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da Fonseca, C.M.; Futorny, V.;

Sergeichuk, V.V. Three Representation

Types for Systems of Forms and

Linear Maps. Mathematics 2021, 9,

455. https://doi.org/10.3390/

math9050455

Academic Editor: Christos G.

Massouros

Received: 6 January 2021

Accepted: 19 February 2021

Published: 24 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, Kuwait University, Safat 13060, Kuwait; abdullah.alazemi@ku.edu.kw
2 Department of Mathematics, Kuwait College of Science and Technology, Safat 13133, Kuwait;

c.dafonseca@kcst.edu.kw
3 Chair of Computational Mathematics, University of Deusto, 48007 Bilbao, Spain
4 Department of Mathematics, University of São Paulo, São Paulo 05508, Brazil; futorny@ime.usp.br
5 Institute of Mathematics, Tereshchenkivska 3, 01024 Kiev, Ukraine; sergeich@imath.kiev.ua
* Correspondence: milica.andelic@ku.edu.kw

Abstract: We consider systems of bilinear forms and linear maps as representations of a graph with
undirected and directed edges. Its vertices represent vector spaces; its undirected and directed edges
represent bilinear forms and linear maps, respectively. We prove that if the problem of classifying
representations of a graph has not been solved, then it is equivalent to the problem of classifying
representations of pairs of linear maps or pairs consisting of a bilinear form and a linear map. Thus,
there are only two essentially different unsolved classification problems for systems of forms and
linear maps.
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1. Introduction

We show that the problem of classifying pairs consisting of a bilinear form and a linear
map plays the same role in the theory of systems of bilinear forms and linear maps as the
problem of classifying pairs of linear maps plays in the theory of representations of finite
dimensional algebras.

About fifty years ago, it was noticed that most unsolved classification problems in
the theory of representations of groups and algebras “contain” the matrix pair problem,
which is the problem of classifying pairs of square matrices of the same size up to similarity
transformations

(A, B) 7→ (S−1 AS, S−1BS), S is nonsingular. (1)

(A classification problemM contains a classification problem N if solvingM would
solve N .)

For example, Bašev [1] classified representations of the abelian group (2, 2) over a
field of characteristic 2. The problems of classifying representations of the abelian groups
(2, 4) and (2, 2, 2) over a field of characteristic 2 and the abelian group (p, p) over a field
of characteristic p > 2 are considered as hopeless since these problems contain the matrix
pair problem (Brenner [2] and Krugljak [3]).

Donovan and Freislich [4] call a matrix problem “wild” if it contains the matrix pair
problem and “tame” otherwise, in analogy with the partition of animals into wild and
tame ones. A certain characterization of tame and wild problems is given by Drozd [5]
and Crawley-Boevey [6]; a geometric form of the tame–wild theorem is proved by Gabriel,
Nazarova, Roiter, Sergeichuk, and Vossieck [7], and by Sergeichuk [8].
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The reason for complexity of the matrix pair problem was found by Gelfand and
Ponomarev [9], who showed that the problem of classifying pairs of commuting nilpo-
tent matrices over any field up to similarity transformations (1) contains the problem of
classifying matrix t-tuples up to similarity transformations

(M1, . . . , Mt) 7→ (C−1M1C, . . . , C−1MtC), C is nonsingular.

The matrix pair problem also contains the problem of classifying representations
of every quiver and every poset (Barot [10] [Section 2.4], Belitskii and Sergeichuk [11],
Krause [12] [Section 10]). Moreover, it contains the problem of classifying representations
of an arbitrary finite-dimensional algebra (Barot [13] [Proposition 9.14]).

Note that each concrete pair (A, B) of n× n matrices over an algebraically closed field
is reduced to its canonical form (Acan, Bcan) with respect to similarity transformations (1)
by Belitskii’s algorithm [14] in such a way that (A, B) is similar to (C, D) if and only if
(Acan, Bcan) = (Ccan, Dcan). However, there is no nonalgorithmic description of the set of
Belitskii’s canonical pairs under similarity (i.e., the pairs that are not changed by Belitskii’s
algorithm). Belitskii’s algorithm was extended by Sergeichuk [8] to a wide class of matrix
problems that includes the problems of classifying representations of quivers and finite
dimensional algebras.

