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Let R be a unital alternative ring with nontrivial idempotent and © : R — R Received 13 September 2018
be a Jordan derivation. Then D is of the form d + 6, where d is a derivation of =~ Communicated by Alberto
R and ¢ is a singular Jordan derivation of R. Moreover, d and 6 are uniquely Elduque

determined. This extends the main result of Benkovi¢ and Sirovnik’s to the
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1. Introduction

The structures of derivations and Jordan derivations were studied systematically by many peo-
ple (cf. [1-4, 8, 10-12, 15, 16]). It is obvious that every derivation is a Jordan derivation. But the
converse is in general not true. Herstein [10] showed that every Jordan derivation from a 2-tor-
sion free prime ring into itself is a derivation. BreSar [3] proved that Herstein’s result is true for
2-torsion free semiprime rings. Benkovi¢ and Sirovnik [2] proved that under certain conditions,
every Jordan derivation is the sum of a derivation and a singular Jordan derivation. For the case
of alternative rings, we can mention the Ferreira and Ferreira’s paper [6] where they proved that
under some conditions every Jordan multiplicative derivation on alternative rings are additive. In
a more recent paper [7], the same authors make the study of the additivity of the Jordan triple
multiplicative derivation on alternative rings, they also prove that under some conditions every
Jordan triple multiplicative derivation on alternative rings are additive. These studies for nonasso-
ciative rings of Jordan’s maps motivated us to ask the same question of Benkovi¢ and Sirovnik in
the case in which the ring is alternative, that is, under which conditions a Jordan derivation is
the sum of a derivation and a singular Jordan derivation? In this article, we give an explicit
answer to this question, where the Benkovi¢ and Sirovnik’s result is a consequence of our case.

2. Jordan derivation and alternative rings

Let R be a unital ring not necessarily associative or commutative and consider the following
convention for its multiplication operation: xy -z = (xy)z and x-yz = x(yz) for x,y,z € R, to
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reduce the number of parentheses. We denote the associator of R by (x,y,z) =xy-z—x - yz for
%9,z € R. And [x,y] = xy — yx is the usual Lie product of x and y, with x,y € R.

Let R be aringand ® : R — R an R -linear mapping of N into itself. We call D a Jordan
derivation of R into itself if

D () =D (x)x+xD (x) (2.1)
holds true for all x € R. Putting x+ y for x in (2.1), we obtain
D(xy+yx) =D x)y+xD () +D (y)x +yD (x). (2.2)

According to [5], we have the following:

Let X = {x;},cy be an arbitrary set of variables. A nonassociative monomial of degree 1 is any
element of X. Given a natural number n > 1, a nonassociative monomial of degree n is an expres-
sion of the form (u)(v), where u is a nonassociative monomial of some degree i and v a nonasso-
ciative monomial of degree n—i. A nonassociative polynomial p over a ring R is any formal linear
combination of nonassociative monomials with coefficients in R. If p includes no variables except
X1,%2, .. X, and aj, ay,...,a, is a set of elements of R, then p(aj,a,,...,a,) is an element of R
which results by applying the sequence of operations forming p to aj,d;,..,a, in place
of x1, %2, «ur Xp-

Consider a mapping Z: R — R with the following property,

Bt oo Xn)) = 3 P15 os E(X1)s ooos %) (2.3)
i=1

where p is a nonassociative polynomial over a ring R.

Note that a Jordan derivation ® : R — R satisfies this property for example to p(x,y) =
xy+yx,p(x,y,2) =xy-z+zy-xand p(x,y,2) =x-yz+z - yx.

A ring R is said to be alternative if (x,x,y) = 0 = (y,x,x) for all x,y € R. One easily sees that
any associative ring is an alternative ring. However, it is well known the existence of alternative
rings that are not associative rings.

We refer the reader to [13, 14, 17] about basic facts of alternative rings.

