 0.23

GH 154.19 3.52 6.66 11.85 0.21

GB 265.17 5.28 8.75 13.62 0.23

Galambos 158.73 3.62 6.87 12.06 0.21

Frank 155.53 3.42 6.29 11.34 0.20

AMH 216.59 4.54 8.46 13.21 0.22

A12 139.67 3.33 6.60 11.46 0.19

Joe 189.26 4.07 6.96 12.72 0.23

Plackett 161.86 3.63 6.97 11.95 0.20

Bold values represent the smaller distance.

Table 7

Description of the presence of censoring in breast cancer data set.

DFS time (T1) OS time (T2) %

Censored data (𝛿 = 0) Censored data (𝛿 = 0) 70%

Completed data (𝛿 = 1) Censored data (𝛿 = 0) 10%

Censored data (𝛿 = 0) Completed data (𝛿 = 1) 5%

Completed data (𝛿 = 1) Completed data (𝛿 = 1) 15%

results indicate that a dependent structure assuming copula functions is 
needed in the data analysis of 𝑇1 and 𝑇2.

Table 6 shows the distance measures between the bivariate Kaplan-

Meier matrix and estimated bivariate lifetimes matrix fitted by the 
Weibull distribution with long-term survivors based from the different 
copula functions considering the cervical cancer data set. The fitted bi-

variate model based on the Clayton copula function shows the lower 
values between empirical and estimated lifetimes. Indeed, this can be 
explained by Fig. 4.2 where the fitted curve from Clayton copula follow 
most closely the Kaplan-Meier plot.

In some survival curves estimated from the models based on the cop-

ula functions, like Clayton, Galambos, Frank, A12 and Packett copulas, 
it is observed that these estimated models give better approximation for 
the Kaplan-Meier curve especially at the right end when compared to 
the other fitted models; also these copula functions gives greatest LPML, 
DIC values and the smallest distance measures between matrices. How-

ever the bivariate model based on the Clayton copula is the best model 
under any criteria considered in this study.

4.3. An application to a breast cancer data set

In this subsection it is assumed the use of the proposed models in 
the data analysis of a data set related to a cohort, where 97 patients 
underwent surgical treatment for breast cancer followed up for a period 
ranging from the year 2000 to 2011. More details of this study can be 
found in Shigemizu et al. [69]. For this bivariate lifetime application 
it was considered the disease-free survival time (DFS) and the overall 
survival time (OS), denoted respectively by 𝑇1 and 𝑇2. In the dataset, 
there is 75% censored data in the disease-free survival time (𝑇1) and 
80% censored data in the overall survival time (𝑇2). Table 7 shows 
the percentage of censored survival data for the breast cancer data set, 
where it is possible to note that only 15% of the survival times are not 
censored in both 𝑇1 and 𝑇2, the most of it are censored in both lifetimes.

Table 8 shows the posterior summaries of interest for the bivariate 
Weibull distribution with long-term survivors based on the copula func-

tions described in the subsection 2.1 considering the breast cancer data 
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set and the same hyperparameter values presented in subsection 4.2. 
It is possible to see that DIC and LPML values estimated assuming the 
Clayton copula function indicates the better fitted model. In this appli-

cation, it is was observed that assuming all different copula functions, 
there are satisfactory estimators for the parameters 𝜓00, 𝜓10, 𝜓01, 𝜓11, 𝑝1
and 𝑝2. In addition, the model based on the Clayton copula function es-

timated the larger value for 𝜔 (close to 0.2), indicating a dependence 
between the cure fractions to lifetimes 𝑇1 and 𝑇2.

The estimated correlation parameters 𝜏 and 𝜌 ranged widely depend-

ing on the assumed copula function. However, considering the copula 
functions with the best DIC and LPML values (Clayton, Frank, A12 and 
Plackett copula) the Kendall and Spearman correlation measure was 
large (about 0.7 and 0.8 respectively), an indication of the existence of 
a large correlation between 𝑇1 and 𝑇2. Under copula functions of the 
GFGM family it is possible to note that the range of the parameter 𝜙
is very large, taking practically all values of the space parameter of 𝜙, 
that is, implying that the range of the parameters 𝜏 and 𝜌 became very 
wide; this fact could be the result of high percentage of censored sur-

vival times in the data set.

For comparative purposes, an independent copula function was also 
estimated and based on the simulated Gibbs samples it was obtained 
DIC=331.6 and LPML=-160.4. This fact indicates that a dependency 
structure is needed to joint model 𝑇1 and 𝑇2, especially comparing with 
Clayton and Frank copula. It is also worth mentioning that, according 
to the obtained estimates, the correlation between 𝑇1 and 𝑇2 is high 
(larger than 0.6).