The problem of classifying arrays up to equivalence plays the same role in the theory
of tensors as the matrix pair problem in the theory of representations of algebras: Futorny,
Grochow, and Sergeichuk [15] proved that the problem of classifying three-dimensional
arrays up to equivalence transformations contains the problem of classifying every system
of tensors of order at most three.

We show that the problem of classifying pairs consisting of a bilinear form and a
linear map contains the problem of classifying arbitrary systems of bilinear forms and
linear maps.

2. Main Results

Many classification problems of linear algebra can be formulated and studied in terms
of quiver representations introduced by Gabriel [16]. A quiver is a directed graph. Its
representation is given by assigning a vector space to each vertex and a linear map of
the corresponding vector spaces to each arrow. This notion plays a central role in the
representation theory of finite dimensional algebras since each algebra can be given by a
quiver with relations and there is a natural correspondence between their representations;
see [10,13,17–19].

Following [20,21], we consider systems of forms and linear maps over a field F as
representations of a mixed graph (i.e., of a graph with undirected and directed edges; mul-
tiply edges and loops are allowed): Its vertices represent vector spaces, and its undirected
and directed edges represent bilinear forms and linear maps between these spaces. Two
representations are isomorphic if these are a set of linear bijections of the corresponding
vector spaces that transform one representation into the other; see Definition 1.

Example 1. Consider a mixed graph Q and its representationR:

Q :

1

2γ

α

@@

δ 3
��

β
ε
��

ζ

R :

U

VC

A
??

D W
  

B
E
��

F

(2)

The representationR consists of vector spaces U, V, W over F, bilinear forms C : V×V → F,
D : W × V → F, F : W ×W → F, and linear maps A : V → U, B : U → W, E : W → W.
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The vector n = (n1, n2, n3) := (dim U, dim V, dim W) is called the dimension ofR. Changing
bases in the spaces U, V, W, we can reduce the matrices ofR as follows:

1

2ST
2 CS2

S−1
1 AS2

@@

ST
3 DS2

3
��

S−1
3 BS1

S−1
3 ES3

��

ST
3 FS3

(3)

where S1, S2, S3 are nonsingular matrices. Thus, the problem of classifying representations of Q of
dimension n = (n1, n2, n3) is the problem of classifying all tuples (A, B, . . . , F) of matrices of sizes
n1 × n2, n3 × n1, . . . , n3 × n3 up to these transformations.

For a mixed graph Q, we denote by Mn(Q) the set of representations of dimension
n, in which all vector spaces are of the form Fk with k = 0, 1, 2, . . . . The set Mn(Q) is
a vector space over F; its elements are matrix tuples (see Definition 2). We say that the
problem of classifying representations of a mixed graph Q is contained in the problem
of classifying representations of a mixed graph Q′ if for each dimension n there exists an
affine injection (That is, F(A) = R + ϕ(A) for R ∈ Mn′(Q′) and all A ∈ Mn(Q), in which
ϕ : Mn(Q)→ Mn′(Q′) is a linear injection).

F : Mn(Q)→ Mn′(Q
′)

of a very special type given in Definition 3 such that A, B ∈ Mn(Q) are isomorphic if and
only if F(A), F(B) ∈ Mn′(Q′) are isomorphic.

The problem of classifying representations of Q and Q′ are equivalent if each of these
problems contains the other.

The main result of this paper is the following theorem, which is proved in
Sections 4 and 5.

Theorem 1.

(a) The problem of classifying representations of r (i.e., of pairs consisting of a bilinear
form and a linear map) contains the problem of classifying representations of each mixed graph.

(b) Let a mixed graph Q satisfy the following condition:

Q contains a cycle in which the number of undirected edges is odd,
and Q contains an edge outside of this cycle but with a vertex (or
both the vertices) in this cycle.

(4)

Then the problem of classifying representations of Q is equivalent to the problem of classifying
representations of r .

