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Abstract. This work presents a numerical formulation based on the Boundary Element Method (BEM)
for the mechanical analysis of reinforced viscoelastic materials. The reinforced domain is represented
by a numerical methods coupling technique, in which the material matrix is modelled by the usual
two-dimensional singular BEM formulation and a one-dimensional approach of the BEM, called
1DBEM, is used for the reinforcements. The 1IDBEM is based on an axial fundamental solution for
elastic 1D domains, easily found in the literature. No relative displacements between matrix and
reinforcements are considered to formulate the coupling and the contact force is a one-dimensional
load distributed along the reinforcement’s line, which define this IDBEM/BEM coupling as an
alternative to the usual FEM/BEM coupling. The viscoelastic response is added to the matrix behavior,
using the Kelvin-Voigt rheological model in the two-dimensional BEM formulation. This approach
enables introducing the time-dependent material properties without the need for cells within the
domain or convolution integrals. A time discretization is needed to solve the resulting time-dependent
equation. However, as previously mentioned in the literature, this approach shows a good convergence
behavior regarding the time step size. Finally, the proposed formulation is able to represent reinforced
domains with a viscoelastic matrix, such as reinforced structures or fiber-reinforced materials.
Numerical applications exhibit the convergence of the model and compare the answer obtained with
both IDBEM/BEM coupling and FEM/BEM coupling techniques with reference results, available in
the literature. The results obtained are stable and accurate, which demonstrates the robustness of the
formulation proposed in this work.
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1 Introduction

In recent decades, the human being and the society have evolved significantly. Then, advanced
manufactures and products are in constant process of evolution, which lead to the development of
complex materials compositions and methods for its mechanical analysis. For example, the structural
design of mechanical components and structures using reinforced domains and viscoelastic materials,
such as composites, polymers and even concrete, has become crucial in several engineering fields.
Considering the search for projects and components mechanically efficient, i.e., high strength with low
weight, applications like these ones can be seen as a smart solution in different areas, such as civil
engineering, automotive, naval and aeronautics, as mentioned by Armentani and Citarella [1] and
Citarella [2]. In the context of mechanical analysis of these complex materials and structures, the
analytical approaches available are highly restricted and limited, especially concerning geometries and
boundary conditions. As a result, the robust mechanical modelling of complex problems requires the
application of numerical approaches. Among the numerical methods available for the mechanical
analysis, the Boundary Element Method (BEM) is established and widely utilized. Its advantages, as
the mesh dimensionality reduction and the accuracy in representing stress concentration, make the
BEM recommended for some mechanical applications, as fracture mechanics problem, infinite
domains and viscoelasticity (Oliveira and Leonel [3]).

The viscoelastic materials present both elastic and viscous properties, which cause a time
dependent mechanical behavior. Chern [4] and Shaw et al. [5] present a good background about
classic approaches to represent the viscoelastic behaviour, which are usually based on relaxation
functions and incremental schemes. Classical BEM mathematical formulations were also developed to
solve viscoelastic problems, with the use of the principle of correspondence and transformations
(Rizzo and Shippy [6]; Liu and Antes [7]; Lee and Westmann [8]). This study applies and alternative
BEM formulation for viscoelasticity, proposed by Mesquita and Coda [9, 10, 11]. Based on
differential constitutive relations of rheological models, such as Kelvin-Voigt, and the weighted
residual technique, this formulation provides a representation for viscoelastic domains by integral
equations written exclusively with time-differential boundary equations. This aspect of this approach
contributes as an advantage for the using of the BEM, maintaining the mesh dimensionality reduction
for the viscoelastic problem. The time derivative terms are approximately evaluated by the finite
differences technique, which leads to a time marching process. As mentioned in the literature, this
approach shows a good convergence behavior regarding the step size of the time discretization.