Table 9 displays the distances between the bivariate empirical 
Kaplan-Meier estimates matrix and estimated bivariate lifetimes assum-

ing a Weibull distribution in presence of long-term survivors based on 
different copula functions considering the breast cancer data set. The 
Frank copula exhibits the shortest distances in two norms, absolute sum 
and Forbenius norm, an indication of better fit also suggested by LPML 
and DIC indexes. Nevertheless, it is interesting to note that Joe copula 
is not indicated as the best fitted model by DIC or LPML, but in three 
norms it is presented the smallest distances.

In Fig. 4.3 it is presented the plots of the Weibull distribution in 
presence of long-term survivors based on different copula functions and 
the survival function estimated by the Kaplan-Meier method consider-

ing the breast cancer data set. It is possible to note that the survival 
curves fitted from the copula functions are very closed to the empirical 
Kaplan-Meier curve, that is, this suggests that the estimated model is 
adequate for this data set. From the graphics for 𝑇2 it is possible to note 
that the estimated curves based on copula functions measured slightly 
below the cure fraction.

Overall, in this application the choice of appropriate copula func-

tions to be fitted by the data set is more unclear than those observed in 
the others applications. Among these, the most relevant were Clayton, 
Frank and Plackett copulas. In summary, the Frank copula since it has 
good DIC and LPML values, and lower distances between the empirical 
and estimated lifetime matrices could be considered as the better fitted 
model.

5. Conclusion

In this paper it is considered different copula functions to construct 
bivariate standard Weibull lifetime distributions in presence of long-

term survivors and applied for three different real data sets. The Weibull 
distribution was chosen in this article due to its versatility and rela-

tive simplicity, but the proposed methodology showed here could be 
adapted to other continuous distributions assumed for lifetime data. 
The models considered in this study were based on marginal distribu-

tions considering only two parameters showing reasonable fit for the 
data in all considered applications, the estimated survival curves were 
close to the correspondent empirical Kaplan and Meier survival curves. 
For the data sets assumed in this study it was also observed good es-

timators for the percentages of cure fraction in all applications. The 
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Fig. 4.2. Plots of the marginal survival function estimated by the Kaplan-Meier method and assuming bivariate Weibull distribution with long-term survivors based 
on copula functions considering the cervical cancer data set. Time of DFS, panels (a), (c) and (d), and time of OS, panels (b), (d) and (f).
estimated percentages for parameters 𝜙00, 𝜙01, 𝜙10 and 𝜙11 by the pro-

posed bivariate model were consistent with the values observed in the 
real data in each application. It was also noted that the considered mod-

els were able to measure the correlation between the both lifetimes also 
satisfactory measuring the covariance between the cure fractions asso-

ciated to the lifetimes 𝑇1 and 𝑇1.
In this study, it was observed that when considering copula func-

tions which can adequately measure the correlation structure between 
𝑇1 and 𝑇2, the fit of the estimated models to the real data is very sim-

ilar, making it difficult to discriminate for the best copula using DIC, 
LPML or even graphically. Additionally, the comparison of the distances 
between the matrix of the bivariate survival times (obtained by the bi-

variate Kaplan-Meier estimator presented in section 2.4) and the matrix 
of the survival times estimated by copula means provides an additional 
13
criterion to decide which copula displays the best fit. It is important to 
point out that the choice of the most suitable copula function usually 
is complicated, varying according to the data set and, among the vari-

ous copula functions presented in the literature, it results that some can 
produce equivalent results; therefore, it is recommended in each appli-

cation to use several selection procedures to device which copula is the 
best as considered in this study. The empirical Kaplan and Meier bi-

variate lifetime function estimator considered in this study is of easy 
interpretation and implementation. However, it was observed that this 
estimator in some lifetimes (especially the rightmost times) has a ten-

dency to estimate the fraction of survivals near zero, discarding these 
points of a possible cure fraction; this fact is evidenced when observing 
the values of the absolute maximum distances where these maximum 
distances were close to the final lifetimes. However, the comparison 
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Table 8

Bayesian estimates for the parameters of the bivariate Weibull distribution in presence of long-term survivors based on copula functions considering the breast 
cancer data set.

