
REVISTA DE LA
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ON COMPLETE SPACELIKE SUBMANIFOLDS IN THE DE
SITTER SPACE WITH PARALLEL MEAN CURVATURE

VECTOR

ROSA MARIA S. BARREIRO CHAVES AND LUIZ AMANCIO M. SOUSA JR.

Abstract. The text surveys some results concerning submanifolds with par-
allel mean curvature vector immersed in the De Sitter space. We also propose
a semi-Riemannian version of an important inequality obtained by Simons in
the Riemannian case and apply it in order to obtain some results character-
izing umbilical submanifolds and a product of submanifolds in the (n + p)-

dimensional De Sitter space S
n+p
p .

1. Introduction

Let R
n+p+1
p be an (n + p + 1)-dimensional real vector space endowed with an

inner product of index p given by

< x, y >= −
p∑

i=1

xiyi +
n+p+1∑
j=p+1

xjyj ,

where x = (x1, x2, · · · , xn+p+1) is the natural coordinate of R
n+p+1
p .

We also define the semi-Riemannian manifold S
n+p
p , by

S
n+p
p = {(x1, x2, · · ·xn+p+1) ∈ R

n+p+1
p / −

p∑
i=1

xi
2 +

n+p+1∑
j=p+1

xj
2 = 1} .

S
n+p
p is called (n + p)-dimensional De Sitter space of index p.

Let Mn be an n-dimensional semi-Riemannian manifold immersed in S
n+p
p .

Mn is said to be spacelike if the induced metric on Mn from the metric of S
n+p
p is

positive definite.
From now on, we will consider spacelike submanifolds Mn of S

n+p
p with parallel

mean curvature vector h. Let H = |h| be the mean curvature of Mn. If h is parallel
it is easy to verify that H is constant and, when p = 1, these two conditions are
equivalent. We say that Mn is a maximal submanifold if h vanishes identically.

It was proved by E. Calabi [6] (for n ≤ 4) and by S.Y. Cheng and S.T. Yau
[8] (for all n) that a complete maximal spacelike hypersurface in R

n+1
1 is totally
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geodesic. In [17], S. Nishikawa obtained similar results for others Lorentzian man-
ifolds. In particular, he proved that a complete maximal spacelike hypersurface in
S

n+1
1 is totally geodesic. We recall that a submanifold Mn is said totally geodesic

if its second fundamental form B vanishes identically.
A. Goddard [11] conjectured that the complete spacelike hypersurfaces of S

n+1
1

with H constant must be totally umbilical. The totally umbilical hypersurfaces of
S

n+1
1 are obtained by intersecting S

n+1
1 with linear hyperplanes through the origin

of R
n+2
1 , where S

n+1
1 can be viewed as hypersphere of R

n+2
1 .

J. Ramanathan [19] proved Goddard’s conjecture for S
3
1 and 0 ≤ H ≤ 1. More-

over, if H > 1 he showed that the conjecture is false as can be seen from an
example due to Dajczer-Nomizu [10]. In his proof, Ramanthan used the complex
structure of S

3
1. K. Akutagawa [2] proved that Goddard’s conjecture is true when

n = 2 and H2 ≤ 1 or when n ≥ 3 and H2 < 4(n−1)
n2 . He also constructed complete

spacelike rotation surfaces in S
3
1 with constant H satisfying H > 1 and which are

not totally umbilical.
In [15], S. Montiel proved that Goddard’s conjecture is true provided that Mn is

compact. Furthermore, he exhibited examples of complete spacelike hypersurfaces
with constant H satisfying H2 ≥ 4(n−1)

n2 and being not totally umbilical - the so
called hyperbolic cylinders (cf. [2] and [13]), which are isometric to the Riemannian
product H

1(sinh r)× S
n−1(cosh r) of a hyperbolic line and an (n− 1)-dimensional

sphere of constant seccional curvatures 1 − coth2 r and 1 − tanh2 r, respectively.
Later, Montiel [16] studied complete spacelike hypersurfaces with constant mean
curvature H2 = 4(n−1)

n2 and proved the following result.

