

39th Topical Meeting

of the International Society of Electrochemistry

23 - 26 March 2025

Natal, Brazil

The Role of Electrochemistry
in Sustainable Energy
and the Environment

PROGRAM

<https://topical39.ise-online.org>

e-mail: events@ise-online.org

Biomass-Derived FeCo Phosphides on Graphene for Efficient Ammonia Synthesis via Electrochemical N₂ Reduction

Eduardo A. Reis^{a,b}, Anelisse B. Silva^c, Hermenegildo Garcia^d, Cauê Ribeiro^{a,b}, Lucia H. Mascaro^c

^aInstitute of Chemistry of São Carlos, University of São Paulo, São Carlos-SP, Brazil.

^cNational Nanotechnology Laboratory for Agribusiness, Embrapa Instrumentation São Carlos, São Carlos-SP, Brazil.

^cDepartment of Chemistry, Federal University of São Carlos, São Carlos-SP, Brazil.

^dUniversidad Politécnica de Valencia, Valencia, Spain.

eduardoarizono@gmail.com

Ammonia is a crucial chemical feedstock and a potential green energy carrier; however, its industrial production relies on the Haber-Bosch process, which requires high energy inputs and emits substantial CO₂. Electrochemical nitrogen reduction reaction (N₂RR), powered by renewable energy, offers a promising alternative under ambient conditions [1]. Despite its advantages, N₂RR is hindered by challenges such as low faradaic efficiencies, slow reaction kinetics, and insufficient ammonia yield, necessitating the development of more efficient electrocatalysts [2]. This work explores Fe and Co-based metal phosphides as electrocatalysts for ENRR, synthesizing (Fe)CoP/N-graphene via a sustainable chitosan-hydrogel method followed by thermal conversion. This method avoids traditional phosphorus sources like red phosphorus and hypophosphite, thus preventing the release of phosphine gas (PH₃) during synthesis. The chitosan-hydrogel was initially converted into microspheres, dried using CO₂ supercritical drying—a process known to enhance porosity—and then annealed under an argon atmosphere. High-resolution transmission electron microscopy analysis revealed well-distributed Fe-Co nanoparticles embedded within the spongy graphene matrix. For N₂RR, individual Fe and Co phosphides, as well as FeCo-supported graphene, were evaluated for catalytic activity in a 0.1 M Na₂SO₄ electrolyte at applied potentials ranging from -0.20 to -1.2 V vs. RHE. The FeCo phosphide catalyst demonstrated a threefold increase in ammonia production rate compared to single-metal phosphide, indicating a synergistic effect between Fe and Co bimetallic active sites. These findings suggest that FeCo phosphides are promising materials for efficient electrochemical ammonia synthesis, advancing the potential for sustainable, low-emission ammonia production.

References:

- [1] IEA. Global Hydrogen Review 2021; 2021.
- [2] Ma et al. Nano Research., 555–569, 2021.

Acknowledgments:

This work was supported by FAPESP (2013/07296-2, #2018/01258-5, 2017/ 11986-5, 2020/11756-2, 2022/15742-1), CNPq (311769/2022-5, #152607/2022-6,), and FINEP (01.22.0179.00). Spanish Ministry of Science and Innovation (CEX-2021-001230-S and PDI2021-0126071-OB-CO21) and Generalitat Valenciana (Prometeo 2021/038).