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ABSTRACT
Let R be a unital alternative ring with nontrivial idempotent and D : R ! R
be a Jordan derivation. ThenD is of the form dþ d, where d is a derivation of
R and d is a singular Jordan derivation of R. Moreover, d and d are uniquely
determined. This extends the main result of Benkovi�c and �Sirovnik’s to the
case of alternative rings.
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1. Introduction

The structures of derivations and Jordan derivations were studied systematically by many peo-
ple (cf. [1–4, 8, 10–12, 15, 16]). It is obvious that every derivation is a Jordan derivation. But the
converse is in general not true. Herstein [10] showed that every Jordan derivation from a 2-tor-
sion free prime ring into itself is a derivation. Bre�sar [3] proved that Herstein’s result is true for
2-torsion free semiprime rings. Benkovi�c and �Sirovnik [2] proved that under certain conditions,
every Jordan derivation is the sum of a derivation and a singular Jordan derivation. For the case
of alternative rings, we can mention the Ferreira and Ferreira’s paper [6] where they proved that
under some conditions every Jordan multiplicative derivation on alternative rings are additive. In
a more recent paper [7], the same authors make the study of the additivity of the Jordan triple
multiplicative derivation on alternative rings, they also prove that under some conditions every
Jordan triple multiplicative derivation on alternative rings are additive. These studies for nonasso-
ciative rings of Jordan’s maps motivated us to ask the same question of Benkovi�c and �Sirovnik in
the case in which the ring is alternative, that is, under which conditions a Jordan derivation is
the sum of a derivation and a singular Jordan derivation? In this article, we give an explicit
answer to this question, where the Benkovi�c and �Sirovnik’s result is a consequence of our case.

2. Jordan derivation and alternative rings

Let R be a unital ring not necessarily associative or commutative and consider the following
convention for its multiplication operation: xy � z ¼ ðxyÞz and x � yz ¼ xðyzÞ for x, y, z 2 R, to
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reduce the number of parentheses. We denote the associator of R by ðx, y, zÞ ¼ xy � z� x � yz for
x, y, z 2 R. And ½x, y� ¼ xy� yx is the usual Lie product of x and y, with x, y 2 R.

Let R be a ring and D : R ! R an R -linear mapping of R into itself. We call D a Jordan
derivation of R into itself if

D ðx2Þ ¼ D ðxÞxþ xD ðxÞ (2.1)

holds true for all x 2 R. Putting xþ y for x in (2.1), we obtain

D ðxyþ yxÞ ¼ D ðxÞyþ xD ðyÞ þD ðyÞxþ yD ðxÞ: (2.2)

According to [5], we have the following:
Let X ¼ fxigi2N be an arbitrary set of variables. A nonassociative monomial of degree 1 is any

element of X. Given a natural number n> 1, a nonassociative monomial of degree n is an expres-
sion of the form ðuÞðvÞ, where u is a nonassociative monomial of some degree i and v a nonasso-
ciative monomial of degree n�i. A nonassociative polynomial p over a ring R is any formal linear
combination of nonassociative monomials with coefficients in R. If p includes no variables except
x1, x2, :::, xn and a1, a2, :::, an is a set of elements of R, then pða1, a2, :::, anÞ is an element of R
which results by applying the sequence of operations forming p to a1, a2, :::, an in place
of x1, x2, :::, xn.

Consider a mapping N : R ! R with the following property,

Nðpðx1, :::, xnÞÞ ¼
Xn

i¼1

pðx1, :::,NðxiÞ, :::, xnÞ (2.3)

where p is a nonassociative polynomial over a ring R.
Note that a Jordan derivation D : R ! R satisfies this property for example to pðx, yÞ ¼

xyþ yx, pðx, y, zÞ ¼ xy � z þ zy � x and pðx, y, zÞ ¼ x � yz þ z � yx.
A ring R is said to be alternative if ðx, x, yÞ ¼ 0 ¼ ðy, x, xÞ for all x, y 2 R. One easily sees that

any associative ring is an alternative ring. However, it is well known the existence of alternative
rings that are not associative rings.