Theorem 1.1. Let Mn be a complete spacelike hypersurfaces in S
n+1
1 with con-

stant mean curvature H2 = 4(n−1)
n2 . If Mn is not connected at infinity, that is, if

Mn has at least two ends, then Mn is, up to isometry, a hyperbolic cylinder.

Concerning to submanifolds Mn of S
n+p
p with parallel mean curvature vector we

may cite the following remarkable results. In [12], T. Ishihara proved the following
theorem that generalizes for higher codimension the result of Cheng-Yau [8]

Theorem 1.2. Let Mn be an n-dimensional complete Riemannian manifold iso-
metrically immersed in R

n+p
p or S

n+p
p . If Mn is maximal, then the immersion is

totally geodesic and Mn is a Riemannian space of constant curvature.

In [7], Q.M. Cheng showed that Akutagawa’s result [2] is valid for higher codi-
mensional complete spacelike submanifolds in S

n+p
p with parallel mean curvature

vector. More precisely, he proved the following result.

Theorem 1.3. Let Mn be an n-dimensional complete spacelike submanifold in
S

n+p
p with parallel mean curvature vector. If H2 ≤ 1, when n=2 or n2H2 <

4(n − 1), when n ≥ 3, then Mn is totally umbilical.

In [14], H. Li obtained the following extension of Theorem 1.1.

Theorem 1.4. Let Mn be an n-dimensional complete spacelike submanifold in
S

n+p
p with parallel mean curvature vector. If H2 = 4(n−1)

n2 and Mn is not connected
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at infinity, that is, if Mn has at least two ends, then Mn is, up to isometry, a
hyperbolic cylinder in S

n+1
1 .

R. Aiyama [1] studied compact spacelike submanifold in S
n+p
p with parallel

mean curvature vector and proved the following results:

Theorem 1.5. Let Mn be an n-dimensional compact spacelike submanifold in
S

n+p
p with parallel mean curvature vector. If the normal connection of Mn is flat,

then Mn is totally umbilical.

Theorem 1.6. Let Mn be an n-dimensional compact spacelike submanifold in
S

n+p
p with parallel mean curvature vector. If the sectional curvature of Mn is

non-negative, then Mn is totally umbilical.

We point out that L. Alias and A. Romero [3] also obtained results related to
complete spacelike submanifolds in S

n+p
p with parallel mean curvature vector.

Let S
n(r) be an n-dimensional sphere in R

n+1 with radius r and let Mn be
an n-dimensional submanifold minimally immersed in S

n+p(1). Denote by B the
second fundamental form of this immersion and by S the square of the length of
B. In his pioneering work, J. Simons [20] proved the following inequality for ∆S

1
2
∆S ≥ S

(
n −

(
2 − 1

p

)
S

)
. (1.1)

As an application of formula (1.1), Simons [20] obtained the following result.

Theorem 1.7. Let Mn be a closed minimal submanifold of S
n+p(1). Then either

Mn is totally geodesic, or S = n
2− 1

p

, or sup S > n
2− 1

p

.

Two years later, S.S. Chern, M. do Carmo and S. Kobayashi [9], determined
all the minimal submanifolds of S

n+p(1) satisfying S = n
2− 1

p

. More precisely, they

proved:

Theorem 1.8. Let Mn be a closed minimal submanifold of S
n+p(1). Assume that

S ≤ n
2− 1

p

. Then:

(i) Either S = 0 (and Mn is totally geodesic) or S = n
2− 1

p

.

(ii) S = n
2− 1

p

if and only if:

a) p = 1 and Mn is locally a Clifford torus S
k

(√
k
n

)
× S

n−k

(√
n−k

n

)
.

b) p = n = 2 and M2 is locally a Veronese surface in S
4(1).

