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Abstract We consider the scalar delayed differential equation ε ẋ(t) = −x(t) + f (x
(t − 1)), where ε > 0 and f verifies either df /dx > 0 or df /dx < 0 and some other
conditions. We present theorems indicating that a generic initial condition with sign changes
generates a solution with a transient time of order exp(c/ε), for some c > 0. We call it a
metastable solution. During this transient a finite time span of the solution looks like that of
a periodic function. It is remarkable that if df /dx > 0 then f must be odd or present some
other very special symmetry in order to support metastable solutions, while this condition is
absent in the case df /dx < 0. Explicit ε-asymptotics for the motion of zeroes of a solution
and for the transient time regime are presented.
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1 Introduction

Our goal in this paper is to study the transient solutions of equation

ε ẋ(t) = −x(t)+ f (x(t − 1)), (1)

where f is either a monotonic increasing (positive feedback) or a monotonic decreasing
(negative feedback) function. In either case f must satisfy some additional hypotheses given
precisely in Sects. 2 and 3. These hypotheses are necessary to guarantee that the map f :
R → R has the following properties: (i) in the positive feedback case f has three fixed points
p−, p0, p+, such that p0 = 0 is hyperbolic unstable, p− < 0 (p+ > 0) is hyperbolic stable
and attracts all negative (positive) initial conditions; (ii) in the negative feedback case f has
the origin as a hyperbolic unstable fixed point, and there is a unique hyperbolic stable period
two orbit (p−, p+) that attracts almost all initial conditions. So, in both cases the dynamics
of f is known and it is simple. Under these hypotheses, a lot is known about the dynamics
of the semi-flow generated by Eq. 1 in the phase space C0([−1, 0]), of continuous functions
in [−1, 0] with the sup norm.

In the positive feedback case the system has a global attractor that is made of: the three
equilibria p−, p0, p+; a finite set of unstable periodic orbits; and a set of global orbits con-
necting either two equilibria, or one equilibrium and one periodic orbit, or two periodic orbits.
Moreover, the system admits a discrete Liapunov function that “more or less” establishes
that the number of zeroes of a solution x, in an interval [t − 1, t], cannot increase with time.
This sets constraints on the directions of the connecting orbits. All this information can be
obtained in the following nonexhaustive list of references [11,14–16,21,22] (p. 90). In the
negative feedback case a similar picture holds, after we replace the two stable equilibria
p− and p+ by a stable periodic orbit. The main references here are [12,13].

The motivation for this work came from a numerical study of Eq. 1 with positive feed-
back that we did in the mid nineties. We obtained, numerically, an abundance of oscillatory
solutions, apparently periodic, that after a long time ended up in one of the stable equilibria
of the equation. By that time it was well known that very long transients may be displayed
by the following scalar parabolic equation

∂t u = ε2 ∂2
x u − d F

du
(u), (2)

where u is a function of position x ∈ [0, 1] and time t which satisfies Neumann bound-
ary conditions; F is some smooth function with two local minima and one local maximum
(a “double well” function); and 0 < ε � 1 is a small parameter. More precisely, it was
shown in [3,7] that if F has the same value at its two minima, then an initial condition that
has changes of sign generates a solution x(t) that keeps changing sign for times of order
ec/ε , for some c > 0, until it eventually settles down in one of the two stable equilibria of
Eq. 2, corresponding to the two minima of F . These long transient solutions of Eq. 2 have
been called “metastable” states by Carr and Pego [3]. Fusco and Hale in [7] described this
metastability behavior of Eq. 2 in a way that has suggested to us that Eq. 1 could exhibit a
similar phenomenon.

At this point it is convenient to make clear what we mean by metastability in the context
of Eq. 1. Under the hypotheses in Sects. 2 and 3, an open and dense set of initial conditions
generates solutions of Eq. 1 that are asymptotic to an equilibrium (positive feedback case)
or to a periodic orbit (negative feedback case). The transient time is the time it takes for a
solution to enter a given small neighborhood U of the asymptotic attracting set. Equation
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1 is said to exhibit metastability if the transient time of most solutions grows as ec/ε when
ε → 0, where c does not depend on ε.