We refer the reader to [13, 14, 17] about basic facts of alternative rings.
An alternative ring R is called k-torsion free if k x ¼ 0 implies x ¼ 0, for any x 2 R, where

k 2 Z, k> 0, and prime if AB 6¼ 0 for any two nonzero ideals A,B � R. The nucleus of an alter-
native ring R is defined by

NðRÞ ¼ fr 2 R j ðx, y, rÞ ¼ 0 ¼ ðx, r, yÞ ¼ ðr, x, yÞ for all x, y 2 Rg:
And the center of an alternative ring R is defined by

ZðRÞ ¼ fr 2 N j r, x½ � ¼ 0 for all x 2 Rg:

Theorem 2.1. Let R be a 3-torsion free alternative ring. Then R is a prime ring if and only if aR �
b ¼ 0 (or a �Rb ¼ 0) implies a¼ 0 or b¼ 0 for a, b 2 R.

Proof. See [7, Theorem 1.1]. w

Definition 2.2. A ring R is said to be flexible if satisfies

ðx, y, xÞ ¼ 0 for all x, y 2 R :

It is well known that alternative rings are flexible.

Proposition 2.3. Let R be an alternative ring. Then R satisfies the relation

ðx, y, zÞ þ ðz, y, xÞ ¼ 0 for all x, y, z 2 R :
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Proof. It is sufficient to linearize the identity ðx, y, xÞ ¼ 0. w

Remark 2.4. Using 2xyx ¼ xðxyþ yxÞ þ ðxyþ yxÞx�ðx2yþ yx2Þ together with Proposition 2.3,
(2.1), and (2.2), we can get

D ðxyxÞ ¼ D ðxÞy � xþ xD ðyÞxþ xy �D ðxÞ: (2.4)

A nonzero element e1 2 R is called an idempotent if e1e1 ¼ e1 and a nontrivial idempotent if it
is an idempotent different from the multiplicative identity element of R. Let us consider R an
alternative ring and fix a nontrivial idempotent e1 2 R. Let e2 : R ! R and e02 : R ! R be linear

operators given by e2ðaÞ ¼ a� e1a and e02ðaÞ ¼ a� ae1: Clearly e22 ¼ e2, ðe02Þ2 ¼ e02 and we note
that if R has a unity, then we can consider e2 ¼ 1� e1 2 R. Let us denote e2ðaÞ by e2a and e02ðaÞ
by ae2. It is easy to see that eia � ej ¼ ei � aej ði, j ¼ 1, 2Þ for all a 2 R. Then R has a Peirce
decomposition R ¼ R11�R12 �R21 �R22, where Rij ¼ eiRej ði, j ¼ 1, 2Þ [9], satisfying the fol-
lowing multiplicative relations:

(i) RijRjl � Rilði, j, l ¼ 1, 2Þ;
(ii) RijRij � Rjiði, j ¼ 1, 2Þ;
(iii) RijRkl ¼ 0, if j 6¼ k and ði, jÞ 6¼ ðk, lÞ, ði, j, k, l ¼ 1, 2Þ;
(iv) x2ij ¼ 0, for all xij 2 Rijði, j ¼ 1, 2; i 6¼ jÞ:

The next definition was first proposed in [2].

Definition 2.5. Let d : R ! R be a Jordan derivation. We say that d is a singular Jordan deriv-
ation if

dðR 11Þ ¼ 0, dðR 12Þ � R 21, dðR 21Þ � R 12, dðR 22Þ ¼ 0: (2.5)

Remark 2.6. Nonzero singular Jordan derivations are not derivations.

In this article, we consider that R is 2, 3-torsion free unital alternative ring satisfying the fol-
lowing conditions:

(|) If ½x11,R 12 þR 21� ¼ 0, then x11 ¼ 0;

(€) If ½x22,R 12 þR 21� ¼ 0, then x22 ¼ 0.