FGM copula GFGM Copula HKFGM1 Copula HKFGM2 Copula FKFGM Copula

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

𝛼1 0.2821 (0.1402, 0.4774) 0.2831 (0.1418, 0.4807) 0.2970 (0.1519, 0.4973) 0.2815 (0.1433, 0.4703 0.2779 (0.1372, 0.4678)

𝛼2 0.1800 (0.0675, 0.3603) 0.1703 (0.0681, 0.3445) 0.1752 (0.0714, 0.3359) 0.1734 (0.0621, 0.3554) 0.1886 (0.0691, 0.3815)

𝛽1 1.2270 (0.8630, 1.6240) 1.2290 (0.8589, 1.6380) 1.2320 (0.8607, 1.6120) 1.2280 (0.8654, 1.6220) 1.2300 (0.8557, 1.6360)

𝛽2 1.2890 (0.7611, 1.9050) 1.1740 (0.7026, 1.8580) 1.1690 (0.7103, 1.8000) 1.3180 (0.7593, 1.9890) 1.3290 (0.7925, 1.9450)

𝜓00 0.6697 (0.5887, 0.7781) 0.6663 (0.5624, 0.7594) 0.6681 (0.5659, 0.7573) 0.6708 (0.5691, 0.7654) 0.6708 (0.5719, 0.7616)

𝜓10 0.0871 (0.0084, 0.1752) 0.0678 (0.0025, 0.1699) 0.0693 (0.0032, 0.1634) 0.0894 (0.0082, 0.1738) 0.0954 (0.0140, 0.1784)

𝜓01 0.0181 (0.0005, 0.0660) 0.0196 (0.0005, 0.0741) 0.0004 (0.0022, 0.0686) 0.0184 (0.0005, 0.0701) 0.0166 (0.0004, 0.0580)

𝜓11 0.2252 (0.1370, 0.3414) 0.2463 (0.1421, 0.3698) 0.2442 (0.1477, 0.3586) 0.2214 (0.1298, 0.3361) 0.2172 (0.1327, 0.3317)

𝜔 0.1477 (0.0945, 0.2092) 0.1610 (0.0971, 0.2202) 0.1603 (0.1014, 0.2186) 0.1453 (0.0907, 0.2060) 0.1426 (0.0917, 0.2039)

𝑝1 0.6977 (0.5887, 0.7781) 0.6959 (0.5835, 0.7800) 0.6965 (0.5871, 0.7760) 0.6992 (0.5895, 0.7795) 0.6974 (0.5878, 0.7776)

𝑝2 0.7567 (0.6344, 0.8494) 0.7341 (0.6048, 0.8432) 0.7375 (0.6140, 0.8409 0.7602 (0.6372, 0.8572) 0.7663 (0.6498, 0.8525)

𝑝 – – 2.3560 (1.0530, 4.6600) 1.0000 – 2.3420 (1.0360, 4.7000) 5.3590 (1.1790, 9.7210)

𝑞 – – 3.2920 (1.2350, 4.9200) 1.9670 (1.0540, 2.8920) 1.0000 – – –

𝜙 0.4034 (-0.2531, 0.3278) 0.8012 (-0.8887, 2.8400) 1.5960 (1.2730, 3.0810) 0.2364 (-0.2902, 0.7528) 0.1779 (-0.9092, 0.9737)

𝜏 0.0896 (-0.1687, 0.2185) 0.1003 (-0.1525, 0.2730) 0.0815 (0.0804, 0.7528) 0.1127 (-0.0969, 0.2381) 0.0215a (-0.0886, 0.1622)

𝜌 0.1345 (-0.7593, 0.9834) 0.1504 (-0.2288, 0.4095) 0.1223 (-0.0536, 0.5019) 0.1691 (-0.1454, 0.3571) 0.0322a (-0.1327, 0.2428)

DIC=330.5 DIC=325.1 DIC=327.9 DIC=330.7 DIC=331.0

LPML=-159.8 LPML=-159.3 LPML=-158.6 LPML=-159.7 LPML=-160.2

Clayton Copula Burr Copula GH Copula GB Copula Galambos Copula

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

𝛼1 0.2983 (0.1483, 0.5023) 0.3078 (0.1606, 0.4943) 0.3284 (0.1533, 0.5536) 0.2692 (0.1296, 0.4557) 0.3307 (0.1623, 0.5440)

𝛼2 0.1581 (0.0651, 0.2961) 0.1670 (0.0673, 0.3212) 0.1752 (0.0731, 0.3306) 0.2141 (0.0794, 0.4288) 0.1738 (0.0714, 0.3198)

𝛽1 1.2170 (0.8175, 1.6410) 1.1300 (0.7733, 1.5230) 1.0740 (0.6400, 1.4790) 1.2030 (0.8286, 1.6350) 1.0740 (0.6728, 1.4680)

