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Abstract A branch of research related to discrete degradation processes is through marked
point process and in particular, in this paper we consider a coherent system under its
signature point process representation. In this setting the system failure time coincides
with a ordered component failure time and the ordered components failure times, before
the system failure time are interpreted as degradation times. Degradation models provides
inferences about the system failure time distribution.
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1 Introduction

High reliability coherent systems generally require its individual components to have
extremely high reliability over a long period of time. Short product development time,
constructed from such components, puts a severe time constraint on reliability tests and
frequently, few or no failures occur during such tests. Thus, it is difficult to assess reliabi-
lity with traditional life tests which record only systems failure time. When degradation
measures can be taken over time, a physical relationship between component failure, and
degradation makes possible the use of degradation models to provide inferences about the
failure time distribution. Therefore, using degradation measures properly will help engine-
ers to assess coherent systems reliability more quickly and accurately.

Continuous degradation models have been applied to assess device reliability for decades.
When the degradation measurements follows a Wiener process, the corresponding failure
distribution is well known as an inverse Gaussian distribution ( see Park, C. and Padgett,
W.J., (2005) and (2006)). However, various types of degradation processes do not all occur
in a continuous pattern. Discrete degradation processes have been observed and a branch
of research related to then is through marked point process. In particular we can consider
a coherent system under its signature point process representation in which the system
distribution function lifetime is a linear combination of the ordered component lifetimes
distribution functions where the combination coefficients are the signatures. In this setting
the system failure time coincides with a ordered component failure time and the ordered
components failure times, before the system failure are interpreted as degradation times.

2 The Signature Marked Point Process

2.1 The mathematical details

In our general setup, we consider the vector (T1, ..., Tn) of n component lifetimes of a
coherent system with lifetime S, which are finite and positive random variables defined
in a complete probability space (Ω,=, P ), with P (Ti 6= Tj) = 1, for all i 6= j, i, j in
C = {1, ..., n}, the index set of components. The component lifetimes can be dependent
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but simultaneous failures are ruled out. As in Barlow and Proschan (1981),the system
lifetime and its components can be related by the series parallel decomposition:

S = φ(T) = min
1≤j≤k

max
i∈Kj

Ti,

where Kj, 1 ≤ j ≤ k are minimal cut sets, that is, a minimal set of components whose joint
failure causes the system fail.

However the evolution of components in time define a marked point process given th-
rough the failure times and the corresponding marks.

We denote by T(1) < T(2) < ... < T(n) the ordered lifetimes T1, T2, ..., Tn, as they appear
in time and by Xi = {j : T(i) = Tj} the corresponding marks. As a convention we set
T(n+1) = T(n+2) = ... = ∞ and Xn+1 = Xn+2 = ... = e where e is a fictitious mark not in
C, the index set of the components. Therefore the sequence (Tn, Xn)n≥1 defines a marked
point process.

The mathematical description of our observations, the complete information level, is
given by a family of sub σ-algebras of =, denoted by (=t)t≥0, where

=t = σ{1{T(i)>s}, Xi = j, 1 ≤ i ≤ n, j ∈ C, 0 < s ≤ t},

satisfies the Dellacherie conditions of right continuity and completeness.
Intuitively, at each time t the observer knows if the event {T(i) ≤ t,Xi = j} have either

occurred or not and if it had, he knows exactly the value T(i) and the mark Xi. Follows
that the component and the system lifetimes are =t stopping times.

We consider the lifetimes T(i),j defined by the failure event {T(i), Xi = j} with their sub-
distribution function F(i),j(t) = P (T(i),j ≤ t) = P (T(i) ≤ t,Xi = j) suitable standardized.

In what follows we assume that relations between random variables and measurable
sets, respectively, always hold with probability one, which means that the term P -a.s., is
suppressed.

Remark 2.1.1 An extended and positive random variable τ is an =t-stopping time if,
and only if, {τ ≤ t} ∈ =t, for all t ≥ 0; an =t-stopping time τ is called predictable if an
increasing sequence (τn)n≥0 of =t-stopping time, τn < τ , exists such that limn→∞ τn = τ ;
an =t-stopping time τ is totally inaccessible if P (τ = σ < ∞) = 0 for all predictable
=t-stopping time σ. For a mathematical basis of stochastic processes applied to reliability
theory see the books of Aven and Jensen(2009) and Bremaud (1981).

The marked point Nt((i), j) = 1{T(i)≤t,Xi=j} is an =t-sub-martingale, that is, T(i),j is
=t-measurable and E[Nt((i), j)|=s] ≥ Ns((i), j) for all 0 ≤ s ≤ t.

From the Doob-Meyer decomposition, there exists a unique =t-predictable process,
(At((i), j)t≥0, called the =t-compensator of Nt((i), j), with A0((i), j) = 0 and such that
Mt((i), j) = Nt((i), j) − At((i), j) is a zero mean uniformly integrable =t-martingale. We
assume that Ti, 1 ≤ i ≤ n are totally inaccessible =t-stopping time and, under this assump-
tion, At((i), j) is continuous. In certain sense, an absolutely continuous lifetime is totally
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inaccessible. Resuming, we assume a general lifetime model for T(i),j, represented by the
smooth =t-semi-martingale:

1{T(i),j≤t} =

∫ t

0

1{T(i),j>s}λs((i), j)ds+Mt((i), j).