In the positive feedback case, a heuristic explanation for the existence of metastable states
is the following. Setting ε = 0 in Eq. 1, we obtain the mapping x(t)= f (x(t − 1)) of
continuous functions defined in [−1, 0]. Let x0 : [−1, 0] → R be a smooth initial condi-
tion that, for simplicity, satisfies x0(−1) = x0(−1/2) = x0(0) = 0 and x0(t) < 0, for
−1 < t < −1/2, and x0(t) > 0, for −1/2 < t < 0. The hypothesis on f imply that the
iterates of x(t) = f (x(t − 1)) give a continuous function x that for large t is close to a
periodic square-wave function S given by S(t) = p−, for k < t < k + 1/2, S(t) = p+, for
k + 1/2 < t < k + 1, k ∈ Z. It is not hard to show that the real solution of Eq. 1 with ε
small, and initial condition x0, is C0-close to x in a time interval [−1, t1], provided the one
sided derivative of x times ε is small. As time evolves, this condition will eventually cease to
hold since x approaches a square-wave function. The right hand side of Eq. 1 must be taken
into account near the points where |ε ẋ(t)| is large. For ε sufficiently small, x will acquire a
“rounded square-wave” shape during the time interval [0, t1]. For t > t1 the true solution of
Eq. 1 will exhibit sharp transitions, between p− and p+, giving rise to the metastable transient
of the solution. In the parabolic Eq. 2, the transitions during the transient of the solution have
been described using the so called transition layer functions [7] (in this case they are easily
obtained by solving a relatively simple ordinary differential equation).

Following very closely what was done in [7], we shall show that Eq. 1 admits metastable
states for both positive and negative feedback f . Solutions displaying this metastable behavior
are related to particular solutions (transition layer solutions) of the so called transition-layer
equations. The concept of transition layer equations for delay differential equations has been
established in [5,13]. A transition layer equation is also a functional equation, similar to (1),
with one or more parameters to be determined. The existence of transition layer solutions
was proved for the negative feedback case in [6,13]. The proof for the positive feedback case
is given in the Sect. 5 below.

It is interesting to note that, for negative-feedback function f , Eq. 1 always displays
metastable states. In contrast, in the positive-feedback case, Eq. 1 will display metastability
only if f is odd or has some other very special symmetry (in analogy with the require-
ment that F must be degenerate at its two minima for Eq. 2 to display metastability). If the
positive-feedback function f does not have this symmetry, the transient time is typically of
order 1/ε.

For Eq. 2 Fusco and Hale gave a geometric description of metastability, in terms of the
theory of invariant manifolds, that can essentially be repeated for the delay Eq. 1. For Eq. 1,
a typical initial condition with some number of sign changes in [−1, 0] is attracted in a time
of order 1 to a small neighborhood of the unstable manifold Wγ of a periodic orbit γ . The
number of sign changes of γ is related to the number of sign changes of the initial condition.
For the parabolic Eq. 2, the analogue of γ is an equilibrium, and the vector field on most of its
unstable manifold is almost null. For this reason, in the parabolic case, part of this unstable
manifold is called a “slow manifold”. Here, Wγ is by no means a slow manifold. Indeed,
the flow in Wγ is such that almost all orbits on it are almost closed, in the sense that after a
certain time interval, that is approximately equal to the delay (positive feedback) or twice the
delay (negative feedback), the orbit returns very close to its initial point. So, Wγ is almost
foliated by periodic orbits. Then the solution, that is close to Wγ , slowly drifts along the
“almost periodic orbits” of Wγ until it gets ε-close to another periodic orbit. At this point the
merging of two zeroes of the solution starts, and in a time interval of order one the solution
has two zeroes less in the time interval [−1, 0]. Then the slowly drift along “almost closed
orbits” takes the solution ε-close to a third periodic orbit, and so on. At last, in the positive
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feedback case the solution approaches an equilibrium and in the negative feedback case the
stable-periodic orbit.

We will not give a proof that the picture described in the previous paragraph holds.
Nevertheless, similarly to what has been done in [7], we will show that there are several finite
dimensional manifolds Wn in C0([−1, 0]), that are foliated by circles, and such that if the
semi-flow of (1) acts on a point of Wn , then the resulting trajectory stays exp(−c/ε)-close
to Wn , for some c > 0, for a finite amount of time. Moreover, we compute the drift velocity
of the solution along the circles foliating Wn , and show that up to small errors this velocity
coincides with that of the true solution. These computations allow us to obtain ε-asymptotics
on the transient duration of a typical solution. In Sect. 2, in the positive feedback case, this
time is compared to that observed in numerical simulations.

In 1999 [8] we have shown the existence of metastability in (1) for the particular case
where f is a piecewise constant function, with two steps. Sharkovsky et al. [20] have also
discussed the existence of exponentially long transients for piecewise constant functions, and
estimated the time it takes for the solution generated by an initial function with sign changes
to get close to a square-wave like function. Recently, Nizette has published an interesting
work [17] (see also [18]), related to our 1999 metastability results [8]. The main focus of
[17] is to find a criterion for the stability of periodic orbits of Eq. 1, for small ε, and with
negative feedback but for f ’s that are not necessarily monotone. Nizette computes a map
for the motion of the zeroes, similar to that presented in our Theorem 4, and argues that the
periodic orbits associated to them are stable if the corresponding fixed points of the map are
stable. In the case of a monotonic f the only stable orbit is the “slowly oscillating” one, which
has the minimum possible number of zeroes. If f is nonmonotonic then other stable periodic
orbits appear. In [17] the map for the motion of the zeroes is neither derived nor presented
explicitly, although numerical results obtained using them are presented. Moreover, besides
using the same transition layer solutions his construction of this map is very different from
ours. His results for monotonic f are in agreement with ours.