𝛽2 0.9199 (0.6133, 1.3050) 1.0630 (0.6142, 1.7270) 0.8733 (0.5270, 1.3360) 1.3740 (0.8794, 1.9470) 0.9030 (0.6728, 1.4680)

𝜓00 0.6469 (0.5142, 0.7516) 0.6585 (0.5284, 0.7600) 0.6338 (0.3981, 0.7476) 0.6730 (0.5735, 0.7634) 0.6363 (0.4351, 0.7503)

𝜓10 0.0316 (0.0009, 0.1005) 0.0566 (0.0017, 0.1532) 0.0360 (0.0008, 0.1221) 0.1068 (0.0447, 0.1832) 0.0376 (0.0010, 0.1290)

𝜓01 0.0460 (0.0018, 0.1411) 0.0283 (0.0007, 0.1132) 0.0455 0.0012, 0.1580) 0.0148 (0.0004, 0.0532) 0.0454 (0.0012, 0.1665

𝜓11 0.2755 (0.1705, 0.3880) 0.2565 (0.1464, 0.3867) 0.2847 (0.1699, 0.4800) 0.2054 (0.1285, 0.2975) 0.2808 (0.1678, 0.4313)

𝜔 0.1745 (0.1150, 0.2221) 0.1649 (0.0997, 0.2211) 0.1719 (0.1012, 0.2245) 0.1353 (0.1285, 0.2975) 0.1725 (0.1072, 0.2243)

𝑝1 0.7029 (0.5802, 0.7898) 0.6968 (0.5721, 0.7845) 0.6993 (0.4849, 0.7856) 0.6978 (0.5867, 0.7777) 0.6916 (0.5246, 0.7858)

𝑝2 0.6785 (0.5447, 0.7918) 0.7152 (0.5615, 0.8355) 0.6699 (0.4403, 0.8021) 0.7798 (0.6851, 0.8584) 0.6738 (0.4660, 0.8043)

𝜙 5.5390 (1.9070, 12.4600) 1.3730 (0.3592, 4.1980) 2.4760 (1.3060, 4.3770) 0.3200 (0.0100, 0.8760) 1.6630 (0.2914, 3.4330)

𝜏 0.7033 (0.4880, 0.8617) 0.3250 (0.1064, 0.5819) 0.5574 (0.2345, 0.7715) -0.0003 (-0.0033, 0.0000) 0.5320a (0.0854, 0.7563)

𝜌 0.8652a (0.6627, 0.9680) 0.4591a (0.1588, 0.7684) 0.7373a (0.3691, 0.9281) -0.1995 (-0.4751, -0.0113) 0.7047 (0.1056, 0.9183)

DIC= 318.1 DIC= 330.1 DIC=328.4 DIC=332.6 DIC=329.4

LPML=-152.7 LPML=-158.8 LPML=-157.2 LPML=-160.7 LPML=-157.3

Frank Copula AMH Copula A12 Copula Joe Copula Plackett Copula

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

𝛼1 0.2888 (0.1429, 0.4700) 0.2978 (0.1527, 0.5011) 0.341 (0.1812, 0.5556) 0.3015 (0.1197, 0.5185) 0.2861 (0.1490, 0.4720)

𝛼2 0.1393 (0.0602, 0.2591) 0.1696 (0.0658, 0.3271) 0.1764 (0.0754, 0.3237) 0.1681 (0.0619, 0.3277) 0.1522 (0.0618, 0.2906)

𝛽1 1.1860 (0.8104, 1.5930) 1.2650 (0.8926, 1.6650) 1.156 (0.7582, 1.5360) 1.0420 (0.5820, 1.4890) 1.2350 (0.8580, 1.6330)

𝛽2 0.9586 (0.6309, 1.3710) 1.1430 (0.7167, 1.7870) 0.9085 (0.5874, 1.3140) 0.9140 (0.4937, 1.5560) 0.9307 (0.6156, 1.3200)

𝜓00 0.6409 (0.5087, 0.7491) 0.6706 (0.5706, 0.7618) 0.6515 (0.5177, 0.7555) 0.6117 (0.1477, 0.7508) 0.6545 (0.5377, 0.7520)

𝜓10 0.0313 (0.0009, 0.1039) 0.0602 (0.0020, 0.1542) 0.0322 (0.0008, 0.1088) 0.0458 (0.0015, 0.1430) 0.0171 (0.0004, 0.0640)

𝜓01 0.0532 (0.0024, 0.1566) 0.0205 (0.0004, 0.0750) 0.0413 (0.0012, 0.1400) 0.0459 (0.0011, 0.1912) 0.0268 (0.0006, 0.0950)

