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ON COMPLETE SPACELIKE SUBMANIFOLDS IN THE DE
SITTER SPACE WITH PARALLEL MEAN CURVATURE
VECTOR
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ABSTRACT. The text surveys some results concerning submanifolds with par-
allel mean curvature vector immersed in the De Sitter space. We also propose
a semi-Riemannian version of an important inequality obtained by Simons in
the Riemannian case and apply it in order to obtain some results character-
izing umbilical submanifolds and a product of submanifolds in the (n + p)-
dimensional De Sitter space SZ'H’ .

1. INTRODUCTION

Let RZ‘H’“ be an (n + p + 1)-dimensional real vector space endowed with an
inner product of index p given by

P n+p+1
<@z, y >= —inyi + Z ZiYjs
=1 Jj=p+1
where x = (21,22, , Znipt1) is the natural coordinate of Rg"’p*‘l.
We also define the semi-Riemannian manifold Sg‘”’, by
P n+p+1
1 2 2
StHP = {(x1, 22, Tngps1) € RIFPF /_in + Z ;2 =1} .
=1 Jj=p+1

Sgﬂ’ is called (n + p)-dimensional De Sitter space of index p.

Let M™ be an n-dimensional semi-Riemannian manifold immersed in Sg‘”’ .
M™ is said to be spacelike if the induced metric on M™ from the metric of Sg‘”’ is
positive definite.

From now on, we will consider spacelike submanifolds M™ of S;}*p with parallel
mean curvature vector h. Let H = |h| be the mean curvature of M. If h is parallel
it is easy to verify that H is constant and, when p = 1, these two conditions are
equivalent. We say that M" is a maximal submanifold if A vanishes identically.

It was proved by E. Calabi [6] (for n < 4) and by S.Y. Cheng and S.T. Yau
[8] (for all n) that a complete maximal spacelike hypersurface in R?“ is totally
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geodesic. In [17], S. Nishikawa obtained similar results for others Lorentzian man-
ifolds. In particular, he proved that a complete maximal spacelike hypersurface in
S?H is totally geodesic. We recall that a submanifold M™ is said totally geodesic
if its second fundamental form B vanishes identically.

A. Goddard [11] conjectured that the complete spacelike hypersurfaces of ST
with H constant must be totally umbilical. The totally umbilical hypersurfaces of
S{H'l are obtained by intersecting S{H'l with linear hyperplanes through the origin
of R;’“, where ST can be viewed as hypersphere of R;’“.

J. Ramanathan [19] proved Goddard’s conjecture for S$ and 0 < H < 1. More-
over, if H > 1 he showed that the conjecture is false as can be seen from an
example due to Dajczer-Nomizu [10]. In his proof, Ramanthan used the complex
structure of S3. K. Akutagawa [2] proved that Goddard’s conjecture is true when
n=2and H2<1or whenn >3 and H2 < %. He also constructed complete
spacelike rotation surfaces in S with constant H satisfying H > 1 and which are
not totally umbilical.

In [15], S. Montiel proved that Goddard’s conjecture is true provided that M™ is
compact. Furthermore, he exhibited examples of complete spacelike hypersurfaces
with constant H satisfying H? > % and being not totally umbilical - the so
called hyperbolic cylinders (cf. [2] and [13]), which are isometric to the Riemannian
product H!(sinh ) x S*~!(coshr) of a hyperbolic line and an (n — 1)-dimensional
sphere of constant seccional curvatures 1 — coth?r and 1 — tanh? r, respectively.
Later, Montiel [16] studied complete spacelike hypersurfaces with constant mean
4(n—1)

n2

curvature H? = and proved the following result.

Theorem 1.1. Let M™ be a complete spacelike hypersurfaces in S?“ with con-
stant mean curvature H* = %, If M™ is not connected at infinity, that is, if

M™ has at least two ends, then M™ 1is, up to isometry, a hyperbolic cylinder.

Concerning to submanifolds M™ of Sg‘”’ with parallel mean curvature vector we
may cite the following remarkable results. In [12], T. Ishihara proved the following
theorem that generalizes for higher codimension the result of Cheng-Yau [§]

Theorem 1.2. Let M™ be an n-dimensional complete Riemannian manifold iso-
metrically immersed in RZ“’ or Sg*p, If M™ is mazimal, then the immersion is
totally geodesic and M™ is a Riemannian space of constant curvature.