In the case of a submanifold Mn of S
n+p(1) with non-zero parallel mean cur-

vature vector h, it is convenient to modify slightly the second fundamental form
B and to introduce the tracelless tensor Φ = B −Hg, where H =| h | is the mean
curvature and g stands for the induced metric on Mn. W. Santos [21] established
the following inequality for the Laplacian of | Φ |2

1
2
∆ | Φ |2≥| Φ |2

(
n(1 + H2) − n(n − 2)√

n(n − 1)
| g(Φ, h) | −

(
2p − 3
p − 1

)
| Φ |2

)
.
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Let Mn be a complete spacelike maximal submanifold of S
n+p
p . In [12], T.

Ishihara derived the following inequality for ∆S

1
2
∆S ≥ S

(
n +

S

p

)
. (1.2)

As an important application of (1.2), Ishihara proved Theorem 1.2.
If Mn is a spacelike hypersurface of S

n+1
1 with constant mean curvature H , as

in the Riemannian case, it is convenient to consider the tensor Φ. U.H. Ki, H.J.
Kim and H. Nakagawa [13], established the following inequality for ∆ | Φ |2

1
2
∆ | Φ |2≥| Φ |2

(
| Φ |2 − n(n − 2)√

n(n − 1)
H | Φ | +n(1 − H2)

)
. (1.3)

By applying (1.3) they obtained a constant S+ that depends on n and H and
such that S ≤ S+. They also characterized the hyperbolic cylinders as the only
complete spacelike hypersurfaces of S

n+1
1 with non-zero constant H and S = S+.

Moreover, they proved that a complete spacelike hypersurface of S
n+1
1 with non-

zero constant H and non-negative sectional curvature is totally umbilical, provided
that S < S+.

A. Brasil, G. Colares and O. Palmas [5] obtained the following gap theorem.

Theorem 1.9. Let Mn, n ≥ 3, be a complete spacelike hypersurface in S
n+1
1 with

constant mean curvature H > 0. Then sup | Φ |2< ∞ and
a) either sup | Φ |= 0 and Mn is totally umbilical or
b)B−

H ≤√sup | Φ |2 ≤ B+
H , where B−

H ≤ B+
H are the roots of the polynomial

PH(x) = x2 − n(n − 2)√
n(n − 1)

Hx + n(1 − H2).

Recently, A. Brasil, R.M.B. Chaves and G. Colares [4] extended the above result
for complete spacelike submanifolds in S

n+p
p with parallel mean curvature vector.

Let Mn be a spacelike submanifold of Qn+p
p (c) with non-zero parallel mean

curvature vector h and let H =| h |. Define the second fundamental form with
respect to the normal direction ξ = h

H by hξ. If | hξ |2 denotes the squared norm
of hξ, set | µ |2=| hξ |2 −nH2. In [7], Q. M. Cheng proved that

1
2
∆ | µ |2≥| µ |2

(
| µ |2 − n(n − 2)√

n(n − 1)
H | µ | +n(1 − H2)

)
. (1.4)

Now we are going to state our main results. Theorem 1.10 is a Simons’ type
inequality for submanifolds in De Sitter space S

n+p
p .

Theorem 1.10. Let Mn be a spacelike submanifold immersed in S
n+p
p with parallel

mean curvature. Then the following inequality holds

1
2∆ | Φ |2 ≥| Φ |2

(
| Φ |2

p
− n(n − 2)√

n(n − 1)
H | Φ | +n(1 − H2)

)
. (1.5)

Next Theorem is a Lorentzian version of results obtained by K. Yano and S.
Ishihara [22] and also by S.T. Yau [23] for Riemannian submanifolds.
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Theorem 1.11. Let Mn be a complete spacelike submanifold in S
n+p
p with parallel

mean curvature vector and non-negative sectional curvature. If Mn has constant
scalar curvature R, then Mn is totally umbilical or a product M1×M2×· · ·×Mk,
where each Mi is a totally umbilical submanifold of S

n+p
p and the M ′

is are mutually
perpendicular along their intersections.