The paper is organized as follows. In the Sects. 2 and 3 we present our main results in
the case of positive and negative feedback f , respectively. There are two theorems in each
section, one related to the existence and properties of solutions of transition layer equa-
tions and a second related to the metastable solutions. In Sect. 4 we make remarks on the
global monotonicity hypotheses of the theorems in Sects. 2 and 3. In Sect. 5 we prove the
theorem for the transition layer solutions in the positive feedback case. In Sect. 6 we just
comment and prove some auxiliary results on the theorem due to Mallet-Pared and Nuss-
baum [13] and Chow et al. [6] for the transition layer solutions in the negative feedback
case. Finally, in Sects. 7 and 8 we prove the theorems on the metastable solutions in the
positive and the negative feedback cases, respectively. It is worth mentioning, that the bounds
given in our Theorems 2 and 4 are still not enough to prove in a simple way, for instance,
using Gronwall’s inequality, that, in the positive feedback case, the solution oscillates for
a time of order exp(c/ε), for some ε > 0. To prove this it is still necessary to show that
the set Wn is close to a true invariant manifold of the system. Indeed, from a mathemat-
ical point of view, the results we present in this paper raise more questions than answers
them.

2 Metastable Patterns for Positive Feedback Equations

In this section we consider Eq. 1, and assume that f : R → R is continuously differentiable
and verifies the following hypotheses:
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(HP1) f (0) = 0, f ′(0)> 1, f (−γ1) = −γ1, f (γ2) = γ2, where γ1> 0, γ2> 0, and
f (x) �= x for x ∈ (−γ1, 0) ∪ (0, γ2);

(HP2) f ′(x) = df
dx (x) ≥ 0, x ∈ R.

A crucial result in this section is the following theorem.

Theorem 1 (Positive feedback transition layer solution) Consider the (“transition layer”)
equation

ẏ(t) = −y(t)+ f (y(t + r)), (3)

where r is a real parameter.
There exists a value r∗ > 0 of r , such that Eq.3 with r = r∗ has a solution φ : R → R

with the following properties:

dφ

dt
(t) ≥ 0, f or t ∈ R, φ(0) = 0,

lim
t→−∞φ(t) → −γ1, lim

t→∞φ(t) → γ2.

There also exists a value r∗∗ > 0 of r , such that Eq.3 with r = r∗∗ has a solution
χ : R → R with the following properties:

dχ

dt
(t) ≤ 0, f or t ∈ R, χ(0) = 0,

lim
t→−∞χ(t) → γ2, lim

t→∞χ(t) → −γ1.

Suppose, in addition that,

(HP3) f is twice continuously differentiable and

f ′(x) > 0 f or x ∈ [−γ1, γ2], f ′(−γ1) < 1, and f ′(γ2) < 1.

Then r = r∗ is the unique value of r ∈ R such that a solution φ as above exists. Moreover,
there is only one φ with the above properties that, in addition, satisfies φ̇(t) > 0, for t ∈ R,
and has the following asymptotic behavior

φ(t) = −γ1 + b1 exp(ν1t)[1 + O(exp(kt))] as t → −∞,

φ(t) = γ2 − b2 exp(−ν2t)[1 + O(exp(−kt))] as t → +∞,

where b1, b2, ν1, ν2, k are all strictly positive constants.
Analogously, r = r∗∗ is the unique value of r ∈ R such that a solution χ as above exists.

Moreover, there is only one χ with the above properties that, in addition, satisfies χ̇(t) < 0,
for t ∈ R, and has the following asymptotic behavior

χ(t) = γ2 − c2 exp(μ2t)[1 + O(exp(kt))] as t → −∞,

χ(t) = −γ1 + c1 exp(−μ1t)[1 + O(exp(−kt))] as t → +∞,

where c1, c2, μ1, μ2, k are all strictly positive constants.
The constants −μ1,μ2, ν1, and −ν2 are solutions of characteristic Eqs.75 of linearization

of Eq.3 at the equilibria −γ1 and γ2 and the following inequalities are verified 0 < μ1 < 1
and 0 < ν2 < 1.

Finally, if f is an odd function then r∗ = r∗∗, φ(t) = −χ(t), γ1 = γ2, b2 = c1, b1 = c2,
μ1 = ν2, and ν1 = μ2.