In [7], Q.M. Cheng showed that Akutagawa’s result [2] is valid for higher codi-
mensional complete spacelike submanifolds in S;}*p with parallel mean curvature
vector. More precisely, he proved the following result.

Theorem 1.3. Let M™ be an n-dimensional complete spacelike submanifold in
S;H‘p with parallel mean curvature vector. If H> < 1, when n=2 or n’H? <
4(n — 1), when n > 3, then M™ is totally umbilical.

In [14], H. Li obtained the following extension of Theorem 1.1.

Theorem 1.4. Let M™ be an n-dimensional complete spacelike submanifold in

Sg*p with parallel mean curvature vector. If H> = % and M™ is not connected
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at infinity, that is, if M™ has at least two ends, then M™ is, up to isometry, a
hyperbolic cylinder in ST,

R. Aiyama [1] studied compact spacelike submanifold in S7*7 with parallel
mean curvature vector and proved the following results:

Theorem 1.5. Let M™ be an n-dimensional compact spacelike submanifold in
Sg*p with parallel mean curvature vector. If the normal connection of M™ is flat,
then M™ is totally umbilical.

Theorem 1.6. Let M™ be an n-dimensional compact spacelike submanifold in
SZ“J with parallel mean curvature vector. If the sectional curvature of M™ 1is
non-negative, then M™ is totally umbilical.

We point out that L. Alias and A. Romero [3] also obtained results related to
complete spacelike submanifolds in Sg‘”’ with parallel mean curvature vector.

Let S"(r) be an n-dimensional sphere in R"*! with radius r and let M"™ be
an n-dimensional submanifold minimally immersed in S**?(1). Denote by B the
second fundamental form of this immersion and by S the square of the length of
B. In his pioneering work, J. Simons [20] proved the following inequality for AS

(- (-2)9).

As an application of formula (1.1), Simons [20] obtained the following result.

Theorem 1.7. Let M™ be a closed minimal submanifold of S**P(1). Then either

M™ is totally geodesic, or S = 5t or supS > ;™.
P

_ 1
P

Two years later, S.S. Chern, M. do Carmo and S. Kobayashi [9], determined

all the minimal submanifolds of S"*7(1) satisfying S = 57T More precisely, they

Sl

proved:

Theorem 1.8. Let M™ be a closed minimal submanifold of S**P(1). Assume that

S < 5%r. Then:

(i) Either 8 =0 (and M™ is totally geodesic) or S = 5"t
(i) S = 5" if and only if:

a) p=1 and M" is locally a Clifford torus S* <\/§> x Sn—k <\/”T_k>,

b) p=mn=2 and M? is locally a Veronese surface in S*(1).

In the case of a submanifold M™ of S*™P(1) with non-zero parallel mean cur-
vature vector h, it is convenient to modify slightly the second fundamental form
B and to introduce the tracelless tensor ® = B — Hg, where H =| h | is the mean
curvature and g stands for the induced metric on M™. W. Santos [21] established
the following inequality for the Laplacian of | ® |?

UNPYSEYE @(HH?)—L‘_” o) |- (2=7) |<I>|2>.

Vvn(n—1) p—1
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Let M™ be a complete spacelike maximal submanifold of Sp*7. In [12], T.
Ishihara derived the following inequality for AS

1 S
A5 > S(n+;>. (1.2)

As an important application of (1.2), Ishihara proved Theorem 1.2.

If M™ is a spacelike hypersurface of S?H with constant mean curvature H, as
in the Riemannian case, it is convenient to consider the tensor ®. U.H. Ki, H.J.
Kim and H. Nakagawa [13], established the following inequality for A | ® |?

nin —2)
nin—1)
By applying (1.3) they obtained a constant S that depends on n and H and

such that S < S;. They also characterized the hyperbolic cylinders as the only
complete spacelike hypersurfaces of S{L‘H with non-zero constant H and S = 5.
Moreover, they proved that a complete spacelike hypersurface of S{H'l with non-
zero constant H and non-negative sectional curvature is totally umbilical, provided

that S < 5.
A. Brasil, G. Colares and O. Palmas [5] obtained the following gap theorem.

1
5A|<1>|22|c1>|2 <|<1>|2— H|<I>|+n(1—H2)>. (1.3)

Theorem 1.9. Let M™, n > 3, be a complete spacelike hypersurface in S{L'H with
constant mean curvature H > 0. Then sup | ® |>< oo and
a) either sup | ® |= 0 and M™ is totally umbilical or
b) By < \/sup | ® |2 < BY;, where By, < B}, are the roots of the polynomial
n(n — 2)
n(n—1)

Recently, A. Brasil, R.M.B. Chaves and G. Colares [4] extended the above result
for complete spacelike submanifolds in SZ“J with parallel mean curvature vector.

