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Abstract. This work presents a numerical formulation based on the Boundary Element Method (BEM)
for the mechanical analysis of reinforced viscoelastic materials. The reinforced domain is represented
by a numerical methods coupling technique, in which the material matrix is modelled by the usual
two-dimensional singular BEM formulation and a one-dimensional approach of the BEM, called
1DBEM, is used for the reinforcements. The 1DBEM is based on an axial fundamental solution for
elastic 1D domains, easily found in the literature. No relative displacements between matrix and
reinforcements are considered to formulate the coupling and the contact force is a one-dimensional
load distributed along
alternative to the usual FEM/BEM coupling. The viscoelastic response is added to the matrix behavior,
using the Kelvin-Voigt rheological model in the two-dimensional BEM formulation. This approach
enables introducing the time-dependent material properties without the need for cells within the
domain or convolution integrals. A time discretization is needed to solve the resulting time-dependent
equation. However, as previously mentioned in the literature, this approach shows a good convergence
behavior regarding the time step size. Finally, the proposed formulation is able to represent reinforced
domains with a viscoelastic matrix, such as reinforced structures or fiber-reinforced materials.
Numerical applications exhibit the convergence of the model and compare the answer obtained with
both 1DBEM/BEM coupling and FEM/BEM coupling techniques with reference results, available in
the literature. The results obtained are stable and accurate, which demonstrates the robustness of the
formulation proposed in this work.
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1 Introduction

In recent decades, the human being and the society have evolved significantly. Then, advanced
manufactures and products are in constant process of evolution, which lead to the development of
complex materials compositions and methods for its mechanical analysis. For example, the structural
design of mechanical components and structures using reinforced domains and viscoelastic materials,
such as composites, polymers and even concrete, has become crucial in several engineering fields.
Considering the search for projects and components mechanically efficient, i.e., high strength with low
weight, applications like these ones can be seen as a smart solution in different areas, such as civil
engineering, automotive, naval and aeronautics, as mentioned by Armentani and Citarella [1] and
Citarella [2]. In the context of mechanical analysis of these complex materials and structures, the
analytical approaches available are highly restricted and limited, especially concerning geometries and
boundary conditions. As a result, the robust mechanical modelling of complex problems requires the
application of numerical approaches. Among the numerical methods available for the mechanical
analysis, the Boundary Element Method (BEM) is established and widely utilized. Its advantages, as
the mesh dimensionality reduction and the accuracy in representing stress concentration, make the
BEM recommended for some mechanical applications, as fracture mechanics problem, infinite
domains and viscoelasticity (Oliveira and Leonel [3]).

The viscoelastic materials present both elastic and viscous properties, which cause a time
dependent mechanical behavior. Chern [4] and Shaw et al. [5] present a good background about
classic approaches to represent the viscoelastic behaviour, which are usually based on relaxation
functions and incremental schemes. Classical BEM mathematical formulations were also developed to
solve viscoelastic problems, with the use of the principle of correspondence and transformations
(Rizzo and Shippy [6]; Liu and Antes [7]; Lee and Westmann [8]). This study applies and alternative
BEM formulation for viscoelasticity, proposed by Mesquita and Coda [9, 10, 11]. Based on
differential constitutive relations of rheological models, such as Kelvin-Voigt, and the weighted
residual technique, this formulation provides a representation for viscoelastic domains by integral
equations written exclusively with time-differential boundary equations. This aspect of this approach
contributes as an advantage for the using of the BEM, maintaining the mesh dimensionality reduction
for the viscoelastic problem. The time derivative terms are approximately evaluated by the finite
differences technique, which leads to a time marching process. As mentioned in the literature, this
approach shows a good convergence behavior regarding the step size of the time discretization.

On the other hand, modelling reinforced materials and structures usually deals with two different
structural elements, which can be modelled differently, such as plane stress or plane strain plates,
trusses or beams, for instance. Therefore, a numerical model based on the coupling of different
numerical methods, such as the BEM and the Finite Element Method (FEM), seems to be an
interesting approach for addressing consistently this problem. Thus, each numerical method can be
applied in the modelling of the sub-structure in which it presents best performance. The FEM/BEM
coupling was proposed initially by Zienkiewicz, Kelly e Bettes [12]. Since then, several authors have
developed new researches based on this coupling technique, making it a consolidated approach. A
state of art on this subject is presented by Ganguly, Layton and Balakrishna [13] and Elleithy, Tanaka
and Guzik [14]. Furthermore, Bia et al. [15] mentions limitations and advantages of such type of
coupling. This approach have been also used coupled with the BEM formulation based on viscoelastic
rheological models by Mesquita and Coda [16].