An alternative ring R is called k-torsion free if k x = 0 implies x =0, for any x € R, where
ke Z, k>0, and prime if AB £ 0 for any two nonzero ideals A, B C R. The nucleus of an alter-
native ring R is defined by

NR)={reR| (xyr)=0=(x,ry) = (r,xy) for all x,y € R}.
And the center of an alternative ring R is defined by
ZR)={reN |[rnx] =0 for all x € R}.
Theorem 2.1. Let R be a 3-torsion free alternative ring. Then R is a prime ring if and only if aR -
b=0 (ora-Rb=0) impliesa=0 or b=0 for a,b € R.
Proof. See [7, Theorem 1.1]. O

Definition 2.2. A ring R is said to be flexible if satisfies
(%, 3,x) =0 for all x,yeR .

It is well known that alternative rings are flexible.

Proposition 2.3. Let R be an alternative ring. Then R satisfies the relation

(. 9.2) + (zy,x) =0 for all x,y,z€NR .
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Proof. 1t is sufficient to linearize the identity (x,y,x) = 0. O

Remark 2.4. Using 2xyx = x(xy + yx) + (xy + yx)x — (x?y + yx*) together with Proposition 2.3,
(2.1), and (2.2), we can get

D (xyx) =D (x)y-x+xD (y)x+xy-D (x). (2.4)

A nonzero element e; € R is called an idempotent if e;e; = e, and a nontrivial idempotent if it
is an idempotent different from the multiplicative identity element of R. Let us consider R an
alternative ring and fix a nontrivial idempotent e; € R. Let e, : R — R and ¢} : R — R be linear
operators given by e,(a) = a—eja and €,(a) = a — ae,. Clearly &2 =e,, (¢,)° = ¢, and we note
that if R has a unity, then we can consider e; = 1 —¢; € R. Let us denote e,(a) by e;a and €,(a)
by ae,. It is easy to see that ea-e; =e;-aej (i,j=1,2) for all a € R. Then R has a Peirce
decomposition R = R DR, DRy DRy, where Ry = eRe; (4,7 = 1,2) [9], satisfying the fol-
lowing multiplicative relations:

i) RyM; C
(i) RRu =0, if j # k and (i,5) # (k1) (i, j k. 1 = 1,2);
(iv) x; =0, forall x; € Ry(i,j = 1,2; i # ).

The next definition was first proposed in [2].

Definition 2.5. Let 6 : ® — R be a Jordan derivation. We say that ¢ is a singular Jordan deriv-
ation if

OR 1) =0, 6N 12) TR 21, IR 21) TR 12, IR ) =0. (2.5)

Remark 2.6. Nonzero singular Jordan derivations are not derivations.

In this article, we consider that ‘R is 2, 3-torsion free unital alternative ring satisfying the fol-
lowing conditions:

() If [x11, R 12+ R 2] =0, then x;; = 0;
(W) If [x20, R 12+ R 21] =0, then xp, = 0.

(O) Let D :R —NR be a Jordan derivation such that the property (2.3) is satisfied
to p(x,y,2) =xy-z+z- yx.

Remark 2.7. Note that prime alternative rings satisfy the condition (), (#).

Let us first see the condition (&). Suppose that xR 1, =0="R ,x;;. Then
x11(R €2) =0 = (e,M )x1;. Since R is a 3-torsion free alternative ring and e; is a nontrivial
idempotent, by Theorem 2.1, we have x;; = 0.

Let us now check the condition (#). Assume that R 5% =0 =x3R 5. Then
(1R )x220 =0 = x2(R e;). Thus, x5 = 0, because e, is a nontrivial idempotent.

Observe that (<) is true for any associative ring, which is due to (2.4).

3. Main result and its proof

We are now in a position to state the main result of this article.
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Theorem 3.1. Let R be a 2, 3-torsion free unital alternative ring with nontrivial idempotent satis-
fying the conditions labeled by &, &, O, and © : R — R be a Jordan derivation, then D is of
the form d+ 0, where d is a derivation of W and 0 is a singular Jordan derivation of R .
Moreover, d and & are uniquely determined.

First we provide some basic results concerning Jordan derivations of alternative rings. These
results are natural generalizations of associative rings for alternative rings, which have appeared
in [2]. Let ; € R be a nontrivial idempotent and e, = 1 —e.