Let M™ be a spacelike submanifold of Qg*p(c) with non-zero parallel mean
curvature vector h and let H =| h |. Define the second fundamental form with
respect to the normal direction £ = % by h&. If | ¢ |? denotes the squared norm
of ht, set | p |*=| h® |> —nH?. In [7], Q. M. Cheng proved that

Py (z) =2 — Hzx+n(l— H?).

n(n —2)
nin—1)

Now we are going to state our main results. Theorem 1.10 is a Simons’ type
inequality for submanifolds in De Sitter space Sg‘”’ .

1
APl u <|M|2— H|u|+n(1—H2)>- (1.4)

Theorem 1.10. Let M™ be a spacelike submanifold immersed in Sgﬂ’ with parallel
mean curvature. Then the following inequality holds

2> n(n-2)
n(n—1)

IA| D 2|<1>|2< H|<I>|+n(1—H2)>. (1.5)

Next Theorem is a Lorentzian version of results obtained by K. Yano and S.
Ishihara [22] and also by S.T. Yau [23] for Riemannian submanifolds.
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Theorem 1.11. Let M™ be a complete spacelike submanifold in S;H‘p with parallel
mean curvature vector and non-negative sectional curvature. If M™ has constant
scalar curvature R, then M™ is totally umbilical or a product My x Mg X - - - X My,
where each M; is a totally umbilical submanifold of Szﬂ’ and the M!s are mutually
perpendicular along their intersections.

As we saw in the Theorem 1.6, compact spacelike submanifolds in S;H‘p with
parallel mean curvature vector and non-negative sectional curvature are totally
umbilic.

The following result is an application of formula (1.5).

Theorem 1.12. Let M™ be a complete spacelike submanifold in S;H‘p with parallel
mean curvature vector. If sup K denotes the function that assigns to each point of
M™ the supremum of the sectional curvatures at that point, there exists a constant
B(n,p, H) such that if sup K < B(n,p, H), then either:

(i) n =2 and M? is totally umbilical or

(i) n > 3 and M™ is totally geodesic.

2. PRELIMINARIES

In this section we will introduce some basic facts and notations that will ap-
pear on the paper. Let M™ be an n-dimensional Riemannian manifold immersed
in S;H‘p . As the indefinite Riemannian metric of Sg‘”’ induces the Riemannian
metric of M™, the immersion is called spacelike. We choose a local field of semi-
Riemannian orthonormal frames ey, ...,e,4, in Szﬂ’ such that, at each point of
M™, eq,...,e, span the tangent space of M™. We make the following standard
convention of indices

1§A,B,C,§n+p,1§z,j,k,§n,n+1§a,5,’y,§n+p

Take the correspondent dual coframe {wy, ..., wy+p } such that the semi-Riemannian
metric of S”‘”’ is given by ds2 = Zwi Zwa ZeAwA e =180 = —1,

1<i<nn+1<a<n+p. Then the structure equatlons of S”+p are given by

de:ZEBwAB ANwp, wap+wpa=0. (2-1)
B
1
dwap = Z€chc Awep =5 ZEC€DKABCDWC Awp. (2:2)
C c.D
Kapep = €aep(dacdpp — 0apdpe). (2.3)

Next, we restrict those forms to M™. First of all we get
wae=0, n+l<a<n+np. (2.4)

So the Riemannian metric of M™ is written as ds® = wa.
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Since 0 = dw, = g Wai N\ w;, from Cartan’s lemma, we can write

i

Wai = Y hw;,  hg =R (2.5)
J

Set B = Z hiwiwjeq , h = %Z (Z h%) eqand H = |h| = % /Z(Z he)?
Q,i,j a i a i

the second fundamental form, the mean curvature vector and the mean curvature
of M™, respectively.
Using the structure equations we obtain the Gauss equation

Rijir = (k851 — Sadjn) — > (h§ihS — hGhsy) - (2.6)

(03

The scalar curvature R is given by
R=n(n—1)—n*H?+ S, (2.7)
where S = Z (h?j)2 is the squared norm of the second fundamental form of M™.