The proof of the Theorem 1 will be given in Sect. 5.
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Fig. 1 Outline of the graph of the function given in Eq. 5. This is a function that generates W2

The importance of the transition layer functions φ and χ in the analysis of the singular
limit ε → 0 of Eq. 1 lies in the following argument. If φ is the function in Theorem 1 then

φε(t)
def= φ(t/ε) verifies the following equation

ε ẏ(t) = −y(t)+ f (y(t + εr∗)). (4)

Let us define a function x(t) = φε(t), for t ∈ (−{1 + r∗}/2, {1 + r∗}/2], and let us extend

it periodically to R. The period of x is 1 + εr∗ and it is discontinuous on the set Dc
def=

{(1 + r∗)(2k + 1)/2 : k ∈ Z}. The periodicity of x implies that x(t − 1) = x(t + εr∗) and
therefore

ε ẋ(t) = −x(t)+ f (x(t − 1)) = −x(t)+ f (x(t + εr∗))

if t ∈ R\Dε where Dε
def= {t + tc : tc ∈ Dc and t ∈ [−εr∗, 0]}. So, x solves Eq. 1 on the

real line except for small intervals of length εr∗ adjacent to the discontinuity set Dc of x .

A similar construction can be made using the function χε(t)
def= χ(t/ε) instead of φε . In this

case we obtain a periodic function x with period 1 + εr∗∗.
A better continuous approximation to a solution of Eq. 1 may be obtained by glueing

appropriate translations of functions φε and χε . For instance, for t ∈ [−εr∗, 1], and for a
given θ1 ∈ [0, 1], let us define x(t) as (see Fig. 1)

x(t) = φε(t + εr∗) for − εr∗ ≤ t ≤ η1,

x(t) = χε(t − θ1) for η1 < t ≤ η2,

x(t) = φε(t − 1) for η2 < t ≤ 1, (5)

where η1 and η2 are defined in such a way that x is continuous. If r∗ = r∗∗ it is possible to
extend the function x in Eq. 5 to the real line in a continuous way, so as to obtain a periodic
solution of equation (1) on most of R. If r∗ �= r∗∗ this is not possible because φε has peri-
odicity 1 + εr∗, while χε has periodicity 1 + εr∗∗ so that the extension of x in Eq. 5 cannot
approximate a periodic solution of Eq. 1 unless r∗ = r∗∗. So, from now on, besides (HP1),
(HP2), and (HP3), we shall make the following additional hypothesis:
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(HP4) The function f is such that its associated numbers r∗ and r∗∗ given in Theorem (1)
are equal, r∗ = r∗∗.

Under this hypothesis the periodic extension of x has period 1 + εr∗, is continuous, and

satisfies Eq. 1 on the set R\Dε where Dε
def= {t + tc : tc ∈ Dc and t ∈ [−εr∗, 0]}, where

Dc
def= {η1k : k ∈ Z} ∪ {η2k : k ∈ Z}. We shall show that x is a very good approximation

to a solution of Eq. 1 on Dε .
To show how the transition layer solutions can provide approximate solutions to Eq. 1

we need several definitions. Let n be a positive even integer and An be the following open
n − 1-dimensional simplex

An
def= {δ ∈ R

n : δi > 0, and δ1 + δ2 + · · · + δn = 1 + εr∗}. (6)

Given δ ∈ An let θ ∈ R
n+1 be defined by θ0 = −εr∗ and θi = δi + θi−1. Notice that a point

in An determines a unique θ that satisfies θ0 = −εr∗ < θ1 < · · · < θn−1 < θn = 1. Now, to
each point in An we associate a function z : [−εr∗, 1] → R in the following way

z(t) = φε(t − θ0) for θ0 = −εr∗ ≤ t ≤ η1,

z(t) = χε(t − θ1) for η1 < t ≤ η2,

z(t) = φε(t − θ2) for η2 < t ≤ η3,

. . .

z(t) = φε(t − θn) for ηn < t ≤ θn = 1 (7)

where η1, . . . , ηn are uniquely defined (see corollary 1 in Sect. 7) in such a way that z is
continuous. In Fig. 1 we sketch the graph of the function z for n = 2. Now we extend z
periodically to R. This extension is continuous and has period 1 + εr∗. We define a func-
tion � from the open subset An × R ⊂ R

n to C0([−1, 0]) as �(δ, t) = z(t + s), where
s ∈ [−1, 0]. The set Wn ⊂ C0([−1, 0]) is defined as the image of this function �. Notice
that Wn is an n-dimensional submanifold of C0([−1, 0]). Moreover, for each fixed δ the
image of �(δ, ·) is a circle on Wn . So, Wn is a trivial circle bundle over An , which is the

image of An × S1 def= An × {R mod (1 + εr∗)} by�. Notice that when we take the quotient
t mod (1 + εr∗) and interpret z(t) as a function on S1, then t = θ0 = −εr∗ is identified
with t = θn = 1, and δ1, . . . , δn represent the angular distance between consecutive zeroes
of z(t). The manifold Wn , is homeomorphic to An × S1, and can be interpreted as a cylinder.
The flow ϕ : R × Wn → Wn is naturally defined as

ϕt (x)(s) = z(t + s), s ∈ [−1, 0], (8)

where z is the periodic function on R that equals x when restricted to [−1, 0], and generates
the fiber of Wn passing through x . We claim that Wn is an approximation to part of the
unstable manifold of a periodic orbit of Eq. 1 and that ϕ is a good approximation for the flow
of Eq. 1 on this invariant manifold. Some support for this claim was given in the introduction
and further support is given in our next Theorem 2.