(�) Let D : R ! R be a Jordan derivation such that the property (2.3) is satisfied
to pðx, y, zÞ ¼ xy � zþ z � yx:

Remark 2.7. Note that prime alternative rings satisfy the condition ð|Þ, ð€Þ.
Let us first see the condition ð|Þ. Suppose that x11R 12 ¼ 0 ¼ R 21x11. Then

x11ðR e2Þ ¼ 0 ¼ ðe2R Þx11. Since R is a 3-torsion free alternative ring and e1 is a nontrivial
idempotent, by Theorem 2.1, we have x11 ¼ 0.

Let us now check the condition ð€Þ. Assume that R 12x22 ¼ 0 ¼ x22R 21. Then
ðe1R Þx22 ¼ 0 ¼ x22ðR e1Þ. Thus, x22 ¼ 0, because e1 is a nontrivial idempotent.

Observe that (�) is true for any associative ring, which is due to (2.4).

3. Main result and its proof

We are now in a position to state the main result of this article.
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Theorem 3.1. Let R be a 2, 3-torsion free unital alternative ring with nontrivial idempotent satis-
fying the conditions labeled by |,€, �, and D : R ! R be a Jordan derivation, then D is of
the form d þ d, where d is a derivation of R and d is a singular Jordan derivation of R .
Moreover, d and d are uniquely determined.

First we provide some basic results concerning Jordan derivations of alternative rings. These
results are natural generalizations of associative rings for alternative rings, which have appeared
in [2]. Let e1 2 R be a nontrivial idempotent and e2 ¼ 1� e1.

Lemma 3.2. Let D : R ! R be a Jordan derivation. Then D ¼ D 1 þD 2, where D 1 : R !
R is a derivation and D 2 : R ! R is a Jordan derivation such that D 2ðeÞ ¼ 0.

Proof. Since D is a Jordan derivation and e21 ¼ e1, we know that

D ðe21Þ ¼ D ðe1Þe1 þ e1D ðe1Þ:
Left and right multiplication of the above relation by e1 gives

e1D ðe1Þe1 ¼ e1D ðe1Þe1 þ e1D ðe1Þe1:
It follows that e1D ðe1Þe1 ¼ 0. Similarly, we obtain e2D ðe1Þe2 ¼ 0. And hence
D ðe1Þ ¼ e1D ðe1Þe2 þ e2D ðe1Þe1:

Let us set x ¼ e1D ðe1Þe2 þ e2D ðe1Þe1 2 R and z¼e1. We define a new mapping D
ðx, zÞ
1 :

R ! R by D
ðx, zÞ
1 ¼ ½Lx, Lz� þ ½Lx,Rz� þ ½Rx,Rz�, where L and R denote the left and right multi-

plication operator, respectively. It is known that D ðx, zÞ
1 is a derivation with

D ðx, zÞ
1 ðe1Þ ¼ e1D ðe1Þe2 þ e2D ðe1Þe1. Clearly, D 2 :¼ D �D ðx, zÞ

1 is a Jordan derivation and

D 2ðe1Þ ¼ D ðe1Þ�D
ðx, zÞ
1 ðe1Þ ¼ D ðe1Þ� ðe1D ðe1Þe2 þ e2D ðe1Þe1Þ ¼ 0:

w

Before we continue to proceed with our discussion, it should be remarked that ½Ly, Lz� þ
½Ly,Rz� þ ½Ry,Rz� is a derivation. Thus without loss of generality, we may assume that D ðe1Þ ¼ 0.
Hence, D ðe2Þ ¼ D ð1� e1Þ ¼ D ð1Þ�D ðe1Þ ¼ 0.

Proposition 3.3. Let D : R ! R be a Jordan derivation such that D ðe1Þ ¼ 0. Then

D ða11Þ ¼ e1D ða11Þe1,D ða12Þ ¼ e1D ða12Þe2 þ e2D ða12Þe1, (3.1)

D ða22Þ ¼ e2D ða22Þe2,D ða21Þ ¼ e2D ða21Þe1 þ e1D ða21Þe2 (3.2)

for all a11 2 R 11, a12 2 R 12, a21 2 R 21 and a22 2 R 22. Moreover, the following relations also
hold true:

(a) D ða11a12Þ ¼ D ða11Þa12 þ a11D ða12Þ þD ða12Þa11;
(b) D ða21a11Þ ¼ D ða21Þa11 þ a21D ða11Þ þ a11D ða21Þ;
(c) D ða12a22Þ ¼ D ða12Þa22 þ a12D ða22Þ þ a22D ða12Þ;
(d) D ða22a21Þ ¼ D ða22Þa21 þ a22D ða21Þ þD ða21Þa22;
(e) D ða12a21Þ ¼ D ða12Þa21 þ a12D ða21Þ þ z1;
(f) D ða21a12Þ ¼ D ða21Þa12 þ a21D ða12Þ þ z2;
(g) D ða12b12Þ ¼ e1D ða12Þe2b12 þ a12D ðb12Þ þ b12e2D ða12Þe1;
(h) D ða21b21Þ ¼ e2D ða21Þe1b21 þ a21D ðb21Þ þ b21e1D ða21Þe2

for all a11 2 R 11, a12, b12 2 R 12, a21, b21 2 R 21, a22 2 R 22 and z 2 R 12 þR 21.

4 B. L. MACEDO FERREIRA ET AL.



Proof. We will only prove (e)–(h) because (2.4) and (a)–(d) have the same demonstrations with
items (3.2) and (i)–(iv) of the Proposition 2.2 in [2].

Let us embark on (e) and (f). Observe that

D ða12a21Þ þD ða21a12Þ ¼ D ða12a21 þ a21a12Þ
¼ D ða12Þa21 þ a12D ða21Þ
þD ða21Þa12 þ a21D ða12Þ

¼ e1D ða12Þe2a21 þ a12e2D ða21Þe1
þ e2D ða21Þe1a12 þ a21e1D ða12Þe2:

Therefore, D ða12a21Þ ¼ D ða12Þa21 þ a12D ða21Þ þ z1 and D ða21a12Þ ¼ D ða21Þa12 þ a21D
ða12Þ þ z2, where z1 ¼ �ðe2D ða12Þe1a21 þ a12e1D ða21Þe2Þ 2 R 12 þR 21 and z2 ¼ �ðe1D
ða21Þe2a12 þa21e2D ða12Þe1Þ 2 R 12 þR 21. This gives the statements (e) and (f). In condition
(�), let us put x ¼ a12, y ¼ b12, z¼e1. Then we obtain

D ða12b12Þ ¼ D ða12Þb12 � e1 þ a12D ðb12Þ � e1 þ e1 �D ðb12Þa12 þ e1 � b12D ða12Þ
¼ e1D ða12Þe2b12 þ a12D ðb12Þ þ b12e2D ða12Þe1,

which implies the assertion (g). By an analogous manner, one can prove that property (h). w

Lemma 3.4. Suppose that R is a unital alternative ring with nontrivial idempotent e1 such that
(|) and (€) hold true. Assume that d : R ! R is a linear mapping such that

dða11Þ ¼ e1dða11Þe1, dða12Þ ¼ e1dða12Þe2,
dða21Þ ¼ e2dða21Þe1, dða22Þ ¼ e2dða22Þe2,

and

(i) dða11a12Þ ¼ dða11Þa12 þ a11dða12Þ and dða12a22Þ ¼ dða12Þa22 þ a12dða22Þ,
(ii) dða22a21Þ ¼ dða22Þa21 þ a22dða21Þ and dða21a11Þ ¼ dða21Þa11 þ a21dða11Þ,
(iii) dða12a21Þ ¼ dða12Þa21 þ a12dða21Þ and dða21a12Þ ¼ dða21Þa12 þ a21dða12Þ,
(iv) dða12b12Þ ¼ dða12Þb12 þ a12dðb12Þ and dða21b21Þ ¼ dða21Þb21 þ a21dðb21Þ

for all a11 2 R 11, a22 2 R 22, a12, b12 2 R 12 and a21, b21 2 R 21. Then d is a derivation.