As we saw in the Theorem 1.6, compact spacelike submanifolds in S
n+p
p with

parallel mean curvature vector and non-negative sectional curvature are totally
umbilic.

The following result is an application of formula (1.5).

Theorem 1.12. Let Mn be a complete spacelike submanifold in S
n+p
p with parallel

mean curvature vector. If sup K denotes the function that assigns to each point of
Mn the supremum of the sectional curvatures at that point, there exists a constant
β(n, p, H) such that if sup K ≤ β(n, p, H), then either:
(i) n = 2 and M2 is totally umbilical or
(ii) n ≥ 3 and Mn is totally geodesic.

2. Preliminaries

In this section we will introduce some basic facts and notations that will ap-
pear on the paper. Let Mn be an n-dimensional Riemannian manifold immersed
in S

n+p
p . As the indefinite Riemannian metric of S

n+p
p induces the Riemannian

metric of Mn, the immersion is called spacelike. We choose a local field of semi-
Riemannian orthonormal frames e1, ..., en+p in S

n+p
p such that, at each point of

Mn, e1, ..., en span the tangent space of Mn. We make the following standard
convention of indices

1 ≤ A, B, C, · · · ≤ n + p, 1 ≤ i, j, k, · · · ≤ n, n + 1 ≤ α, β, γ, · · · ≤ n + p.

Take the correspondent dual coframe {ω1, ..., ωn+p} such that the semi-Riemannian
metric of S

n+p
p is given by ds̄2 =

∑
i

ωi
2 −

∑
α

ωα
2 =

∑
A

εAωA
2, εi = 1, εα = −1,

1 ≤ i ≤ n, n + 1 ≤ α ≤ n + p. Then the structure equations of S
n+p
p are given by

dωA =
∑
B

εBωAB ∧ ωB, ωAB + ωBA = 0. (2.1)

dωAB =
∑
C

εCωAC ∧ ωCB − 1
2

∑
C,D

εCεDKABCDωC ∧ ωD. (2.2)

KABCD = εAεB(δACδBD − δADδBC). (2.3)

Next, we restrict those forms to Mn. First of all we get

ωα = 0, n + 1 ≤ α ≤ n + p. (2.4)

So the Riemannian metric of Mn is written as ds2 =
∑

i

ωi
2.
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Since 0 = dωα =
∑

i

ωαi ∧ ωi, from Cartan’s lemma, we can write

ωαi =
∑

j

hα
ijωj , hα

ij = hα
ji. (2.5)

Set B =
∑
α,i,j

hα
ijωiωjeα , h =

1
n

∑
α

(∑
i

hα
ii

)
eα and H = |h| =

1
n

√∑
α

(
∑

i

hα
ii)

2

the second fundamental form, the mean curvature vector and the mean curvature
of Mn, respectively.

Using the structure equations we obtain the Gauss equation

Rijkl = (δikδjl − δilδjk) −
∑

α

(
hα

ikhα
jl − hα

ilh
α
jk

)
. (2.6)

The scalar curvature R is given by

R = n(n − 1) − n2H2 + S, (2.7)

where S =
∑
α,i,j

(hα
ij)

2 is the squared norm of the second fundamental form of Mn.

We also have the structure equations of the normal bundle of Mn

dωα =
∑

β

ωαβ ∧ ωβ , ωαβ + ωβα = 0. (2.8)

dωαβ =
∑

γ

ωαγ ∧ ωγβ − 1
2

∑
i,j

Rαβijωi ∧ ωj , (2.9)

where
Rαβij =

∑
l

(
hα

ilh
β
lj − hα

jlh
β
li

)
. (2.10)

The covariant derivatives hα
ijk of hα

ij satisfy∑
k

hα
ijkωk = dhα

ij +
∑

k

hα
ikωkj +

∑
k

hα
jkωki −

∑
β

hβ
ijωβα. (2.11)

Then, by exterior differentiation of (2.5), we obtain the Codazzi equation

hα
ijk = hα

jik = hα
ikj . (2.12)

Similarly, we have the second covariant derivatives hα
ijkl of hα

ij so that∑
l

hα
ijklωl = dhα

ijk +
∑

l

hα
ljkωli +

∑
l

hα
ilkωlj+∑

l

hα
ijlωlk −

∑
β

hβ
ijkωβα.