Before we present Theorem 2 it is convenient to introduce the following notation for
functions that admit exponential bounds.

Notation

R(t, s) = E(t) if there exists β > 0, that may depend on s, but not on t,

such that lim
t→∞ R(t, s) exp(βt) = 0. (9)
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R(t, s) = E−(t) if there exists β > 0, that may depend on s, but not on t,

such that lim
t→−∞ R(t, s) exp(−βt) = 0. (10)

The following definitions are also needed. Let Xn be the set of functions x in C0([−1, 0])
that are piecewise continuously differentiable, undergo an odd number n −1 of sign changes
within the interval (−1, 0), and satisfy x(0) = 0 and ẋ(0) > 0. We define a projection
Pn : Xn → Wn in the following way. If the zeroes of x are located at −1 + θ1 < −1 + θ2 <

· · · < −1 + θn−1 < θn = 0, then Pn(x)(t) = z(t + 1), t ∈ [−1, 0], where z is given in Eq. 7.
Namely, Pn(x) is a function in Wn with the same zeroes as x and with positive derivative
at zero. Now, let ψt : C0([−1, 0]) → C0([−1, 0]) be the flow of Eq. 1. We define a subset
Xn of Xn in the following way. A function x ∈ Xn is in Xn if there exists a value of time
T (x) > 1 such that ψT x ∈ Xn and ψt x /∈ Xn for any t ∈ (1, T ). Then we define a function
Fn : Xn → Xn as Fn(x) = ψT (x). Notice that T is the first time larger than one at which
the solution x(t) of Eq. 1 has a zero with positive derivative and such that the number of
zeroes of x(t) for t ∈ (T − 1, T ] is the same as that in t ∈ (−1, 0]. Now we can state the
main result of this section.

Theorem 2 Given δ ∈ An, with n > 0 even and An defined in Eq.6, let x ∈ Wn ∩ Xn be

a function with zeroes at θi = δi + θi−1, i = 1, . . . n, where θ0
def= −εr . Then there exists

ε0 > 0, that depends on δ, and positive constants (depending on neither ε nor δ) k3 and k4

given in Lemma 10, k5 given in Lemma 11,

a
def= μ1(1 + ν1)

μ1 + ν1
, and b

def= ν2(1 + μ2)

μ2 + ν2
,

where μ1, μ2, ν1 and ν2 are given in Theorem 1, such that for ε < ε0 the following holds:

(i) For t ∈ [0, 1 + η1] (η1 > 0 is the number appearing in Eq.7), the natural flow ϕ on
Wn (Eq. 8, and the flow ψ of Eq.1, satisfy the following inequality

sup
s∈[−1,0]

|ψt (x)(s)− ϕt (x)(s)| def= ||ψt (x)− ϕt (x)||0 ≤ exp

[
−β
ε

]
(k5 + E(1/ε)),

where

β
def= min

{
μ2ν2

μ2 + ν2
δ1,

μ1ν1

μ1 + ν1
δ2,

μ2ν2

μ2 + ν2
δ3, . . . ,

μ2ν2

μ2 + ν2
δn

}
;

(ii) The function x is in Xn with

T (x) = 1 + εr − ε exp(−aδn/ε)[k4 + E(1/ε)], (11)

where r = r∗ given in Theorem 1, and Fn(x) = ψT (x) satisfies

||Fn(x)− Pn ◦ Fn(x)||0 ≤ exp

[
−β
ε

]
(k5 + E(1/ε)); (12)

(iii) If −1 + θ̂1 < −1 + θ̂2 < · · · < −1 + θ̂n−1 < θ̂n = 0 are the zeroes of Fn(x) and

δ′i
def= θ̂i − θ̂i−1, i = 1, . . . , n, with θ̂0

def= −εr∗, then δ̂ ∈ An and

δ′i = δi + ε[exp(−aδi−1/ε)(k4 + E(1/ε))− exp(−bδi/ε)(k3 + E(1/ε))], i odd,

δ′i = δi + ε[exp(−bδi−1/ε)(k3 + E(1/ε))− exp(−aδi/ε)(k4 + E(1/ε))], i even,

(13)
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where δ0
def= δn. If f is an odd function then μ1 = ν2 = ν, ν1 = μ2 = μ so that

a = b = ν(1 + μ)

μ+ ν
, and

κ
def= k3 = k4 = 1

φ̇(0)

{
−b1 exp

[
1 + μ

μ+ ν
ln(c1/b1)− (1 + μ)r∗

]