Proof. The proof of this lemma is similar to that of [2, Lemma 2.3]. It follows from Proposition
2.3 that

ðx11, y11, z12Þ þ ðz12, y11, x11Þ ¼ 0,
ðx11, y11, z21Þ þ ðz21, y11, x11Þ ¼ 0,
ðx22, y22, z12Þ þ ðz12, y22, x22Þ ¼ 0,

and

ðx22, y22, z21Þ þ ðz21, y22, x22Þ ¼ 0

for all x11, y11 2 R 11, x22, y22 2 R 22, z12 2 R 12 and z21 2 R 21. w

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1: Let R be a unital alternative ring with a nontrivial idempotent e1, satisfy-
ing the properties ð|Þ, ð€Þ, (�) and let D : R ! R be a Jordan derivation. Without loss of
generality, we may assume that D ðe1Þ ¼ 0 ¼ D ðe2Þ. Let us define a mapping d : R ! R in
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the following way:

dða11Þ ¼ e1D ða11Þe1 ¼ e1dða11Þe1,
dða22Þ ¼ e2D ða22Þe2 ¼ e2dða22Þe2,
dða12Þ ¼ e1D ða12Þe2 ¼ e1dða12Þe2,
dða21Þ ¼ e2D ða21Þe1 ¼ e2dða21Þe1

for all a11 2 R11, a22 2 R22, a12 2 R12 and a21 2 R21. Let d : R ! R be the mapping
d ¼ D � d. By invoking (3.1), we know that

dða11Þ ¼ 0, dða22Þ ¼ 0,

dða12Þ ¼ e2D ða12Þe1 ¼ e2dða12Þe1,
dða21Þ ¼ e1D ða21Þe2 ¼ e1dða21Þe2

for all a11 2 R11, a22 2 R22, a12 2 R12 and a21 2 R21. It is not difficult to see that d is a singular
Jordan derivation. Let us now show that d is a derivation. For this, it suffices to show that d satis-
fies the conditions (i)–(iv) of Lemma 3.4. Clearly, the conditions (a)–(d) of the Proposition 3.3
imply (i) and (ii) of the Lemma 3.4. By the condition (e) in Proposition 3.3, we have

D ða12a21Þ ¼ e1D ða12Þe2a21 þ a12e2D ða21Þe1: (3.3)

Then (3.3) can be rewritten as

e1D ða12a21Þe1 ¼ e1D ða12Þe2a21 þ e2D ða12Þe1a21
þ a12e2D ða21Þe1 þ a12e1D ða21Þe2 þ z1:

By the definition of d, we see that dða12a21Þ ¼ dða12Þa21 þ a12dða21Þ. Combining the condition (f)
of Proposition 3.3 with the definition of d yields dða21a12Þ ¼ dða21Þa12 þ a21dða12Þ. It remains to
verify condition (iv) of the Lemma 3.4. In view of Proposition 3.3 and condition (g) of
Proposition 3.3, we conclude that

D ða12b12Þ ¼ e1D ða12Þe2b12 þ a12D ðb12Þ þ b12e2D ða12Þe1:
Note that e2D ða12b12Þe1 ¼ e1D ða12Þe2b12 þ a12e1D ðb12Þe2. This implies dða12b12Þ ¼ dða12Þ
b12 þ a12dðb12Þ, which is due to the definition of d. Similarly, using condition (h) of Proposition 3.3
and the definition of d, we get dða21b21Þ ¼ dða21Þb21 þ a21dðb21Þ. According to Lemma 3.4, we say
that d is a derivation. Note that the uniqueness of d and d is verified by Remark 2.6. The proof of the
Theorem 3.1 is now complete.

As a consequence, we have the following.

Corollary 3.5. [2, Theorem 4.1] Let A be a 2, 3-torsion free unital associative algebra with a non-
trivial idempotent e satisfying the conditions ð|Þ and ð€Þ. If D : A ! A is a Jordan derivation,
then there exist a derivation d : A ! A and a singular Jordan derivation d : A ! A such that
D ¼ d þ d. Moreover, d and d are uniquely determined.

Corollary 3.6. Let A be a 2, 3-torsion free unital prime associative algebra with a nontrivial idem-
potent e. Then each Jordan derivation of A is a derivation.
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