(2.13)

By exterior differentiation of (2.11), we can get the following Ricci formula

hα
ijkl − hα

ijlk =
∑
m

hα
imRmjkl +

∑
m

hα
jmRmikl +

∑
β

hβ
ijRαβkl. (2.14)

Rev. Un. Mat. Argentina, Vol 47-1
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The Laplacian �hα
ij of hα

ij is defined by �hα
ij =

∑
k hα

ijkk . From (2.12) and
(2.14), we have

�hα
ij =

∑
k

hα
kkij +

∑
m,k

hα
kmRmijk +

∑
m,k

hα
miRmkjk +

∑
k,β

hβ
ikRαβjk. (2.15)

If H �= 0, we choose en+1 =
h

H
. Thus

Hn+1 =
1
n

trhn+1 = H and Hα =
1
n

trhα = 0, α ≥ n + 2, (2.16)

where hα denotes the matrix [hα
ij ].

From (2.6), (2.10), (2.15) and (2.16) it is straightforward to verify that

1
2
�S =

∑
α,i,j,k

(hα
ijk)2 + n

∑
α,i,j

hα
ijH

α
ij+

(nS − n2H2) − nH
∑
α

tr(hn+1(hα)2)+

∑
α,β

[tr(hαhβ)]2 +
∑
α,β

N(hαhβ − hβhα),

(2.17)

where N(A) = tr(AAt), for all matrix A = [aij ].
Recall that Mn is a submanifold with parallel mean curvature vector h if ∇⊥h ≡

0, where ∇⊥ is the normal connection of Mn in S
n+p
p . Note that this condition

implies that H = |h| is constant and

∑
k

hα
kki = 0, ∀i, α. (2.18)

We will need the following generalized Maximum Principle due to Omori and
Yau (cf. [18] and [23]).

Lemma 2.1. Let Mn be a complete Riemannian manifold with Ricci curvature
bounded from below and let F : Mn → R be a C2-function which is bounded from
below on Mn. Then there is a sequence of points {pk} in Mn such that

lim
k→∞

F (pk) = inf(F ), lim
k→∞

| ∇F (pk) |= 0 and lim inf
k→∞

∆F (pk) ≥ 0.

We also will need the following algebraic Lemma (for a proof see [21]).

Lemma 2.2. Let A, B : R
n → R

n be symmetric linear maps such that AB−BA =
0 and trA = trB = 0. Then

| trA2B |≤ n − 2√
n (n − 1)

N(A)
√

N(B) (2.19)
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and the equality holds if and only if n − 1 of the eigenvalues xi of A and the
corresponding eigenvalues yi of B satisfy

| xi |=
√

N(A)
n(n − 1)

, xixj ≥ 0,

yi =

√
N(B)

n(n − 1)

(
resp. yi = −

√
N(B)

n(n − 1)

)
.

(2.20)

3. Proof of Simons’ type Inequality

Proof of Theorem 1.10. If H �= 0, set Φα
ij = hα

ij − Hαδij and consider the
following symmetric tensor

Φ =
∑
α,i,j

Φα
ijωiωjeα. (3.1)

It is easy to check that Φ is traceless and

N(Φα) = N(hα) − n(Hα)2;
| Φ |2=

∑
α

N(Φα) = S − nH2, (3.2)

where Φα denotes the matrix [Φα
ij ].