Let us derive a corollary of Theorem 1.
Let Q be a connected mixed graph that does not satisfy the condition (4). The repre-

sentations of mixed graphs that are cycles are classified in [20] [§ 3]. Suppose that Q does
not contain a cycle in which the number of undirected edges is odd; in particular, it does
not contain undirected loops. Then Q can be transformed to a quiver Q with the same
underlying graph (obtained by deleting the orientation of the edges) using the following
procedure described in [20]:
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If v is a vertex of Q, then we denote by Qv the graph that is obtained from Q by
deleting (resp., adding) the arrows at the ends of all edges in the vertex v that have it (resp.,
do not have it); we say that Qv is obtained from Q by dualization at v. For example:r44 r33

ssr **
ii vDD =⇒ r ii 33 v∗ ZZrjj r

(we write v∗ instead of v). Thus, v w is replaced by v∗ w. Then we replace w
with w∗ and obtain v∗ w∗. Since Q does not contain a cycle in which the number of
undirected edges is odd, we can reduce Q to some quiver Q by these replacements.

There is a natural correspondence between the representations of Q and Qv: If A is a
representation of Q, then the representation Av of Qv is obtained by replacing the vector
space V assigned to v with the dual space V∗ of all linear forms on V. This correspondence
is based on the fact that each bilinear form B : V ×U → F defines the linear map U → V∗

via x 7→ B(?, x), and each linear map A : U → V defines the bilinear form V∗ ×U → F via
(x∗, y) 7→ x∗Ay.

Therefore, the theory of representations of mixed graphs without cycles in which the
number of undirected edges is odd is the theory of quiver representations. The represen-
tation types of quivers are well known; the representations of tame quivers are classified
by Donovan and Freislich [4], and Nazarova [22]. The other quivers are wild; the problem
of classifying representations of each wild quiver is equivalent to the problem of classify-
ing representations of r (i.e., of matrix pairs up to similarity transformations (1));
see [10–12] and Lemma 1.

We say that a mixed graph Q is tame if it is reduced by dualizations at vertices to the
disjoint union of mixed cycles and a tame quiver (thus, the classification of representations
of tame mixed graphs is known). A mixed graph Q is wild if it is reduced by dualizations
at vertices to a wild quiver. A mixed graph Q is superwild if the problem of classifying its
representations is equivalent to the problem of classifying representations of r .

Corollary 1. Each mixed graph is tame, wild, or superwild.

(i) A mixed graph is tame if its underlying graph is the disjoint union of some copies of the
Dynkin diagrams and the extended Dynkin diagrams

rr r r · · · r r r r r r · · · r r rrr r r r r r r rr r r r r r r r r r r rr rr r r · · · r r r r r · · · r rr rrr r r r r r r
rr rr r r r r r r r r r r r r

(5)

(ii) A mixed graph is wild if it is not tame and it does not contain a cycle in which the number of
undirected edges is odd.

(iii) A mixed graph is superwild if it satisfies condition (4).

Proof. Let Q be a mixed graph. If (4) holds, then Q is superwild by Theorem 1(c). Suppose
that (4) does not hold. Then Q is the disjoint union of mixed cycles and a mixed graph Q0
without a cycle in which the number of undirected edges is odd. The graph Q0 is reduced
to a quiver Q0 by dualizations at vertices. By definition, Q is tame or wild if and only if Q0
is tame or wild, respectively. By [4,22], Q0 is tame if and only if its underlying graph is the
disjoint union of some copies of graphs (5).
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3. The Category of Representations

The category of representations of a mixed graph (in general, nonadditive) is defined
as follows.

Definition 1 ([21]; see also [18]). Let Q be a mixed graph with vertices 1, . . . , t. Its representation
A over a field F is given by assigning a vector space Av over F to each vertex v, a bilinear form
Aα : Av ×Au → F to each undirected edge α : u v with u 6 v (this inequality is given for
uniqueness), and a linear map Aβ : Au → Av to each directed edge β : u v. A morphism
ϕ : A → B of two representations of Q is a family of linear maps ϕ1 : A1 → B1, . . . , ϕt : At → Bt
such that Aα(y, x) = Bα(ϕvy, ϕux) for each α : u v with u 6 v, and ϕvAβ = Bβ ϕu for each
β : u v.

In the following definition, we consider representations, in which all vector spaces
are Fk with k = 0, 1, 2, . . . . Such representations are given by their matrices, as in (3), and
so we call them “matrix representations”. The category M(Q) of matrix representations is
defined as follows.