0,1,
We also have the structure equations of the normal bundle of M™

dwa = Zwaﬁ ANwg, Wap+WwWga = 0. (28)
3
1
dwos = ) Way Nwnp — 5 Y Ragijwi Awj, (2.9)
vy @7
where
Ragsis = Y (RGh; = hSihfy) - (2.10)

1
The covariant derivatives hfj, of hf; satisfy

Zh”kwk = dhg; + Z hSwij + Z hShwii — Z hiwpa. (2.11)

Then, by exterior differentiation of (2.5), we obtain the Codazzi equation

%k = ?ik = ?kj' (2~12)
Similarly, we have the second covariant derivatives hiik of h; so that
Z hzgklwl - dhz]k + Z hljkwll + Z hzlkwlj
(2.13)

Z i = Z T
By exterior differentiation of (2.11)7 we can get the following Ricci formula

W = he = > B Rt + Y W Runint + > i R (2.14)
m m Ié]
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The Laplacian Ak of hf; is defined by Ahgy = 37, bty From (2.12) and
(2.14), we have

ARG = Wiy + > hi Rk + > Wi Rk + Y W Ragie.  (2.15)
k m,k m,k k.B

h
If H # 0, we choose e,11 = T Thus

1 1
H" = —trh" ™ = H and H* = —trh® = 0,0 > n + 2, (2.16)
n n

where h® denotes the matrix [hg].
From (2.6), (2.10), (2.15) and (2.16) it is straightforward to verify that

%AS: > (W) +n > hGHE+

a,ij.k a,i,j

(nS —n?H?) —nH Z tr(h™ T (h®)?)+ (2.17)

> tr(hh)? + > N(h*hP — hPh*),
a, a,f3

where N(A) = tr(AA"), for all matrix A = [a;;].

Recall that M™ is a submanifold with parallel mean curvature vector h if V*h =
0, where V1 is the normal connection of M™ in Sgﬂ’ . Note that this condition
implies that H = |h| is constant and

> hig =0, Vi,a. (2.18)
k

We will need the following generalized Maximum Principle due to Omori and
Yau (cf. [18] and [23]).

Lemma 2.1. Let M™ be a complete Riemannian manifold with Ricci curvature
bounded from below and let F : M™ — R be a C?-function which is bounded from
below on M™. Then there is a sequence of points {px} in M™ such that

Jim F(py) = inf(F), lim | VF(pg) |=0 and liminf AF(py) > 0.

We also will need the following algebraic Lemma (for a proof see [21]).

Lemma 2.2. Let A, B : R™ — R"™ be symmetric linear maps such that AB—BA =
0 and trA =1trB =0. Then
n—2

| trA%B |< ﬁN(A) N(B) (2.19)
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and the equality holds if and only if n — 1 of the eigenvalues x; of A and the
corresponding eigenvalues y; of B satisfy

| i |: n(n — 1); Ly > O;
(2.20)
_ | _NB) __[_N(B)
T\ e (py ~ V- 1)) |

3. PROOF OF SIMONS’ TYPE INEQUALITY

Proof of Theorem 1.10. If H # 0, set ®7; = hj; — H%);; and consider the
following symmetric tensor

o= Z Prwiwjeq. (3.1)
a,i, ]
It is easy to check that ® is traceless and
N(®%) = N(h) — n(H*)
| @ 2= N(®*) =S —nH?, (3.2)
«

where ®* denotes the matrix [®f].
Because h is parallel, we have H constant. Moreover, as H # 0, we can choose

h
a local field of orthonormal frames {ei, es, -, entp} such that e,41 = T With
this choice (2.16) implies that

hn—i—lhoz — hozhn—i-l
U = nit — Ho,j,

J
N(@+1) Z ()2 — nH? = N(h™+) — nH?, (8:3)
tr(h"t1)3 = tr(®"+1)3 + 3BHN (O™ 1Y) + nH3.
O = hj, N(@%) = N(h%), a>n+2. (3.4)

Since h is parallel, from (2.17), (3.2), (3.3) and (3.4) we have

1 2 1 2 2 n+1 @\2 aFB)\2
SA@ = SAS>n(l-H?) |2 —nH Y tr(@" () )+zﬁ:(trq> 72,
[eY a,
(3.5)
As the matrices @ and ®" 1! are traceless and the matrix ®"+! comutes with
all the matrices ®*, we can apply Lemma 2.2 in order to obtain

S u@ (@0)?) < 2 /N @) | o |

nin—1)
n—2

n(n—1)