+ c1 exp

[
1 − ν

μ+ ν
ln(c1/b1)− (1 − ν)r∗

]}
,

where c1 and b1 are given in Theorem 1, and the expressions for δ′ simplify to

δ′i = δi + εκ[exp(−aδi−1/ε)− exp(−aδi/ε)](1 + E(1/ε)). (14)

Theorem 2 suggests that although Wn is not an invariant set it is close to an invariant set
in the C0 metric. It also says that the vector field associated to Eq. 1 is almost parallel to the
circles which are the fibers of Wn . Indeed, from Theorem 2 we conclude that, for ε small,
a solution of Eq. 1 that starts on Wn rotates around the initial fiber many times, with speed
of order one, while it slowly drifts towards other fibers, with a speed of order exp(−cε), for
some c > 0 that can be computed. The functions that generate these circular fibers are what
we call the periodic metastable states. Notice also that the bounds given in Theorem 2 are not
enough to prove in a simple way, for instance using Gronwall’s inequality, that the solution
oscillates for a time of order exp(c/ε), for some ε > 0. To prove this it is necessary to show
that Wn is close to a true invariant manifold of the system.

In the following we assume that f is odd. Let x be an initial condition which satisfies the
hypotheses of Theorem 2. Let δm < δi , i = 1, 2, . . . , n, with i �= m. Now, if all terms in the
Eqs. 14 for δ′i are compared to exp(−aδm/ε) and all those of order exp(−aδm/ε)E(1/ε) are
neglected, then we are left with the following set of equations:

δ′i = δi , for i = 1, 2, . . . , n, i �= m − 1, i �= m,

δ′m−1 = δm−1 + εκ exp(−aδm/ε)

δ′m = δm − εκ exp(−aδm/ε)

(15)

For simplicity let us assume that m �= 1 and m �= n (these cases can also be analyzed). If
we iterate the map (15) we obtain that δm decreases very slowly while δm−1 increases at the
same rate and all other δ′s remain the same. Assuming that the estimates for the motion of
zeroes given in Theorem 2 remain valid until some fast dynamical process eliminates two
sufficiently close zeroes, the above analysis shows that all zeroes θi undergo a negligible
displacement under iterates of Fn , except θm which moves towards θm−1 until both of them
get “annihilated”. Then the dynamics of a new map Fn−2 may eventually annihilate another
pair of zeroes and so on. A simple computation of the time it takes for the iterates of δm under
map (15) to be of order ε gives the following asymptotic estimate for Td , the time it takes for
the two zeroes θm−1 and θm to disappear:

ln Td = δma

ε
− ln(aκ)+ O(ε) (16)

To verify this asymptotic expression we made the following numerical calculations. For
f = 3 tanh(2x), varying ε, and for a fixed initial condition (0.15 + cos(2π t)) with two
zeroes, Eq. 1 was integrated until the zeroes disappeared (using a 4th-order Runge–Kutta).
The minimum distance between zeroes (δm in the table below), and the time instant td when
the zeroes disappeared were recorded for several values of ε. For t ≈ 20 the solution has a
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Fig. 2 Graphs illustrating the square-wave like shape of the solutions corresponding to parameter ε = 0.09
(plate a), and ε = 0.04 (plate b) for t ∈ [21, 23]. These solutions were used in the table shown. Notice that as
the parameter ε is decreased, the shape of the solution gets closer to a square wave

square-wave like shape (see Fig. 2 below) so that we have set Td = td − 20. The numerical
results are displayed in the following table.

ε 0.09 0.08 0.07 0.06 0.05 0.04
δm 0.438 0.445 0.448 0.450 0.450 0.451
Td 143.3 284.0 653.9 1932.3 8655.3 81886.7

A least square fit of the data in this table to the function in Eq. 16 gives the following
values: a ≈ 0.990 and κ ≈ 0.880. Now, for f = 3 tanh(2x) one can also numerically solve
the transition layer Eq. 3 to get r = 0.717, so that a = 0.999 and κ = 1.005. The agreement
is quite good, specially because as ε gets smaller the numerical errors in the integration of
Eq. 1 become larger. It is worth noticing that the limit limα→∞ 3 tanh(αx) is a piecewise
constant function. In this limit we get [8] r = ln 2 = 0.693 . . ., a = 1, and κ = 1 which are
very close to the values obtained numerically for the case α = 2.