On the other hand, modelling reinforced materials and structures usually deals with two different
structural elements, which can be modelled differently, such as plane stress or plane strain plates,
trusses or beams, for instance. Therefore, a numerical model based on the coupling of different
numerical methods, such as the BEM and the Finite Element Method (FEM), seems to be an
interesting approach for addressing consistently this problem. Thus, each numerical method can be
applied in the modelling of the sub-structure in which it presents best performance. The FEM/BEM
coupling was proposed initially by Zienkiewicz, Kelly e Bettes [12]. Since then, several authors have
developed new researches based on this coupling technique, making it a consolidated approach. A
state of art on this subject is presented by Ganguly, Layton and Balakrishna [13] and Elleithy, Tanaka
and Guzik [14]. Furthermore, Bia et al. [15] mentions limitations and advantages of such type of
coupling. This approach have been also used coupled with the BEM formulation based on viscoelastic
rheological models by Mesquita and Coda [16].

In this context, this study presents a numerical formulation for the mechanical modelling of
reinforced viscoelastic domains. The coupling technique for matrix/reinforcement representation is
based on the established FEM/BEM coupling. However, a one-dimensional BEM approach is utilized
into the reinforcements (1IDBEM), which characterizes an alternative BEM/BEM coupling technique,
called IDBEM/BEM. The use of this approach can also be found in Buffon [17], for linear-elastic
problems. The linear viscoelastic behavior of the matrix is represented in the two-dimensional BEM
formulation by imposing properly the constitutive relations of the rheological model of Kelvin-Voigt.
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This approach enables introducing the viscoelastic behavior into the material matrix, whereas the
reinforcements still have an elastic constitutive relation. Thus, finite differences technique is applied in
the time differential equation, which leads to a time marching process that determines the unknown
variables at the boundary, at the reinforcements and its variation along time. The entire problem can be
described only by boundary elements, without the need for cells or domain mesh, which provides a
stable and robust numerical model to represent reinforced viscoelastic materials. The following items
describe the formulation of the proposed model. One application is utilized to demonstrate the
accuracy and robustness of the proposed formulation.

2 Review of rheological models: Kelvin-Voigt viscoelastic model

Rheological models defined in the uniaxial space is an approach adopted to describe the
mechanical behavior of viscoelastic materials. This technique is based on an analogy with electrical
circuit’s theory, using idealized simple elements (dashpots and springs) to represent specific
mechanical characteristics (Tschoegl [18]). The spring element represents the elastic response and the
dashpots represent the viscous response. By the convenient composition of these elements, one can
represent different viscoelastic behaviors. A parallel association of one dashpot and one spring

represents the Kelvin-Voigt model, as illustrated in Fig. 1.
E

Figure 1: Association schemes of Kevin-Voigt rheological model.

For this model, equilibrium and compatibility equations can be stated as:

g, =& =g

— 5D L O
0; =0, +0;
In which ; and ¢; are the stress and strain tensors. Subscripts ‘(e/)’ and ‘(v)’ represent its elastic
and viscous parts, respectively.
Elastic and viscous stress can be written in terms of strain components as follows:

(el) _
Oy = Cijklgkl
: (2)

o ,(j‘!) = Mijk1 £
Where the dot symbol represents the temporal derivative, Cyi and #; are the elastic and viscous
constitutive tensors, respectively. Mesquita and Coda [9, 10, 11] presented a proportionality condition
between these tensors, given by a single viscoelastic parameter y and written as follows:

Mijir =V Cijkl . (3)

Applying Eq. (2) and Eq. (3) into the equilibrium relation given by Eq. (1), one can express the
general constitutive relation for Kelvin-Voigt viscoelastic model:
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3  BEM integral equations

The integral equation required by the BEM in elastostatics is obtained following the weighting
residual technique, as presented in Brebbia, Telles and Wrobel [19]. In this technique, the differential
equilibrium equation is weighted by a proper function, assumed to be the fundamental problem
solution. So, for 2D elasticity problems, one can write:

J‘Q(O'I-j’j +b,-)u;;-d§2:0 . ®))

Where u;, is the Kelvin fundamental solution for displacements, which can be found in Brebbia
and Dominguez [20], and b; are the body forces.

Applying the divergence theorem and the elasticity relations of the fundamental problem, Eq. (5)
turns into:

J-r uk,-p,-dr—jg gb-j-o-,-de—i-'[Q u b, dQ=0 . (6)

In which u; and p; are the displacements and tractions at the body’s boundary, respectively, and
SZU- is the fundamental solution for strain. Equation (6) is the starting point to obtain the 2D BEM
integral representation for viscoelastic analysis, which will be represent in the next item.