In this context, this study presents a numerical formulation for the mechanical modelling of
reinforced viscoelastic domains. The coupling technique for matrix/reinforcement representation is
based on the established FEM/BEM coupling. However, a one-dimensional BEM approach is utilized
into the reinforcements (1DBEM), which characterizes an alternative BEM/BEM coupling technique,
called 1DBEM/BEM. The use of this approach can also be found in Buffon [17], for linear-elastic
problems. The linear viscoelastic behavior of the matrix is represented in the two-dimensional BEM
formulation by imposing properly the constitutive relations of the rheological model of Kelvin-Voigt.
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points as:

1 CC c CC c CF D CC cH u G p G f H u . (18)

Where subscripts C and F of the matrixes H and G indicate, respectively, the integral results of
the fundamental solutions over the boundary elements and over the reinforcement elements. Vectors uc
and pc
relation t and the bar symbol above the displacement vector ( c) represents its value in the previous
time step.

Then, the BEM singular form is evaluated for
the domain. Equation (13) must be applied for internal points, making the free term cki = ki, multiplied
by the displacements and its temporal derivative (ui and i) of the internal point. Hence, considering
the load line as a body force, applying numerical approximation and replacing Eq. (15), one can
rewrite Eq. (13) for internal points, in its algebraic form, as follows:

1 1E FC c FC c FF D FC c Du H u G p G f H u u . (19)

The reinforcements are assumed as linear elastic time independent. Thus, Eq. (11) is utilized to
describe the relation between uE and fE through the mechanical behavior of the reinforcements. This
equation can be rewritten as follows:

E EF FK u G f . (20)

Since the matrixes KF and GF are given by:

-1
F E E

-1
F E E

K G H

G G G
. (21)

One can notice that Eq. (20) could also represent the one-dimensional FEM, by making KF the
stiffness matrix and GF the lumping matrix, which transforms the distributed applied force into
equivalent concentrated nodal forces. Therefore, the present formulation describes both couplings
1DBEM/BEM and FEM/BEM.

Finally, the relations from Eq. (17) are applied in Eq. (18), Eq. (19) and Eq. (20), resulting in the
system of equations:

1

1 1
CC CF c CC CC c

FC FF D FC FC

F D

c

F D

-H 0 G u G H 0 p

H I G u G H I

0 K G f 0 0 0

- u

u

. (22)

Where I is the identity matrix. After enforcing the boundary conditions, this system of algebraic
equations le
tractions.

6 Numerical results

The proposed formulation is applied in the mechanical analysis of the structure illustrated in Fig.
3. The two-dimensional domain is isotropic, plane stress condition is assumed and it is reinforced by
one long horizontal fiber. The figure also exhibits dimensions, loads and the following physical
properties: reinforcements area (A E ) of the 2D domain.
The loads illustrated in Fig. 3 are constant in time and all initial conditions are null.

The boundary element mesh is composed of 34 quadratic elements at the boundary of the 2D
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domain and 50 quadratic elements at the . Therefore, the entire model
consists of 346 degrees of freedom. A prior analysis has certified the mesh convergence for this
model, i.e., the refinement of the contour elements mesh is adequate for this problem. The
convergence of the time marching process will be exhibited in this example by using three different
time steps:

1 = 16.67 hours (approximately 0.7 days);
2 = 66.67 hours (approximately 2.8 days);
1 = 666.67 hours (approximately 28 days);

Loads
P=0.5 kN/cm
q=0.3 kN/cm

Domain
E=100 kN/cm2

0.3
45.4545 days

Reinforcement
E=200 kN/cm2

A=10 cm2

Figure 3: Geometry and physical properties (dimensions in cm).

To validate the results obtained by the proposed formulation, a model is constructed in the
software ANSYS, since analytical solutions are not easily found for reinforced domains. The model is
composed by 1800 solid two-dimensional elements (PLANE182) and 50 truss one-dimensional
elements (LINK180). ANSYS approach is based on a pure FEM formulation, wherein the
reinforcements must have coincident nodes with the domain mesh. The viscoelastic behavior of the
matrix is modelled by using a transient solution, in which the 2D domain material model has a
damping behavior behavior of
this damped model over time is the same as the viscoelastic model, since the damping matrix
coincides with the Kelvin-Voigt constitutive matrix. The time transient analysis was set to finish at
270 days with time steps of 0.7 days (approximately 16 hours). The FE model, of 3772 degrees of
freedom, has shown convergence and it can be used for results reference.

Figure 4 illustrates the horizontal (ux) and vertical (uy) displacements at the point p1 along time
1 2 3 are considered. The graphics also compare the

results with the reference values (ANSYS). The results 1 2 are equally precise,
3 led to worst results, taking into account the reference values. This analysis demonstrates

the convergence of the time marching process, in terms of time step. In addition, one observes the
asymptotic behavior of the viscoelastic analysis along time. As well as the damping response, the
viscous response is maximum in the beginning of the analysis and decreases along time, leaving the
elastic response to govern the mechanical behavior after a certain time, which can explain the
asymptotic behavior. The figures also shows the perfect agreement between the results obtained with

1 2

Figure 5 shows the results through the time variation of the horizontal (ux) and vertical (uy)
displacement at the right endpoint. This points is also the maximum displacement point. These

t1 2 t3. Similarly as the
previous figure, one can observe the convergence regarding the time step size. Furthermore, the
displacements exhibit an asymptotic behavior along time and one can observe the perfect concordance
of the proposed model with the reference. Considering Fig. 5 and Fig. 6, one can verify that both time
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1 2 are adequate to provide correct results about this numerical example. 3

will be disregarded in the next results.