Definition 2. Let Q be a mixed graph with vertices 1, . . . , t. A matrix representation A of
dimension n = (n1, . . . , nt) of Q over a field F is given by assigning a matrix Aα ∈ Fnv×nu to
each undirected edge α : u v with u 6 v and to each directed edge α : u v. A morphism
ϕ : A → B of matrix representations of dimensions n and n′ is a family of matrices S1, . . . , St of
sizes n′1 × n1, . . . , n′t × nt such that

Aα = ST
v BαSu, Sv Aβ = BβSu

for each undirected edge α : u v (u 6 v) and each directed edge β : u v.

The set Mn(Q) of matrix representations of dimension n is a vector space over F.

Definition 3. Let Q and Q′ be mixed graphs with vertices 1, . . . , t and 1, . . . , t′, and with edges
α1, . . . , αp and β1, . . . , βq, respectively. The problem of classifying representations of Q is contained
in the problem of classifying representations of Q′, we write Q . Q′, if there exists a functor

F : M(Q)→ M(Q′)

with the following properties:

• F is injective on objects; moreover, for each n = (n1, . . . , nt) there exists n′ = (n′1, . . . , n′t′)
(all ni and n′j are nonnegative integers) such that F maps Mn(Q) to Mn′(Q′) and this map
is an affine injection of vector spaces.

• F is injective on morphisms; moreover, A, B ∈ Mn(Q) are isomorphic if and only if
F (A),F (B) ∈ Mn′(Q′) are isomorphic.

• F is produced by a parameter matrix representation of Q′ (compare with [7] [p. 338]), which
means that there exists a parameter matrix representation

N(x) := (Nβ1(x), . . . , Nβq(x)) (6)

of Q′ with parameters x1, x2, . . . , xp such that each xi is an exactly one entry of an exactly
one matrix among Nβ1(x), . . . , Nβq(x), the other of their entries are elements of F, and

F (A) = (Nβ1(A), . . . , Nβq(A)) (7)

for each matrix representation A = (Aα1 , . . . , Aαp) of Q. The representation (7) of Q′ is
constructed on (6) as follows:

– Rearranging the basis vectors in the vector spaces of the representation N(x), we
rearrange the rows and columns of its matrices converting N(0) to a direct sum
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M1 ⊕ · · · ⊕ Mr of matrix representations of Q′ of nonzero dimension with the max-
imum number r. We say that two rows or columns of N(x) are lined if they (with x = 0)
are converted to rows or columns from the same summand Mi. Thus, there are r classes
L1, . . . ,Lr of linked rows and columns; we require that each class contains a row or
column with a parameter.

– Let n1, . . . , nr be natural numbers. Denote by N(K1, . . . , Kt) a matrix representation of
Q′ obtained from N(x) by replacing all rows and columns that belong to the same class
Lj by strips of size nj such that each parameter xi is replaced by an arbitrary matrix Ki
of suitable size, each entry that is a nonzero element α ∈ F is replaced by αI, and each
zero entry is replaced by the zero block.

Two mixed graphs Q and Q′ are equivalent if Q . Q′ and Q′ . Q (see Definition 3).

Example 2. The problem of classifying representations of the quiver r is contained in the
problem of classifying representations of r r (i.e., r . r r ) via

(N1(x), N2(x)) :=
([

0 x1
1 x2

]
,
[

1
0

])
since

• each morphism ϕ : A r B → A′ r B′ (where A, B ∈ Fn×n and A′, B′ ∈
Fn′×n′ ) is given by a matrix S ∈ Fn′×n such that SA = A′S and SB = B′S; the corresponding
morphism F (ϕ) : F (A, B)→ F (A′, B′), where

F (A, B) =
([

0n A
In B

]
,
[

In
0n

])
, F (A′, B′) =

([
0n′ A′

In′ B′

]
,
[

In′

0n′

])
,

is given by the matrix pair (S⊕ S, S);
• (A, B) is reduced to (A′, B′) by similarity transformations (1) if and only if F (A, B) is

reduced to F (A′, B′) by transformations(
S−1

[
0n A
In B

]
S, S−1

[
In
0n

]
R
)

, S and R are nonsingular.

4. Proof of Theorem 1(a)

Let us consider a matrix representation

H r J, J := Jk1(0n1)⊕ · · · ⊕ Jkτ
(0nτ ), (8)

in which

Jki
(0ni ) :=


0ni Ini 0

0ni

. . .