To write the 1IDBEM integral equation, a one-dimensional homogeneous elastic domain is
considered. For this case, one writes the weighting residual expression as follows:

I:(EAHJ.,. +p)u*dx =0. @)

Where E is the Young modulus, 4 is the cross-sectional area, p is the distributed load applied
along the axial direction and i indicates the axial direction.

Equation (7) exhibits the equilibrium equation weighted by the fundamental problem solution for
displacements #". One must consider a Dirac function applied at a source point (s) as the applied force
p in a one-dimensional domain to obtain the fundamental problem of this case. Thus, the fundamental
solutions for axial displacement " and internal force N~ at a given field point (f) can be written as
follows:

* _|xf_xs|

Ug
2FA4 (8)
* Slgn(xf _xs) ‘
¥ 5

In which xy and x, are the axial coordinates of the field point and source point, respectively, and
sign( ) is the sign function, i.e., equal to —1 if the argument is negative or 1 otherwise.

Therefore, applying twice the divergence theorem and the equilibrium equation of the
fundamental problem in Eq. (7), one writes:

& o * * L *
u; = Nyuy + Nyup =u, Ny +uy Ny + .[0 Gty Pralx . €)

In which subscripts 1 and L represent the element endpoints and i indicates a given point
positioned into the domain. The domain integration represent the distributed load p through the
multiplication of its nodal values p; by the shape functions ¢; of one-dimensional elements (similar as
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in FEM techniques).

In fact, the boundary is composed of only the endpoints i=1 and i=L in Eq. (9). Any other value
for i leads to the internal point equation. However, internal points are considered in the system in order
to improve the distributed load (p) representation. Therefore, high-order one-dimensional BEM
elements are available in this formulation.

Equation (9) can be generically written in its algebraic form as follows:

Hyu, =G n, +G.f, . (10)

Where the vectors ug, ng and fg contain, respectively, the nodal displacements, concentrated
applied forces and distributed axial load nodal values. The matrixes Hg, Ge and Gg represent,
respectively, the integral results of the fundamental solutions N*, u* and the integral of the
fundamental solution #~ multiplied by the shape functions.

Multiplying Eq. (10) by the inverse of Gg and considering null concentrated applied forces, one
can writes the final algebraic form of the IDBEM, which will be utilized by the coupling formulation,
as follows:

(Gy) Hyug =(Gy )" Gyf, . (11)

4 Integral formulations for viscoelastic materials based on the BEM

To write the BEM viscoelastic formulation based on the Kelvin-Voigt model, Eq. (4) is applied in
Eq. (6), which leads to:

J‘r ijp]-dr - J‘Q g/deij/mg/mdQ = IQ gkl]'}/Dlj/mé/mdQ + J.Qukibidg =0 . (12)

By applying the divergence theorem and replacing the stress-strain, the strain-displacement and
the Cauchy formula, one can write the Eq. (13) as the BEM singular form for the viscoelastic
formulation. More details of this passage can be found in Mesquita and Coda [11].

Cy [";‘ + ]+ Irp;uidr+ }/Irp;l)idr = Irll;pidr+jgll;bidQ . (13)

Where u; is the temporal derivative of displacements and the free term ci is equal to the
Kronecker operator (Jx) multiplied by 0.5, for points at smooth contours, and equal to Jy, for internal
points.

When introducing the numerical approximation, shape functions approximate displacement and
tractions. High order polynomial functions may be adopted, by using high order boundary elements.
Thus, Eq. (13) can be written for boundary nodes, in its algebraic form, as follows:

Hu(7)+yHu(1)=Gp(r)+Bb(r) . (14)

In which matrix H contains the integration kernels p;. , matrix G contains the integration kernels
u; and matrix B contains the integration of u; over the domain Q. Vectors u(r) and p() contain the
displacements and tractions values, as a function of time, and the dot symbol represents its temporal
derivative.