Lemma 3.2. Let © : R — R be a Jordan derivation. Then ® =D {+D ,, where ® ;: R —
R is a derivation and © ,: R — R is a Jordan derivation such that D ,(e) = 0.

Proof. Since D is a Jordan derivation and e} = e;, we know that
D (e]) =D (e1)er +e1D (en).
Left and right multiplication of the above relation by e; gives
1D (e1)e; = 1D (er)er +e1D (er)ey.

It follows that e D (e;)e; =0. Similarly, we obtain €D (e;)e; =0. And hence
D (e1) = 1D (e1)ez + D (er)er.

Let us set x =e1D (e1)ex + D (e1)e; €R and z=e,. We define a new mapping D 5’”) :
R —R by D ) =[L,L] + [LwR.] + [ReR.], where L and R denote the left and right multi-
plication operator, respectively. It is known that D <1x’z> is a derivation with
D (1“)(61) =¢eD (e1)e; + D (e)e;. Clearly, © , : =D —D gx)z) is a Jordan derivation and

Dye) =D (e1) =D "V(e)) =D (e1) — (1D (er)es + 2D (er)er) = 0.
O

Before we continue to proceed with our discussion, it should be remarked that [L,,L.|+
[Ly,R;] + [R), R.] is a derivation. Thus without loss of generality, we may assume that © (e;) = 0.
Hence, ® (e,) =D (1—¢1) =D (1)—D (1) =0.

Proposition 3.3. Let © : R — R be a Jordan derivation such that © (e;) = 0. Then

D (6111) =P (6111)61,3 (6112) =D (012)32 + D (6112)61, (3.1)
D (azz) = EZD (a22)€2,® (thl) = €2© (a21)€1 + €1® (021)62 (32)

for all ayy €N 11,410 €N 12,021 €N 21 and axp € R 5. Moreover, the following relations also
hold true:

(@ D (anaz) =D (an)ar +an® (a) + D (an)an;

(b) D (anan) =D (axn)an +an® (an) +an® (axn);

(© D (anaxn)="29 (an)an +an® (an) + 01227D (a12);

(d) D (anan) =D (a2)an +anD (a21) + D (az1)ax;

() D (anan) =9 (an)an +an® (ax) + z1;

) D (anaz) =D (aa)an +an® (an) + z;

(g) D (alzblz) =D (6112)62512 +a;® (512) + b2, ( )31,
(h) D (anba) = D (ax)erby + a1 D (ba1) + buer® (ax1)ez

forall an € R 11,012,012 €R 12,001,001 €ER 21,00 €ER pandzeR 1, +R 1.
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Proof. We will only prove (e)-(h) because (2.4) and (a)-(d) have the same demonstrations with
items (3.2) and (i)-(iv) of the Proposition 2.2 in [2].
Let us embark on (e) and (f). Observe that

D (anan) + D (anan) =D (anan + anarn)
=D (ann)az + an® (ax)
+ D (an)an +a21® (a12)
=e1D (an)eran +ane® (an)e
+ D (ax)eiann + aner® (a)es.

Therefore, D (a12a21) =9 (a12)6121 + 6112@ (a21) +z; and D (a21a12) = (a21)a12 + 61213
(alz) +Zz, where Z1 = — (62@ (a12)61a21 + alzelb (a21)€2) S R 12 —|—g.R 21 and Z; = — (CID
(az1)exa1y +aze;® (ap)e;) €R 12+ R 1. This gives the statements (e) and (f). In condition
(©), let us put x = ayp, y = b1y, z=e,. Then we obtain
D (a12b12) =D (a)biz - e1 +a12D (biy) -e1+e1- D (biz)anz +e1 - biy® (ar2)
=e1D (ap)ebiy +an® (b)) + bi2e;® (an)e,

which implies the assertion (g). By an analogous manner, one can prove that property (h). O