Finally, let us make some remarks regarding the assumption that there is a smallest gap
between the zeroes of the initial condition, namely δm < δi , i = 1, 2, . . . , n, with i �= m. If
this assumption is not verified then the above analysis that lead to Eq. 15 breaks down. For
instance, if the initial condition has two zeroes and δ1 = δ2 then the map (14) degenerates
into δ′i = δi + E(1/ε), and we are left with the identity map plus a correction term which we
did not compute. Of course, the asymptotics in Eq. 16 does not hold. This is in agreement to
the fact that Eq. 1 admits periodic orbits for ε arbitrarily small, in particular orbits with only
one sign change in a half period. Moreover, it can be shown that this orbit has a square-wave
like shape when ε → 0 (in the negative feedback case this is shown in [13]). So, for small ε
there are initial conditions with δ1 ≈ δ2 that are asymptotic to periodic solutions of Eq. 1 for
which the distance between zeroes does not decrease at all. Our asymptotic analysis shows
that as ε → 0 these initial conditions must satisfy δ1 → δ2. Moreover, the asymptotics
above shows that all these oscillatory periodic orbits are unstable for ε-sufficiently small
(this fact is known to be true for any ε (see [21,22] p. 90). These properties are the basis of
the stability analysis of periodic solutions of negative-delayed feedback Eqs. 1, for ε small,
made by Nizette [17]. We point out that Nizette made an interesting extension of this analysis
to f nonmonotonic.

3 Metastable Patterns for Negative Feedback Equations

In this section we consider Eq. 1 and we assume that f : R → R is continuously differen-
tiable and satisfies the following hypotheses (which are the same as in [6]):
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(HN1) f (0) = 0 and there exists γ1 > 0, and γ2 > 0, such that f (−γ1) = γ2, and
f (γ2) = −γ1.

(HN2) f ′(x) ≤ 0 for all x ∈ R.
(HN3) f ′(0) < −1 and 0 ≤ f ′(−γ1) f ′(γ2) < 1.
(HN4) | f ( f (x))| > |x | for x ∈ (−γ1, 0) ∪ (0, γ2), and | f ( f (x))| < |x | for x ∈

(−∞,−γ1) ∪ (γ2,∞).

A crucial result in this section is the theorem regarding the negative feedback transition layer
solution due to Mallet-Paret and Nussbaum [13] and Chow et al. [6].

Theorem 3 (Negative feedback transition layer solution; Chow et al.) Consider the (“tran-
sition layer”) equation

ẏ(t) = −y(t)+ f (z(t + r)),

ż(t) = −z(t)+ f (y(t + r)) (17)

where r and r are real parameters.
Among all possible values of r and r there exists a unique strictly positive pair, denoted by

(r , r), such that Eq.17 has a unique solution (y, z) = (φ, χ) : R → R
2 with the following

properties:

φ̇(t) ≥ 0 and χ̇(t) ≤ 0 f or t ∈ R,

φ(0) = 0 and lim
t→−∞φ(t) → −γ1, lim

t→∞φ(t) → γ2,

χ(0) = 0 and lim
t→−∞χ(t) → γ2, lim

t→∞χ(t) → −γ1.

(18)

Suppose in addition that

(HN5) f is twice continuously differentiable and 0 < f ′(−γ1) f ′(γ2).

Then φ̇(t) > 0, χ̇ (t) < 0, and the following asymptotic expressions hold:

φ(t) = −γ1 + b1 exp(μt)[1 + O(exp(kt))] as t → −∞
χ(t) = γ2 − c2 exp(μt)[1 + O(exp(kt))] as t → −∞
φ(t) = γ2 − b2 exp(−νt)[1 + O(exp(−kt))] as t → +∞
χ(t) = −γ1 + c1 exp(−νt)[1 + O(exp(−kt))] as t → +∞

(19)

where b1, b2, c1, c2, μ, ν, and k are all strictly positive constants which satisfy the following
inequalities:

ν < 1,

ln

(
c1c2

b1b2

)
+ μr + νr = ln

(
b1b2

c1c2

)
+ μr + νr = ln

(
1 + μ

1 − ν

)
> 0.

(20)

The statement in the first part of Theorem 3 is trivially different from that of Theorem
2.1 in [6]. The asymptotic expressions (19) are not in [6], and will be commented upon in
Sect. 6.

Now, a heuristic analysis similar to that made in the previous section, using Eqs. 4 and
5, can also be made in this case. Then a remarkable difference between the positive and the
negative feedback cases is noticed: the condition r∗ = r∗∗, necessary for the construction of
metastable states in the positive feedback case, does not appear in the negative feedback case.
So, metastable solutions exist for the negative feedback Eq. 1 even for functions f that are not
odd, in contrast with the case in which Eq. 1 has positive feedback. Much of what was said in
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the previous section about the use of the transition layer solutions in the construction of an
“almost invariant” set of metastable states also applies to this section. So, in the following,
without further comments, we introduce the main definitions that will allow us to state the
Theorem 4, our main result in this section.

Let n ≥ 3 be a positive odd integer and let An and An be the following open n −1-dimen-
sional simplexes

An
def= {δ ∈ R

n : δi > 0, and δ1 + δ2 + · · · + δn = 1 + εr} (21)

and

Bn
def= {δ ∈ R

n : δi > 0, and δ1 + δ2 + · · · + δn = 1 + εr} (22)

Given δ ∈ An let θ ∈ R
2n+1 be defined by

θ0 = −εr ,
θi = δi + θi−1, for i = 1, 2, . . . , n;

θi+n = θi + 1 + r , for i = 1, 3, . . . , n;
θi = θi + 1 + r , for i = 2, 4 . . . , n − 1.