In the process of evaluating the boundary nodes, the integration kernels in the matrixes H and G
of Eq. (14) become singular when the source point coincides with the field point. So, a mathematical
technique must be used to evaluate this expression, as shown in Aliabadi, Hall and Phemister [21].
The singular kernels are subtracted by a Taylor expansion function and then evaluated as a Cauchy

principal value.
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The time-differential equation showed in Eq. (14) can be solved by the forward finite differences
technique. Such technique considers a linear approximation for evaluating the first time derivative
terms, as follows:

a(r)=—->=" (15)

Where ¢+1 represents the present time instant and Az is the adopted time step. Thus, the analysis
is divided into finite time steps and Eq. (14) turns into a time marching process:

(1+leu'“ =L Hu' +Gp"' +Bb"! . (16)
At At

In which the vectors u and p represent displacements and traction values at a given time step.

5 The coupling technique

Consider a two-dimensional domain Q with contour I, represented by boundary elements of any
order. The reinforcements are immersed in Q and positioned over the line T, which is also represented
by boundary elements. The coupling technique is based on analyzing the structural elements
disconnectedly, wherein one’s effect in each other is an adherence force (contact force), as shown in
Fig. 2.

One considers a perfect bounding contact between matrix (domain) and reinforcements. The
adherence force is modelled as a one-dimensional distributed load along the reinforcement’s line,
named as load line. Then, the displacement compatibility and force equilibrium expressions are
defined as follows:

B (17)

Where ug and up are vectors containing nodal displacements for reinforcement and matrix,
respectively, fg and fp are nodal values of the distributed contact force at the reinforcement elements
and at the force line in the 2D domain, respectively.

P T  1DBEM

Figure 2: Matrix/reinforcement coupling technique.

The contact force at the load line in the 2D domain is considered as a body force in the BEM
formulation. Thus, the domain integral term, given by the expression Bb""' in Eq. (16), is degenerated
and evaluated along a line integral. Hence, all integrals of the singular form can be evaluated as line
integrals, without the need for domain mesh or cells. Equation (16) can be rewritten for the boundary

CILAMCE 2019
Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC,
Natal/RN, Brazil, November 11-14, 2019



F. Author, S. Author, T. Author (double-click to edit author field)

points as:

Where subscripts C and F of the matrixes H and G indicate, respectively, the integral results of
the fundamental solutions over the boundary elements and over the reinforcement elements. Vectors u.
and p. contain displacement and traction values at the boundary points; o parameter is equal to the
relation y/At and the bar symbol above the displacement vector (u.) represents its value in the previous
time step.

Then, the BEM singular form is evaluated for the reinforcement’s nodes, as internal points into
the domain. Equation (13) must be applied for internal points, making the free term cx = Jdu, multiplied
by the displacements and its temporal derivative (#; and u;) of the internal point. Hence, considering
the load line as a body force, applying numerical approximation and replacing Eq. (15), one can
rewrite Eq. (13) for internal points, in its algebraic form, as follows:

(1+a)ug +(1+a)Hgcu, = Ggep, +Gggfp + aHgcl, +auy, . (19)

The reinforcements are assumed as linear elastic time independent. Thus, Eq. (11) is utilized to
describe the relation between ug and fg through the mechanical behavior of the reinforcements. This
equation can be rewritten as follows:

Kyug = Gpfy . (20)

Since the matrixes Kr and Gr are given by:

21

One can notice that Eq. (20) could also represent the one-dimensional FEM, by making Kr the
stiffness matrix and Gr the lumping matrix, which transforms the distributed applied force into
equivalent concentrated nodal forces. Therefore, the present formulation describes both couplings
IDBEM/BEM and FEM/BEM.

Finally, the relations from Eq. (17) are applied in Eq. (18), Eq. (19) and Eq. (20), resulting in the
system of equations:

(I+a)Hce 0 -Ger | [u, Gee aHee 0 |[pe
(I+a)Hge (1+a)l -Ggg [Sup (=|Gpc aHge al|{u, . . (22)
0 Ky G || 0 0 0 ||up

Where I is the identity matrix. After enforcing the boundary conditions, this system of algebraic
equations leads to the problem solution in terms of boundary and reinforcement’s displacements and
tractions.

6 Numerical results

The proposed formulation is applied in the mechanical analysis of the structure illustrated in Fig.

3. The two-dimensional domain is isotropic, plane stress condition is assumed and it is reinforced by

one long horizontal fiber. The figure also exhibits dimensions, loads and the following physical

properties: reinforcements’ area (4), Young’s modulus (£) and Poisson’s ratio (v) of the 2D domain.
The loads illustrated in Fig. 3 are constant in time and all initial conditions are null.