The process (λt((i), j))t≥0 is called the intensity process of the semi-martingale repre-
sentation and generalizes the classical notion of hazard rate. Intuitively indicates the pro-
minence for failure, on the basis of all observations available up to, but not including, the
present. As Nt((i), j) can only count on the time interval (T(i−1), T(i)], the corresponding
compensator differential λt((i), j) must vanish outside this interval.

Note that, to count the i−th failure we let Nt((i)) = Σj≥1Nt((i), j) with =t-compensator
process At((i)) = Σj≥1At((i), j). Nt(j) = Σi≥1Nt((i), j), counts the component failure and
it has =t-compensator process At(j) = Σi≥1At((i), j) .

In this fashion we have the survival functions

P (T(i),j > t) = E[e
∫ t
0 1{T(i),j>s}λs((i),j)ds],

and the probability densities

fT(i),j(t) = E[1{T(i),j>t}λt((i), j)e
∫ t
0 1{T(i),j>s}λs((i),j)ds].

2.2 The signature marked point process

The behavior of the stochastic process P (S > t|=t), as the information flows continu-
ously in time is given by Bueno (2013):

Theorem 2.2.1 Let T1, T2, ..., Tn be the component lifetimes of a coherent system with
lifetime T . Then,

P (S ≤ t|=t) =
n∑

k,j=1

1{S=T(k),j}1{T(k),j≤t}.

Proof From the total probability rule we have P (S ≤ t|=t) =

n∑
k,j=1

P ({S ≤ t} ∩ {S = T(k),j|=t) =
n∑

k,j=1

E[1{S=T(k),j}1{T(k),j≤t}|=t].

As S and T(k),j are =t-stopping time and it is well known that the event {S = T(k),j} ∈
=T(k),j where

=T(k),j = {A ∈ =∞ : A ∩ {T(k),j ≤ t} ∈ =t,∀t ≥ 0},

we conclude that {S = T(k),j} ∩ {T(k),j ≤ t} is =t-measurable.
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Therefore P (S ≤ t|=t) =

n∑
k,j=1

E[1{S=T(k),j}1{T(k),j≤t}|=t] =
n∑

k,j=1

1{S=T(k),j}1{T(k),j≤t}.

The above decomposition allows us to define the signature process at component level.

Definition 2.2.2 The vector (1{S=T(k),j}, 1 ≤ k, j ≤ n) is defined as the marked point
signature process of the system φ.

Remark 2.2.3
We can calculate the system reliability as

P (S ≤ t) = E[P (S ≤ t|=t)] =

E[
n∑

k,j=1

1{S=T(k),j}1{T(k),j≤t}] =
n∑

k,j=1

P ({S = T(k),j} ∩ {T(k),j ≤ t}).

If the component lifetimes are independent and identically distributed we have,

P (S ≤ t) =
n∑

k,j=1

P (S = T(k),j)P (T(k),j ≤ t)

recovering the classical result as in Samaniego (1985).

To calculate the =t-compensator of 1{S≤t}, where S is the system lifetime we consider
the smooth semi-martingale representation in Section 2.1.

Corollary 2.2.4 Let T1, T2, ..., Tn, be the components lifetimes of a coherent system with
lifetime T . Then, the =t-submartingale P (S ≤ t|=t), has the =t-compensator

n∑
k,j=1

∫ t

0

1{T(k),j>s}1{S=T(k),j}λs((k), j)ds.

Proof
We consider the process

1{S=T(k),j}(w, s) = 1{S=T(k),j}(w).

It is left continuous and =t-predictable. Therefore∫ t

0

1{S=T(k),j}(s)dMs((k), j)

is an =t-martingale.
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As a finite sum of =t-martingales is an =t-martingale, we have

n∑
k,j=1

∫ t

0

1{S=T(k),j}1{T(k),j≤t} −
n∑

k,j=1

∫ t

0

1{T(k),j>s}1{S=T(k),j}λs((k), j)ds =

n∑
k,j=1

1{S=T(k),j}Mt((k), j)

is an =t-martingale. As the compensator is unique we finish the proof.

3 Parameter estimation

Using the system distribution representation

P (S ≤ t|=t) =
n∑

k,j=1

1{S=T(k),j}1{T(k),j≤t},

we note that the system failure is equal to some ordered component failure. Under {S =
T(i),j}, for fixed i and some j, we consider the ”components”failure times t(k),jk , k < i, for
some jk ∈ C = {1, ..., n} as degradation times and t(i),ji , for some ji, ji ∈ C−{j1, j2, ..., ji−1}
as the system failure time.

The contribution of these degradation times to the likelihood function is

πi−1k=1πjk∈CE[λt(k),jke

∫ t(k),jk
t(k−1),jk−1

λs(k),jk
ds

].

The degradation times log-likelihood function is given by

Σi−1
k=1Σjk∈C log{E[λt(k),jke

∫ t(k),jk
t(k−1),jk−1

λs(k),jk
ds

]}.

For a random sample of n system, the degradation times log-likelihood function is

`D(θ) = Σn
q=1Σ

iq−1
k=1 Σjk∈C log{E[λqt(k),jk

e

∫ t
q
(k),jk

t(k−1),jk−1
λqs(k),jk

ds
]}.

where θ denotes the vector of parameters to be estimated.
The contribution of the system failure data to the likelihood function is

`S(θ) = Σn
q=1E[λt((i), j)e

∫ t
t(i−1),ji−1

λs((i),j)ds
].

Consequently, the general log-likelihood function for either, failures times and degrada-
tion is given by

`(θ) = `D(θ) + `S(θ).
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