Lemma 3.4. Suppose that R is a unital alternative ring with nontrivial idempotent e; such that
(%) and (M) hold true. Assume that d : R — R is a linear mapping such that

d(all) = eld(au)@hd(alz) = eld(alz)ez,
d(au) = ezd(azl)el,d(ﬂzz) = ezd(azz)ez,

and

(i) d(anaw) = d(an)an + and(ay) and d(anaxn) = d(an)ax + and(ax),
(i)  d(axnan) = d(ax)axn + and(ax) and d(axain) = d(ax)an + and(an),
(iii)  d(anaxn) = d(an)axn + ad(ax) and d(aay) = d(ax)an, + and(an),
(iv) d(aubu) d(alz)bu + ﬂlzd(bu) and d(ﬂ21bz1) = d(fhl)bzl + a21d(b21)

forall a;y € R 11,02 €N 22,012,012 € R 12 and az, b1 € R 2. Then d is a derivation.
Proof. The proof of this lemma is similar to that of [2, Lemma 2.3]. It follows from Proposition
2.3 that

(x11 011> 212) + (Z12> Y11, %11) = 0,
(x1 011 221) + (22 Y11%11) = 0,
(%22, Y22, 212) + (212, Y22, %22) = 0,

and

(%22, ¥22, 221) + (221, Y22, %22) = 0
for all x11,y11 € R 11,%22, Y2 €R 22,212 €R 12 and 2 € R 4. O
Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1: Let R be a unital alternative ring with a nontrivial idempotent e, satisfy-
ing the properties (&), (M), (O) and let D : R — R be a Jordan derivation. Without loss of
generality, we may assume that D (e;) =0 =D (e;). Let us define a mapping d: R — R in
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the following way:

for all a; € Ry, a0 € Roya1 € Ry and a € Rye Let 6: R — R be the mapping
0 =D —d. By invoking (3.1), we know that

5(a11) =0, 5(022) =0,
5(6112) =e® (ﬂ12)€1 = 625(6112)61,
5(6121) = elb (021)62 = 615(6121)32

for all a3 € Ry, a2 € Ry, a12 € Rz and gy € Ry It is not difficult to see that J is a singular
Jordan derivation. Let us now show that d is a derivation. For this, it suffices to show that d satis-
fies the conditions (i)-(iv) of Lemma 3.4. Clearly, the conditions (a)-(d) of the Proposition 3.3
imply (i) and (ii) of the Lemma 3.4. By the condition (e) in Proposition 3.3, we have

D (anan) = ea® (an)ean + anex;® (axn)er. (3.3)
Then (3.3) can be rewritten as

e; D (012021)61 =e;D (alz)ezazl +eD (012)61021
+ane;® (ax)er +ane1® (axn)ex + 2.

By the definition of d, we see that d(aj;a;21) = d(a12)az + a12d(az;). Combining the condition (f)
of Proposition 3.3 with the definition of d yields d(a,ia12) = d(az)aix + a21d(ayz). It remains to
verify condition (iv) of the Lemma 3.4. In view of Proposition 3.3 and condition (g) of
Proposition 3.3, we conclude that

D (annbi2) = a1 ® (anz)erbiz + 912D (b12) + b2e;® (arz)er.

Note that ;D (appbip)er = e1® (arn)exbiy + ane1® (bip)e;. This implies d(anbin) = d(ar)
b1z + a12d(b12), which is due to the definition of d. Similarly, using condition (h) of Proposition 3.3
and the definition of d, we get d(az ba1) = d(a21)ba1 + a21d(by1). According to Lemma 3.4, we say
that d is a derivation. Note that the uniqueness of d and ¢ is verified by Remark 2.6. The proof of the
Theorem 3.1 is now complete.

As a consequence, we have the following.

Corollary 3.5. [2, Theorem 4.1] Let A be a 2, 3-torsion free unital associative algebra with a non-
trivial idempotent e satisfying the conditions (&) and (#). If A: A — A is a Jordan derivation,
then there exist a derivation d: A — A and a singular Jordan derivation 6 : A — A such that
A = d + 6. Moreover, d and 6 are uniquely determined.

Corollary 3.6. Let A be a 2, 3-torsion free unital prime associative algebra with a nontrivial idem-

potent e. Then each Jordan derivation of A is a derivation.
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