𝜓11 0.2747 (0.1731, 0.3893) 0.2487 (0.1472, 0.3667) 0.2749 (0.1700, 0.3942) 0.2966 (0.1617, 0.6558) 0.3016 (0.2093, 0.4102)

𝜔 0.1721 (0.1098, 0.2222) 0.1638 (0.1007, 0.2212) 0.1755 (0.1153, 0.2231) 0.1663 (0.0816, 0.2250) 0.1947 (0.1465, 0.2310)

𝑝1 0.7040 (0.5810, 0.7933) 0.7011 (0.5918, 0.7811) 0.6928 (0.5771, 0.7892) 0.6676 (0.3117, 0.7819) 0.6913 (0.5753, 0.7734)

𝑝2 0.6722 (0.5390 0.7864) 0.7308 (0.6071, 0.8387) 0.6838 (0.5449, 0.7939) 0.6575 (0.1865, 0.8191) 0.6716 (0.5525, 0.7708)

𝜙 10.1400 (4.2710, 18.6400) 0.6775 (-0.5285, 0.9952) 1.8780 (1.0820, 3.2830) 2.6890 (1.1100, 5.6310) 16.5600 (5.0480, 39.0300)

𝜏 0.6437 (0.4078, 0.8042) 0.2102 (-0.1045, 0.3301) 0.6159 (0.3839, 0.7969) 0.4251 (0.0593, 0.7073) 0.5731a (0.3326, 0.6961)

𝜌 0.8308 (0.5826, 0.9520) 0.3070 (-0.1565, 0.4746) 0.7901a (0.5412, 0.9350) 0.5852a (0.1098, 0.8789) 0.7445 (0.4965, 0.8548)

DIC=320.3 DIC=324.7 DIC=323.1 DIC=332.1 DIC=321.4

LPML=154.0 LPML=-158.1 LPML=-154.8 LPML=-158.8 LPML=-154.5

a Correlations obtained by numerical integration according to the equations (4) and (5). Bold values represent the better fit to the data.
between the distances of the empirical and estimated matrices gives a 
additional form to compare the fit of the proposed models.

The use of the Bayesian approach and MCMC methods was consid-

ered due to its flexibility and effectiveness in estimating the parameters 
of more complex models. It is believed that there is also merit for the 
possibility of using the prior distribution in the model parameters to 
restrict the estimates with the corresponding parametric space. It was 
14
also observed that the best MCMC algorithm convergences were ob-

served when the lifetimes 𝑇1 and 𝑇2 are not very large, that is, with 
values smaller than 20. Even considering the simple two-parameter 
Weibull standard probability distribution as the marginal distributions, 
an appropriate choice is required for the initial values in the itera-

tive simulation algorithm and a careful choice for the values of the 
hyperparameters of the prior distributions for the parameters of inter-
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Fig. 4.3. Plots of survival function estimated by the Kaplan-Meier method and assuming bivariate Weibull distributions with long-term survivors based on copula 
functions the considering breast cancer data set. Time of DFS, panels (a), (c) and (d), and time of OS, panels (b), (d) and (f).
est, according to the structure of the model and the data. It is worth 
mentioning that the algorithms used in the computational simulation 
approach for each proposed model are easy to implement using R and 
OpenBugs (free softwares). The computational OpenBugs codes used in 
this research are available as complementary material with the online 
version of this paper.
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Table 9

Distance between the bivariate Kaplan-Meier matrix and estimated bivariate 
survival function assuming a Weibull distribution with long-term survivors 
based on copula functions considering the breast cancer data set.

Copula 
Functions

Distances (norms)

Absolute Forbenius Maximum 
Column

Maximum 
Row

Maximum 
Absolute

FGM 672.14 9.63 45.08 24.78 0.68

GFGM 678.60 9.64 45.17 24.58 0.67

HKFGM1 710.20 9.85 45.20 24.28 0.67

HKFGM2 662.22 9.57 45.08 24.88 0.68

FKFGM 668.66 9.61 44.99 24.82 0.68

Clayton 594.54 8.82 44.28 24.10 0.68

Burr 665.52 9.49 44.95 24.28 0.67

GH 648.15 9.10 44.07 23.03 0.67

GB 665.28 9.62 44.89 24.97 0.68

Galambos 653.86 9.18 44.24 23.18 0.67

Frank 587.45 8.77 44.20 23.95 0.68

AMH 665.20 9.60 45.36 25.02 0.67

A12 622.08 9.07 44.62 24.25 0.68

Joe 743.36 9.71 43.35 21.09 0.65

Plackett 605.11 8.95 44.54 24.29 0.68

Bold value represents the smaller distance.
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