Figure 4: Horizontal (ux) and vertical (uy) displacements at point p1.

Figure 5: Horizontal (ux) and vertical (uy) displacements at the reinforcement right endpoint.

Figure 6 illustrates the horizontal (ux) and vertical (uy) displacements at the boundary obtained at
the last time step of the 2. These graphics also exhibit the reference results
(ANSYS). Variable S represents the geometry perimeter, which starts at the bottom left point and
grows counter clockwise. This figure shows a perfect agreement in the proposed model results and the
reference, for all the domain boundary points.

Figure 6: Horizontal (ux) and vertical (uy) displacements at the boundary nodes after 270 days.

Figure 7 illustrates the results for axial internal force (N), by its variation along time at the
centerpoint (7-a) and its variation along the line at the last time step, 270 days (7-b). The
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centerpoint is also the maximum axial force point, at all time steps of the analysis. These results were
2, since the previous analysis demonstrated the convergence of the time

marching process. These graphics show a perfect agreement between the proposed model and the
reference (ANSYS), as expected. By analyzing the axial force along time in Fig. 7-a, one observes that
it starts in nil value and grow along time. This behavior is explained by the purely elastic response of
the reinforcements, since in the beginning of the analysis the mechanical response of the structure is
primarily viscous, so the reinforcement response follow the elastic response of the domain.

(a) (b)

Figure 7: Axial force along time at reinforcement centerpoint (a) and axial force along the
reinforcement line at the last time step (b).

In addition, Fig. 7-b also shows a smooth variation of the axial force values along the
reinforcement line, with its maximum value at the centerpoint. Despite the endpoints, the axial force
agrees with the reference along the reinforcement line, however, one can notice the nil value obtained
by the proposed model at the reinforcement endpoints, which is not observed in the reference results.
The proposed model always lead to nil axial force at reinforcements endpoints, since the domain BEM
formulation does not admit concentrated forces applied into the domain, so a no null axial force at the
reinforcement endpoint could not be transmitted to the matrix. On the other hand, the pure FEM
formulation with coincident nodes utilized by ANSYS admits to apply concentrated forces inside the
domain, which allows the force transmission from the reinforcement endpoint to the matrix. By
analyzing the two-dimensional physical model, one can verify that the BEM assumption is more
reliable, justifying the different results obtained at these points when comparing with the ANSYS
results.

Figure 8 exhibits horizontal displacements (ux) and internal axial force (N) over the reinforcement
line (S) for different times. The graphics illustrate the results on five times (t1, t2, t3, t4 and t5), which

2 is used. These
results have already been validated by the previous graphics and analysis, therefore, Fig. 8 only
exhibits the proposed model results. One observes, for all the reinforcements points, that the results
start with small values and tend to converge along time, because the difference in values decreases
along the specific times illustrated. This characteristic endorse the asymptotic behavior of
displacements and axial force along time at all reinforcements points, as well as Fig. 4, Fig. 5 and Fig.
6 highlighted for some points. Besides, one can notice the same behavior of Fig. 7-a for all
reinforcements points, due to its purely elastic response.
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Figure 8: Horizontal displacements (ux) and axial force (N) of reinforcement over its line for different
time steps.

7 Conclusions

This study presented a coupling formulation for the mechanical analysis of reinforced viscoelastic
materials. The Kelvin-Voigt model was used to represent the linear viscoelastic behavior of the matrix
by the singular 2D BEM formulation. Nevertheless, complex rheological approaches, such as Maxwell
and Boltzmann may be fast implemented. This approach of the BEM is efficient and accurate to
represent the material time dependent behavior, without the need for cells, domain mesh or residual
decaying forces based on relaxation functions, which could make the application of the boundary
method more complex. To represent reinforced media, a coupling technique based on the BEM/BEM
scheme was utilized, using a one-dimensional singular BEM approach not very common in literature,
for which the fundamental solution for displacement and axial force was presented. The formulation of
the coupling method, based on force equilibrium and displacement compatibility is simple and easy to
implement. This approach allows writing the BEM model formulation considering only boundary
integrals. By the results achieved in the numerical example, this approach can be considered efficient,
robust and accurate. The numerical application showed excellent agreement among the responses and
the reference results. The coupling formulation leads to the stable results, in which oscillating forces at
the reinforcements end were not observed in any step of the viscoelastic time marching process. The
results also showed no problems regarding convergence for the present formulation. Therefore, the
proposed formulation has large potential for solving complex structural problems and for being used in
future developments.
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