The boundary element mesh is composed of 34 quadratic elements at the boundary of the 2D
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domain and 50 quadratic reinforcement’s elements at the long fiber’s line. Therefore, the entire model
consists of 346 degrees of freedom. A prior analysis has certified the mesh convergence for this
model, i.e., the refinement of the contour elements mesh is adequate for this problem. The
convergence of the time marching process will be exhibited in this example by using three different
time steps:

e At; =16.67 hours (approximately 0.7 days);
e At;=66.67 hours (approximately 2.8 days);
e At} =666.67 hours (approximately 28 days);

q
e RN RN RN R
™ P=0.5 kN/cm
- ¢=0.3 kN/cm
g —
_ Domain
Pl — E=100 kN/cm?
— v=0.3
_ y=45.4545 days
o —_—
s —¥ Reinforcement
_ E=200 kN/cm?
r — A=10 cm?
20 50 20 \

Figure 3: Geometry and physical properties (dimensions in cm).

To validate the results obtained by the proposed formulation, a model is constructed in the
software ANSY'S, since analytical solutions are not easily found for reinforced domains. The model is
composed by 1800 solid two-dimensional elements (PLANE182) and 50 truss one-dimensional
elements (LINK180). ANSYS approach is based on a pure FEM formulation, wherein the
reinforcements must have coincident nodes with the domain mesh. The viscoelastic behavior of the
matrix is modelled by using a transient solution, in which the 2D domain material model has a
damping behavior linearly proportional to the stiffness by a coefficient y. The mechanical behavior of
this damped model over time is the same as the viscoelastic model, since the damping matrix
coincides with the Kelvin-Voigt constitutive matrix. The time transient analysis was set to finish at
270 days with time steps of 0.7 days (approximately 16 hours). The FE model, of 3772 degrees of
freedom, has shown convergence and it can be used for results reference.

Figure 4 illustrates the horizontal (i) and vertical (u,) displacements at the point p; along time
obtained when the different time steps At;, At and Ats are considered. The graphics also compare the
results with the reference values (ANSYS). The results obtained by At; and At, are equally precise,
whereas At; led to worst results, taking into account the reference values. This analysis demonstrates
the convergence of the time marching process, in terms of time step. In addition, one observes the
asymptotic behavior of the viscoelastic analysis along time. As well as the damping response, the
viscous response is maximum in the beginning of the analysis and decreases along time, leaving the
clastic response to govern the mechanical behavior after a certain time, which can explain the
asymptotic behavior. The figures also shows the perfect agreement between the results obtained with
both time steps At; and At, and the reference’s results.

Figure 5 shows the fiber’s results through the time variation of the horizontal () and vertical (u,)
displacement at the right endpoint. This points is also the maximum displacement point. These
graphics illustrate the reference results and the values obtained with Az, At; and Az;. Similarly as the
previous figure, one can observe the convergence regarding the time step size. Furthermore, the
displacements exhibit an asymptotic behavior along time and one can observe the perfect concordance
of the proposed model with the reference. Considering Fig. 5 and Fig. 6, one can verify that both time
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steps Aty and At, are adequate to provide correct results about this numerical example. Therefore, Ats
will be disregarded in the next results.

0.45
0.36

0.27

u, (cm)

u, (cm)

0 90 180 270 0

90 180 270
Time (days)

Time (days)

Figure 4: Horizontal (u,) and vertical (&) displacements at point p.

0.32

u, (cm)

90 180 270 0

90 180 270
Time (days)

Time (days)
Figure 5: Horizontal (u,) and vertical (u,) displacements at the reinforcement right endpoint.

Figure 6 illustrates the horizontal (ux) and vertical (u,) displacements at the boundary obtained at
the last time step of the analysis (270 days), using At,. These graphics also exhibit the reference results
(ANSYS). Variable S represents the geometry perimeter, which starts at the bottom left point and

grows counter clockwise. This figure shows a perfect agreement in the proposed model results and the
reference, for all the domain boundary points.

1.00
A Proposed model
ANSYS

u, (cm)

4125 A Proposed model

— ANSYS
-0.20 -

0 85 170 255 340

0 85 170 255 340
S (cm) S (cm)

Figure 6: Horizontal (ux) and vertical (1) displacements at the boundary nodes after 270 days.