Because h is parallel, we have H constant. Moreover, as H �= 0, we can choose

a local field of orthonormal frames {e1, e2, · · · , en+p} such that en+1 =
h

H
. With

this choice (2.16) implies that

hn+1hα = hαhn+1,
Φn+1

ij = hn+1
ij − Hδij ,

N(Φn+1) = tr(hn+1)2 − nH2 = N(hn+1) − nH2,
tr(hn+1)3 = tr(Φn+1)3 + 3HN(Φn+1) + nH3.

(3.3)

Φα
ij = hα

ij , N(Φα) = N(hα), α ≥ n + 2. (3.4)

Since h is parallel, from (2.17), (3.2), (3.3) and (3.4) we have

1
2
∆ | Φ |2= 1

2
∆S ≥ n(1 − H2) | Φ |2 − nH

∑
α

tr(Φn+1(Φα)2) +
∑
α,β

(trΦαΦβ)2.

(3.5)
As the matrices Φα and Φn+1 are traceless and the matrix Φn+1 comutes with

all the matrices Φα, we can apply Lemma 2.2 in order to obtain∑
α

tr(Φn+1(Φα)2) ≤ n − 2√
n(n − 1)

√
N(Φn+1) | Φ |2

≤ n − 2√
n(n − 1)

| Φ |3 .
(3.6)
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Due to Cauchy-Schwarz inequality we can write

| Φ |4≤ p
∑
α

N2(Φα) ≤ p
∑
α,β

(trΦαΦβ)2. (3.7)

It follows from (3.5), (3.6) and (3.7) that formula (1.5) holds.
If H ≡ 0, Mn is said to be maximal. In this case, from (1.2) we have

1
2
∆S ≥ S

(
S

p
+ n

)
. (3.8)

�

4. Proofs of Theorems 1.11 and 1.12

Proof of Theorem 1.11. Since the mean curvature vector h is parallel and∑
α,β,i,j,k

hα
ijh

β
kiRαβjk =

1
2

∑
α,β

N(hαhβ − hβhα), from (2.15) we have

1
2
∆S =

1
2

∑
α,i,j

∆(hα
ij)

2 =
∑

α,i,j,k

(hα
ijk)2 +

∑
α,i,j

hα
ij∆hα

ij

=
∑

α,i,j,k

(hα
ijk)2 +

1
2

∑
α,β

N(hαhβ − hβhα)

+
∑

α,i,j,k,m

hα
ijh

α
kmRmijk +

∑
α,i,j,k,m

hα
ijh

α
miRmkjk .

(4.1)

Next, we will obtain a pointwise estimate for the last two terms. For each fixed
α, let λα

i be an eigenvalue of hα, i.e. hα
ij = λα

i δij , and denote by inf K the infimum
of the sectional curvatures at a point p of Mn. Then

2


 ∑

i,j,k,m

hα
ijh

α
kmRmijk +

∑
i,j,k,m

hα
ijh

α
miRmkjk


 =

∑
i,k

(−2λα
i λα

k )Rikik +
∑
i,k

(
(λα

i )2 + (λα
k )2
)
Rikik =

∑
i,k

(λα
i − λα

k )2Rikik ≥ (inf K)
∑
i,k

(λα
i − λα

k )2 =

(inf K)(2nN(hα) − 2n2(Hα)2) = 2n(inf K)N(Φα).

(4.2)

It implies that ∑
α,i,j,k,m

hα
ijh

α
kmRmijk +

∑
α,i,j,k,m

hα
ijh

α
miRmkjk ≥

n(inf K)
∑
α

N(Φα) = n(inf K) | Φ |2 .
(4.3)

As h parallel implies H constant, by (2.7) we see that S = R+n2H2−n(n−1)
is also constant, thus ∆S = 0.
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Since Rijij ≥ 0, from (4.1) and (4.3), we get

0 =
1
2
∆S ≥

∑
α,i,j,k

(hα
ijk)2 + n(inf K) | Φ |2

+
1
2

∑
α,β

N(hαhβ − hβhα) ≥ 0.
(4.4)