. . . Ini

0 0ni

 (ki diagonal blocks).

We reduce H r J by those admissible transformations that preserve J:

(H, J) 7→ (ST HS, S−1 JS), S is nonsingular and S−1 JS = J. (9)
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Partition S = [Sij]
τ
i,j=1 conformally to J. Since JS = SJ, every Sij has the form



Cij C′ij C′′ij C′′′ij
. . .

Cij C′ij C′′ij
. . .

Cij C′ij
. . .

Cij
. . .

0
. . .


or



Cij C′ij C′′ij C′′′ij
. . .

Cij C′ij C′′ij
. . .

Cij C′ij
. . .

Cij
. . .
. . .

0



,

where all Cij are arbitrary ni × nj matrices such that S is nonsingular. Replacing all off-
diagonal blocks of S by zeros, we obtain the block diagonal matrix

Sdiag := ( S1 ⊕ S1 ⊕ S1 ⊕ · · ·︸ ︷︷ ︸
k1 summands

)⊕ · · · ⊕ ( Sτ ⊕ Sτ ⊕ Sτ ⊕ · · ·︸ ︷︷ ︸
kτ summands

), (10)

in which every Si := Cii is ni × ni.
By Belitskii’s theorem (see [23] [Section 3.4] or [8] [Theorem 1.2]), the Jordan matrix J

is permutation similar to a nilpotent Weyr matrix such that all matrices commuting with
it are upper block triangular. Since JS = SJ, Belitskii’s theorem ensures that the matrix S
is permutation similar to a block triangular matrix whose main block diagonal coincides
with the sequence of summands in (10), up to permutation of these summands. Hence, S is
nonsingular if and only if all blocks S1, . . . , Sτ are nonsingular. Moreover, if the matrix H
in (8) is partitioned such that the sizes of its diagonal blocks coincide with the sizes of the
direct summands in (10), then

if each horizontal strip and each vertical strip of H contains
at most one nonzero block, then ST HS = ST

diagHSdiag. (11)

Let us prove Theorem 1(a) for the mixed graph Q in (2); its proof for an arbitrary
mixed graph is analogous. Let

1

2C

A
@@

D 3
��

B
E
��

F

1

2C′

A′
@@

D′ 3
��

B′
E′
��

F′

(12)

be matrix representations of Q of dimension (n1, n2, n3). We construct the matrix represen-
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tations H r J and H′ r J as follows:

J := J1(0n1)⊕ J3(0n2)⊕ J3(0n3)⊕ J1(0n4)⊕ J2(0n5), (13)

H :=

S1 S2 S2 S2 S3 S3 S3 S4 S5 S5

ST
1 · · · · · · · I · ·

ST
2 · · C · · · · · · ·

ST
2 · · · · · · · · · ·

ST
2 · · · · · · · · · ·

ST
3 · · · · · · · · I ·

ST
3 · · · D · · · · · ·

ST
3 · · · · · F · · · ·

ST
4 (=S−1

1 ) · A · · · · · · · ·
ST

5 (=S−1
3 ) B · · · · · · · · ·

ST
5 (=S−1

3 ) · · · · E · · · · ·

, (14)

in which the points denote zero blocks; the matrix H′ is obtained from H by replacing
A, B, . . . , F with A′, B′, . . . , F′.

If JS = SJ, then

Sdiag = S1 ⊕ S2 ⊕ S2 ⊕ S2 ⊕ S3 ⊕ S3 ⊕ S3 ⊕ S4 ⊕ S5 ⊕ S5 (15)

(see (10)). The summands of (15) are written in (14) over the vertical strips of H, and their
transposes are written to the left of the horizontal strips of H. By (11), each nonzero block
of (14) is multiplied by them if (H, J) is reduced by transformations (9).

We must prove that (H, J) is reduced to (H′, J) by transformations (9) if and only if
the representations (12) are isomorphic; that is, if and only if A, B, . . . , F are reduced to
A′, B′, . . . , F′ by transformations (3).