Figure 7 illustrates the fiber’s results for axial internal force (), by its variation along time at the
centerpoint (7-a) and its variation along the fiber’s line at the last time step, 270 days (7-b). The
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centerpoint is also the maximum axial force point, at all time steps of the analysis. These results were
obtained considering At,, since the previous analysis demonstrated the convergence of the time
marching process. These graphics show a perfect agreement between the proposed model and the
reference (ANSYS), as expected. By analyzing the axial force along time in Fig. 7-a, one observes that
it starts in nil value and grow along time. This behavior is explained by the purely elastic response of
the reinforcements, since in the beginning of the analysis the mechanical response of the structure is
primarily viscous, so the reinforcement response follow the elastic response of the domain.

7.2

6.0

4.8

3.6

N (kN)

2.4

Proposed model
A ANSYS

Proposed model
A ANSYS

1.2

0.0

0 920 180 270 0 10 20 30 40 50
Time (days) S (cm)

(a) (b)

Figure 7: Axial force along time at reinforcement centerpoint (a) and axial force along the
reinforcement line at the last time step (b).

In addition, Fig. 7-b also shows a smooth variation of the axial force values along the
reinforcement line, with its maximum value at the centerpoint. Despite the endpoints, the axial force
agrees with the reference along the reinforcement line, however, one can notice the nil value obtained
by the proposed model at the reinforcement endpoints, which is not observed in the reference results.
The proposed model always lead to nil axial force at reinforcements endpoints, since the domain BEM
formulation does not admit concentrated forces applied into the domain, so a no null axial force at the
reinforcement endpoint could not be transmitted to the matrix. On the other hand, the pure FEM
formulation with coincident nodes utilized by ANSYS admits to apply concentrated forces inside the
domain, which allows the force transmission from the reinforcement endpoint to the matrix. By
analyzing the two-dimensional physical model, one can verify that the BEM assumption is more
reliable, justifying the different results obtained at these points when comparing with the ANSYS
results.

Figure 8 exhibits horizontal displacements (u,) and internal axial force (V) over the reinforcement
line (S) for different times. The graphics illustrate the results on five times (t1, t2, t3, t4 and t5), which
are equally spaced in the total time analysis (1, 25, 50, 75 and 100 time steps), when At; is used. These
results have already been validated by the previous graphics and analysis, therefore, Fig. 8 only
exhibits the proposed model results. One observes, for all the reinforcements points, that the results
start with small values and tend to converge along time, because the difference in values decreases
along the specific times illustrated. This characteristic endorse the asymptotic behavior of
displacements and axial force along time at all reinforcements points, as well as Fig. 4, Fig. 5 and Fig.
6 highlighted for some points. Besides, one can notice the same behavior of Fig. 7-a for all
reinforcements points, due to its purely elastic response.
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Figure 8: Horizontal displacements (u) and axial force () of reinforcement over its line for different
time steps.

7 Conclusions

This study presented a coupling formulation for the mechanical analysis of reinforced viscoelastic
materials. The Kelvin-Voigt model was used to represent the linear viscoelastic behavior of the matrix
by the singular 2D BEM formulation. Nevertheless, complex rheological approaches, such as Maxwell
and Boltzmann may be fast implemented. This approach of the BEM is efficient and accurate to
represent the material time dependent behavior, without the need for cells, domain mesh or residual
decaying forces based on relaxation functions, which could make the application of the boundary
method more complex. To represent reinforced media, a coupling technique based on the BEM/BEM
scheme was utilized, using a one-dimensional singular BEM approach not very common in literature,
for which the fundamental solution for displacement and axial force was presented. The formulation of
the coupling method, based on force equilibrium and displacement compatibility is simple and easy to
implement. This approach allows writing the BEM model formulation considering only boundary
integrals. By the results achieved in the numerical example, this approach can be considered efficient,
robust and accurate. The numerical application showed excellent agreement among the responses and
the reference results. The coupling formulation leads to the stable results, in which oscillating forces at
the reinforcements end were not observed in any step of the viscoelastic time marching process. The
results also showed no problems regarding convergence for the present formulation. Therefore, the
proposed formulation has large potential for solving complex structural problems and for being used in
future developments.
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