It turns out that:
i) hαhβ = hβhα, for all α and β and so the normal bundle of Mn is flat. Hence,
all the matrices hα can be diagonalized simultaneously;
ii) hα

ijk = 0, ∀i, j, k, α and so the second fundamental form B is parallel. In
particular, it implies that λα

i is constant for all i, α.
From i), ii), (4.1) and (4.2) we can write 0 =

∑
α,i,j

(λα
i − λα

j )2Rijij and, since

Rijij ≥ 0, we obtain (λα
i − λα

j )Rijij = 0.
Consequentely, we may apply the same methods used by Ishihara (see [12],

Lemmas 5.1, 5.2 and Theorem 1.3) to conclude that Mn is totally umbilical or a
product M1 × M2 · · · × Mk, where Mi is a totally umbilical submanifold in S

n+p
p

and the M ′
is are mutually perpendicular along their intersections. �

Remark: Let Mn be a complete spacelike submanifold in S
n+p
p (c) with parallel

mean curvature vector and non-negative sectional curvature. In (4.4), we got
the inequality ∆S ≥ 0, which shows that S is a subharmonic smooth function.
Therefore, if the supremum of S is attained on Mn, it follows from the Maximum
Principle that S is constant and we have the same conclusions as in Theorem 1.11.

Proof of Theorem 1.12. In the proof of Theorem 1.10 we used the following
inequality

∑
α,i,j,k,m

hα
ijh

α
kmRmijk +

∑
α,i,j,k,m

hα
ijh

α
miRmkjk =

n | Φ |2 −nH
∑
α

tr
(
hn+1(hα)2

)
+
∑
α,β

(tr(hαhβ))2+

1
2

∑
α,β

N(hαhβ − hβhα) ≥

| Φ |2
(
| Φ |2

p
− n(n − 2)√

n(n − 1)
H | Φ | +n(1 − H2)

)
.

(4.5)

Applying the same arguments as in the proof of the inequality (4.3), we obtain

∑
α,i,j,k,m

hα
ijh

α
kmRmijk +

∑
α,i,j,k,m

hα
ijh

α
miRmkjk ≤

n supK
∑
α

N(Φα) = n supK | Φ |2 .
(4.6)
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For technical reasons, we will write the expression (4.1) for the Laplacian of S
as

1
2
∆ | Φ |2≥ (1 − a)


 ∑

α,i,j,k,m

hα
ijh

α
kmRmijk +

∑
α,i,j,k,m

hα
ijh

α
miRmkjk




+a


 ∑

α,i,j,k,m

hα
ijh

α
kmRmijk +

∑
α,i,j,k,m

hα
ijh

α
miRmkjk


 .

(4.7)

Thus, from (4.5), (4.6) and (4.7), if a ≥ 1, we have

1
2
∆ | Φ |2 ≥ a | Φ |2

(
| Φ |2

p
− n(n − 2)√

n(n − 1)
H | Φ |

+n[1 − H2 +
(

1 − a

a

)
sup K]

)
.

(4.8)

Using similar arguments as in [14], it is possible to show that | Φ |2< ∞.
Therefore, we can apply Lemma 2.1 to the function | Φ |2 and obtain a sequence
of points {pk} in Mn such that

lim
k→∞

| Φ |2 (pk) = sup | Φ |2= (sup | Φ |)2,
lim

k→∞
| ∇ | Φ |2 (pk) |= 0 and lim sup

k→∞
∆ | Φ |2 (pk) ≤ 0.

(4.9)

By applying inequality (4.8) at pk, taking the limit, and using (4.9) we get

0 ≥ 1
2a

lim sup
k→∞

∆ | Φ |2≥ (sup | Φ |)2
(

sup | Φ |2
p

− n(n − 2)√
n (n − 1)

H sup | Φ | + n[1 − H2 +
(

1 − a

a

)
sup K]

)
.