Let (H, J) be reduced to (H′, J) by transformations (9). By (11),

ST
1 IS4 = I, ST

3 IS5 = I, ST
4 AS2 = A′, ST

5 BS1 = B′,

ST
2 CS2 = C′, ST

3 DS2 = D′, ST
5 ES3 = E′, ST

3 FS3 = F′.

The first two equalities ensure that ST
4 = S−1

1 and ST
5 = S−1

3 . Therefore, A, B, . . . , F are
reduced to A′, B′, . . . , F′ by transformations (3).

Conversely, let A, B, . . . , F be reduced to A′, B′, . . . , F′ by transformations (3). Then
(H, J) is reduced to (H′, J) by transformations (9) with S of the form (15), in which S4 :=
S−T

1 and S5 := S−T
3 .

This completes the proof of Theorem 1(a). The following lemma is proved analogously;
it is also proved in [10] [Section 2.4], [11], and [12] [Section 10].

Lemma 1. The problem of classifying representations of r contains the problem of classify-
ing representations of each quiver.

Proof. Let Q be a quiver, and let A be its matrix representation. We construct a matrix
representation H r J as follows.

The matrix J is given in (8). The equality S−1 JS = J implies that the main block
diagonal of S is (10).

We take H in which each horizontal strip and each vertical strip contains at most one
nonzero block. By analogy with (11), H is reduced by transformations S −1

diagHSdiag. We
construct H such that some of its blocks are the matrices of A and they are reduced by the
same transformations as in A, and the other blocks are zero.
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5. Proof of Theorem 1(b)

Lemma 2. Let a connected mixed graph Q contain a cycle in which the number of undirected edges
is odd, and let Q not coincide with this cycle. Then the problem of classifying its representations
contains the problem of classifying representations of one of the mixed graphsr , r , r r , r r , r r . (16)

Proof. Let a connected mixed graph Q contain a cycle C in which the number of undirected
edges is odd, and let α be an edge outside of C with vertices v1 ∈ C and u.

Case 1: u = v1. Then Q contains a subgraph

G : v1 v2 v3 . . . vk−1 vkα
β1 β2 βk−1

βk

(17)

in which k > 1 and each dotted line is an undirected or directed edge.
Consider the matrix representation

R(A, B) : Fn Fn Fn . . . Fn FnA
In In In

B

(18)

of Q, in which A, B ∈ Fn×n and all vertices outside of C are assigned by the zero spaces.
Let us prove that r . Q with a suitable direction of the left loop in r . We
need to show the following equivalence of isomorphisms:

A r B ' A′ r B′ ⇐⇒ R(A, B) ' R(A′, B′) (19)

(“'” means “is isomorphic to”).
Let us prove “⇐=”. Let R(A, B) ' R(A′, B′) via (S1, . . . , Sk). Then S1 = S−T

2 if α1 is
undirected and S1 = S2 if α1 is directed. Analogously, S2 = S−T

3 if α2 is undirected and
S2 = S3 if α2 is directed, and so on. Since the number of undirected edges of C is odd,
Sk−1 = Sk if αk is undirected and Sk−1 = S−T

k if αk is directed. Hence, B′ = ST
1 BS1, and so

A r B ' A′ r B′ via S1, in which the left loop in r is directed as the
left loop in (17). The implication “=⇒” is proved analogously.

Case 2: u = vr with r 6= 1. If α : v1 vr, then we take vr as v1. We have that
α : v1 vr or α : v1 vr, and so Q contains the subgraph Gr that is obtained from (17)
by replacing α r with α : v1 vr.

Denote by Rr(A, B) the matrix representation of Gr that is obtained from (18) by
deleting A r and assigning A to α : v1 vr. Let us prove that r . Q, in
which the left loop is directed if and only if

• α in (17) is directed and the number of undirected edges in β1, . . . βr−1 is even, or
• α in (17) is undirected and the number of undirected edges in β1, . . . βr−1 is odd.

This statement holds since

A r B ' A′ r B′ ⇐⇒ Rr(A, B) ' Rr(A′, B′),

which is proved in (19).
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Case 3: u /∈ C. Then Q contains the subgraph G′ that is obtained from (17) by replacing
α r with α : u v1. Denote by R′(A, B) the matrix representation of G′ that is obtained
from (18) by deleting A r and assigning A to α : u v1. Since

r rA B ' r rA′ B′ ⇐⇒ R′(A, B) ' R′(A′, B′),

we have r r . Q.

Lemma 3. r . r .