T
—~
w
=2
~

K

Rev. Un. Mat. Argentina, Vol 47-1
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Due to Cauchy-Schwarz inequality we can write
| @ [*< pZN2 (@) <p) (trd*d7)>. (3.7)
a,f3

It follows from (3.5), (3.6) and (3.7) that formula (1.5) holds.
If H=0, M™ is said to be maximal. In this case, from (1.2) we have

1 S
— > — . .
2AS_S(p+n) (3.8)

4. PROOFS OF THEOREMS 1.11 AND 1.12

Proof of Theorem 1.11. Since the mean curvature vector h is parallel and
1
Z h%hfiRamk =3 ZN(hahB — hPh%), from (2.15) we have
a,B,1,5,k a,B

1
SAS :—ZA = Y (h)®+ > b AR
a,i,j a,i,j,k a,i,j
= > (b))’ + —ZN(h“hB — W) (4.1)
a,i, 7,k a,B
+ > R Rk + Y hEhS, Rk
a,i,j,k,m a,i,j,k,m

Next, we will obtain a pointwise estimate for the last two terms. For each fixed
a, let Af" be an eigenvalue of A, i.e. h{; = A{"d;;, and denote by inf K the infimum
of the sectional curvatures at a point p of M™. Then

2 Z h; Ronijk + Z hiihoi Rmkje | =

i,j,k,m i,7,k,m

Z(_zAgA@RM +) ()2 + (A0)?) Rigir = (4.2)
ik ik

DO = A2 Rigar > (inf K) D (AF = A)% =

(ifﬁf K)(2nN (he) — ZnQ(Ha)Q)ii on(inf K)N (9.

It implies that

> b Bk + Y hhe Rk >
a,i,7,k,m a,i,j,k,m (43)

n(inf K) Y " N(®%) = n(inf K) [ @ |

As h parallel implies H constant, by (2.7) we see that S = R+n?H? —n(n—1)
is also constant, thus AS = 0.
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Since R;j;; > 0, from (4.1) and (4.3), we get

1
0=AS > Z (h$i)? + n(inf K) | @ |2

1 aa,z{,}j,k . (44)
+525:N(h h —hPhe) >0

It turns out that:
i) h*hP = hPhe, for all @ and (8 and so the normal bundle of M™ is flat. Hence,
all the matrices h® can be diagonalized simultaneously;
ii) hf}k = 0, Vi, j,k,a and so the second fundamental form B is parallel. In
particular, it implies that A{* is constant for all 7, .

From i), ii), (4.1) and (4.2) we can write 0 = Z()\f‘ - )\?‘)QRijij and, since
Q1,7
Rijij 2 0, we obtain ()\? - A?)Rijij = 0.

Consequentely, we may apply the same methods used by Ishihara (see [12],
Lemmas 5.1, 5.2 and Theorem 1.3) to conclude that M™ is totally umbilical or a
product My x My --- x My, where M, is a totally umbilical submanifold in S;H‘p
and the M/s are mutually perpendicular along their intersections. (]

Remark: Let M™ be a complete spacelike submanifold in Sg*p(c) with parallel
mean curvature vector and non-negative sectional curvature. In (4.4), we got
the inequality AS > 0, which shows that S is a subharmonic smooth function.
Therefore, if the supremum of S is attained on M™, it follows from the Maximum
Principle that S is constant and we have the same conclusions as in Theorem 1.11.

Proof of Theorem 1.12. In the proof of Theorem 1.10 we used the following
inequality

> b Rmijk + Y hhe Rk =

a,i,g,k,m a,i,7,k,m
n|®|? —nHZtr (R H(h*)?) +Z (tr(h®hP))*+
a,f3

appB B (45)

5Z]\rh h? —hPh®) >
o,

o 2
|(I>|2 | | _ n(n )H|<I>|—|—n(1—H2)

p n(n —1)

Applying the same arguments as in the proof of the inequality (4.3), we obtain

> gk Rk + Y hEho Rk <
a,i,5,k,m a,i,j,k,m (46)

nsupKZN(‘I’Q) =nsupK | ® |*.
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For technical reasons, we will write the expression (4.1) for the Laplacian of S
as

1 « « « «
5A|c1>|2z L—a) | > h&hg, Bmijr+ > h&h, Rk

a,i,g,k,m a,i,g,k,m

(4.7)
ta | Y BEhg, R+ Y hehS Rk

a,i,5,k,m a,i,j,k,m

Thus, from (4.5), (4.6) and (4.7), if a > 1, we have

p n(n—1) (4.8)