(4.10)

If sup K ≤ β(n, p, H) =
a

4(a − 1)(n − 1)
(
4(n − 1) − [p(n − 2)2 + 4(n − 1)]H2

)
,

it can be easily checked that(
(sup | Φ |)2

p
− n(n − 2)√

n (n − 1)
H sup | Φ | + n[1 − H2 +

(
1 − a

a

)
sup K]

)
≥ 0,

and the equality holds if and only if supK = β(n, p, H) and sup | Φ |= pn(n − 2)
2
√

n (n − 1)
.

Thus, if sup K < β(n, p, H), from (4.10) and the last inequality we conclude
that sup | Φ |= 0 and Mn is totally umbilical.

If supK = β(n, p, H), we will suppose that Mn is not totally umbilical and
derive a contradiction. First, let us prove that p = 1. Notice that

(sup | Φ |)2
(

(sup | Φ |)2
p

− n(n − 2)√
n (n − 1)

H sup | Φ | + n[1 − H2 +
(

1 − a

a

)
sup K]

)
= 0.
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It shows that all the estimates used to obtain inequality (4.10) turn into equal-
ities. More precisely, (3.6) and (3.7) can now be written as√

N(Φn+1) | Φ |2=| Φ |3 . (4.11)

| Φ |4= p
∑
α

N2(Φα). (4.12)

As mentioned before, taking subsequences if necessary, we can arrive to a se-
quence {pk} in Mn, which satisfies (4.9) and such that

lim
k→∞

N(Φα)(pk) = Cα, α ≥ n + 1. (4.13)

By evaluating (4.11) at pk, taking the limit for k → ∞ and using (4.13) it gives
√

Cn+1 (sup | Φ |)2 = sup | Φ |3= (sup | Φ |)3 , (4.14)

Since sup | Φ |> 0, we have

Cn+1 = (sup | Φ |)2 = sup(| Φ |2) =
∑

α

Cα. (4.15)

Hence, Cα = 0, ∀α ≥ n + 2. By evaluating (4.12) at pk and taking the limit for
k → ∞, from (4.13) and (4.15), we get

(sup | Φ |)4 = p
∑
α

(Cα)2 = p(Cn+1)2 = p(sup | Φ |)4,

which implies p = 1.
Next, let us prove that supK = 0. Since h is parallel and the equality holds in

(4.6) and (4.7), we arrive to

0 = lim sup
k→∞

1
2
∆ | Φ |2 (pk) = lim sup

k→∞

1
2
∆S(pk) = n(sup K) sup | Φ |2= n(sup K)(sup | Φ |)2.

Therefore, sup K = 0.
Now we are in position to prove that Mn is totally umbilical. Observe that

sup K = 0 and p = 1 yield

0 = sup K = β(n, 1, H) =
a

4(a − 1)(n − 1)
(
4(n − 1) − n2H2

)
.

Hence H2 = 4(n−1)
n2 . In this case, according to Montiel (cf. [16], Proposition 2),

either Mn is a totally umbilical hypersurface or n > 2 and the supremum of the
scalar curvature of Mn is equal to (n − 2)2.

As Mn is not totally umbilical, we conclude that the supremum of the scalar
curvature of Mn is equal to (n − 2)2, which contradicts the fact that supK = 0.
Therefore, Mn is totally umbilical.

Because a is arbitrary, taking the limit for a → ∞ in sup K ≤ β(n, p, H) =
a

4(a − 1)(n − 1)
(
4(n − 1) − [p(n − 2)2 + 4(n − 1)]H2

)
, we get sup K ≤ β(n, p, H) =

1
4(n − 1)

(
4(n − 1) − [p(n − 2)2 + 4(n − 1)]H2

)
.
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Moreover, since Mn is totally umbilical, if n ≥ 3 we obtain

1 − H2 = supK ≤ 1
4(n − 1)

(
4(n − 1) − [p(n − 2)2 + 4(n − 1)]H2

)
, thus

p(n − 2)H2 ≤ 0, which implies H = 0 and shows that Mn is totally geodesic. �
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