Proof. Write

A :=
[

X 0
Y 0

]
, A′ :=

[
X′ 0
Y′ 0

]
, B :=

[
0 I
0 0

]
,

in which all blocks are n× n. We need to show the following equivalence of isomorphisms:

X r Y ' X′ r Y′ ⇐⇒ A r B ' A′ r B (20)

⇐=. Let the right isomorphism hold via S. The equality ST BS = B takes the form[
ST

1 S3 ST
1 S4

ST
2 S3 ST

2 S4

]
=

[
0 I
0 0

]
, in which S =

[
S1 S2

S3 S4

]
.

Therefore, ST
1 S4 = I, S2 = S3 = 0, and S = S1 ⊕ S−T

1 . Hence, the left isomorphism in
(20) holds via S1.

=⇒. If the left isomorphism holds via C, then the right isomorphism holds via
C⊕ C−T .

Lemma 4. r . r r
Proof. Due to Lemma 3, it is sufficient to prove that r . r r . Write

A :=

 0 I 0
0 0 I
X 0 Y

, A′ :=

 0 I 0
0 0 I

X′ 0 Y′

, B :=

I 0
0 I
0 0

, (21)

in which all blocks are n× n. We need to show the following equivalence of isomorphisms:

X r Y ' X′ r Y′ ⇐⇒ A r rB
' A′ r rB

(22)

⇐=. Let the right isomorphism hold. Then

(ST AS, S−1BR) = (A′, B) for nonsingular S and R. (23)

The equality BR = SB implies that S and R have the form

S =

S1 S2 S3
S4 S5 S6
0 0 S7

, R =

[
S1 S2
S4 S5

]
. (24)

Substituting them to ST AS = A′, we obtain ST
1 S4 ST

1 S5 ST
1 S6 + ST

4 S7

ST
2 S4 ST

2 S5 ST
2 S6 + ST

5 S7

ST
3 S4+ST

7 XS1 ST
3 S5+ST

7 XS2 ST
3 S6+ST

6 S7+ST
7 XS3+ST

7 YS7

 = A′.
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Since the rows of R are linearly independent, ST
2 [S4 S5] = [0 0] implies S2 = 0. Since

ST
1 S5 = I, ST

1 S4 = 0 implies S4 = 0. Equating the (2,3) blocks gives ST
5 S7 = I. Equating the

(1,3) blocks gives S6 = 0. Equating the last horizontal strips gives[
ST

7 XS1 ST
3 S5 ST

7 XS3 + ST
7 YS7

]
=
[
X′ 0 Y′

]
.

Since ST
3 S5 = 0 and S5 is nonsingular, we have S3 = 0. Therefore, S = S1 ⊕ S−T

1 ⊕ S1,
and so ST

1 XS1 = X′ and ST
1 YS1 = Y′.

=⇒. If the left isomorphism holds via C, then (23) holds for S = C⊕ C−T ⊕ C and
R = C⊕ C−T .

Lemma 5. r . r r and r . r r
Proof. It is sufficient to prove that r . r r and r . r r
because of Lemma 3. We take A and A′ as in (21) and B = [0 0 I]. We must prove (22),
in which is replaced by and by . The proof is the same since the equality
BS = RB implies that S as in (24).

Proof of Theorem 1(b). Let a mixed graph Q satisfy the condition (4). By Theorem 1(a),
Q . r . Lemma 2 ensures that H . Q, in which H is one of the mixed graphs (16).
By Lemmas 3–5, r . H. Hence, r . Q.

6. Conclusions

We have proved that the problem of classifying matrix pairs with respect to transfor-
mations

(A, B) 7→ (ST AS, S−1BS), S is nonsingular (25)

contains the problem of classifying an arbitrary system of bilinear forms and linear maps.
There are only two essentially different unsolved classification problems for systems of
forms and linear maps: The classical unsolved problem about matrix pairs under similarity
and the problem of classifying matrix pairs under transformations (25). These problems are
given by the graphs r and r . There is no sense in studying representations of
each of these graphs (and of any graph that is equivalent to one of them) outside the general
theory of representations of quivers or mixed graphs, respectively. Likewise, Belitskii’s
algorithm that was constructed for matrix pairs under similarity can be applied to matrices
of an arbitrary system of linear maps.
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