%A|<I>|2 >a|cI>|2<
9 1—-a

+n[l—H*+ | —— |sup K] |.
a

Using similar arguments as in [14], it is possible to show that | ® |*’< oo.
Therefore, we can apply Lemma 2.1 to the function | ® |* and obtain a sequence
of points {py} in M™ such that

Jim [ @ [? (p) = sup | @ *= (sup | @ |)%,

lim |V |® | (pg) |= 0 and limsup A | @ |? (pg) < 0. (4.9)
k—o0 k—oo

By applying inequality (4.8) at py, taking the limit, and using (4.9) we get

1 P |?
0 > —limsupA | ® [*> (sup | ® |)? <M
2a k—oo p
(4.10)
n(n —2) 9 1-a
————Hsup|®|+n[l—H +| —— |supK] | .
n(n—1) a

Ifsup K < @(n,p,H) = (4(n—1) — [p(n — 2)* + 4(n — 1)]H?),

.
4(a—1)(n—1)
it can be easily checked that

<<sup|<1> D> -2
P Vvn(n—1)

and the equality holds if and only if sup K’ = 3(n,p, H) and sup | ¢ |=

1—
Hsup|® | +n[l— H?+ (_a) supK]) >0,
a

pn(n —2)
2¢/n(n—1)
Thus, if sup K < S(n,p, H), from (4.10) and the last inequality we conclude
that sup | ® |= 0 and M™ is totally umbilical.
If sup K = 8(n,p, H), we will suppose that M™ is not totally umbilical and
derive a contradiction. First, let us prove that p = 1. Notice that

(sup| @ )*>  n(n-—2)
D n(n—1)

1_
(sup|¢’|)2< Hsup|‘1)|+n[1—H2+(Ta>supK]>:0,
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It shows that all the estimates used to obtain inequality (4.10) turn into equal-
ities. More precisely, (3.6) and (3.7) can now be written as

VIN(@nHL) | @ 2= 0 2. (4.11)
| @ [*=p> N?*(@%). (4.12)

As mentioned before, taking subsequences if necessary, we can arrive to a se-
quence {py} in M™, which satisfies (4.9) and such that

lim N(@)(p) = C% a>n+1. (4.13)
By evaluating (4.11) at py, taking the limit for k¥ — oo and using (4.13) it gives
VCrH (sup | @ [)* = sup | @ [*= (sup | ® |)°, (4.14)

Since sup | ® |> 0, we have

C™H = (sup | @ |)* =sup(| @ |*) = C”. (4.15)

Hence, C* = 0, Va > n + 2. By evaluating (4.12) at p; and taking the limit for
k — oo, from (4.13) and (4.15), we get

(sup | @ [)* =p) (C*)* =p(C™)* = p(sup | @ |)*,

which implies p = 1.
Next, let us prove that sup K = 0. Since h is parallel and the equality holds in
(4.6) and (4.7), we arrive to

1 1
0 = limsup §A | @ |? (pr) = limsup EAS(pk) =n(sup K)sup | ® |*= n(sup K)(sup | @ |)?.
k—oo k—o0
Therefore, sup K = 0.
Now we are in position to prove that M™ is totally umbilical. Observe that
sup K =0 and p = 1 yield
a

0=supK =p(n,1,H) = m

(4(n—1) —n*H?).

Hence H? = %. In this case, according to Montiel (cf. [16], Proposition 2),
either M™ is a totally umbilical hypersurface or n > 2 and the supremum of the
scalar curvature of M" is equal to (n — 2)%.

As M™ is not totally umbilical, we conclude that the supremum of the scalar
curvature of M™ is equal to (n — 2)2, which contradicts the fact that sup K = 0.
Therefore, M™ is totally umbilical.

Because a is arbitrary, taking the limit for a — oo in sup K < S(n,p, H)

m (4(n —1) = [p(n —2)* + 4(n — 1)]H2), we get sup K < B(n,p, H) =

ey A ki G 2)% 4 4(n — 1)]H?).
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Moreover, since M™ is totally umbilical, if n > 3 we obtain
1
1-H?=supK < TE) (4(n—1) = [p(n — 2)* + 4(n — 1)]H?) , thus
n—
p(n — 2)H? < 0, which implies H = 0 and shows that M™ is totally geodesic. [J
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