For ε sufficiently small a point in An determines a unique θ which satisfies θ0 = −εr < θ1 <

· · · θn = 1 < · · · < θ2n = 2+εr . Moreover, if δi = θi −θi−1, i = n +1, n +2, . . . , 2n, then
(δn+1, . . . , δ2n) ∈ An . Now, to each point in An we associate a function z : [−εr , 2+εr ] →
R in the following way

z(t) = φε(t − θ0) for θ0 = −εr ≤ t ≤ η1

z(t) = χε(t − θ1) for η1 < t ≤ η2

z(t) = φε(t − θ2) for η2 < t ≤ η3

. . .

z(t) = φε(t − θ2n) for η2n < t ≤ θ2n = 2 + εr

(23)

where η1, . . . , η2n are uniquely defined (see corollary 2 in Sect. 8) in such a way that z is
continuous. Now we extend z periodically to R. This extension is continuous and has period
2 + εr + r . Then we define a function� from the open subset An × R ⊂ R

n to C0([−1, 0])
as�(δ, t) = z(t + s), where s ∈ [−1, 0]. The set Wn ⊂ C0([−1, 0]) is defined as the image
of this function �. As in the positive feedback case Wn is an n-dimensional submanifold
of C0([−1, 0]) which is also a circle bundle over An . Again a flow ϕ : R × Wn → Wn

is naturally defined as ϕt (x)(s) = z(t + s), s ∈ [−1, 0], where z is the periodic function
on R which when restricted to [−1, 0] is equal to x and which generates the fiber of Wn

passing through x . Now, let Xn (Yn) be sets of functions x in C0([−1, 0]) that are piecewise
continuously differentiable, have an even number n − 1 of sign changes in (−1, 0), satisfy
x(0) = 0 and such that ẋ(0) > 0 (ẋ(0) < 0) for x ∈ Xn (x ∈ Yn). We define projections
PXn : Xn → Wn and PY n : Yn → Wn in the following way. If the zeroes of x are located
at −1 + θ1 < −1 + θ2 < · · · < −1 + θn−1 < θn = 0, then PY n(x)(t) = z(t + 1) and
PXn(x)(t) = z(t +2+εr), t ∈ [−1, 0], where z is given in Eq. 23. Namely, PY n(x) (PXn(x))
is a function in Wn , with negative derivative at zero (positive derivative at zero), having the
same zeroes as x . Now, let ψt : C0([−1, 0]) → C0([−1, 0]) be the flow of Eq. 1. We define
a subset Xn of Xn in the following way. A function x ∈ Xn is in Xn if there exists a value
of time T (x) > 1 such that ψT x ∈ Yn and ψt x /∈ Yn for any t ∈ (1, T ). Then we define a
function FXn : Xn → Yn as FXn(x) = ψT (x). Analogously, a function x ∈ Yn is in a subset
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Y n of Yn if there exists a value of time T (x) > 1 such that ψT x ∈ Xn and ψt x /∈ Xn for any
t ∈ (1, T ). Then we define a function FY n : Y n → Xn as FY n(x) = ψT (x). Now we can
state the Theorem 4 that is the main result of this section.

Theorem 4 Given δ ∈ An and δ ∈ An with n ≥ 3 odd let x be a function in either Wn ∩ Yn

or Wn ∩ Xn, such that if x ∈ Wn ∩ Yn (x ∈ Wn ∩ Xn) then its zeroes are at θi = δi + θi−1,

i = 1, . . . n, where θ0
def= −εr (θi = δi + θi−1, i = 1, . . . n, where θ0

def= −εr). Then there
exists ε0 > 0, that depends on either δ or δ, and positive constants ( depending on neither ε
nor δ or δ) k3 and k4 given in Lemma 14, k5 given in Lemma 15,

a
def= ν(1 + μ)

μ+ ν
> 0, (24)

where μ, ν are given in Theorem 3, such that for ε < ε0 the following holds:

(i) The natural flow ϕ on Wn defined above and the flow ψ of Eq.1 satisfy the following
inequality for t ∈ [0, 1 + B]

sup
s∈[−1,0]

|ψt (x)(s)− ϕt (x)(s)| def= ||ψt (x)− ϕt (x)||0 ≤ exp

[
−β
ε

]
(k5 + E(1/ε)),

where either B = η1 > 0 if x ∈ Yn ∩ Wn or B = ηn+1 − 1 − εr > 0 if x ∈ Xn ∩ Wn,
and η1 and ηn+1 are numbers appearing in Eq.23, and

β
def= μν

μ+ ν
min {δ1, δ2, δ3, . . . , δn} .

(ii) If x ∈ Yn ∩ Wn then it is in Y n with T (x) = 1 + εr − ε exp(−aδn/ε)[k3 + E(1/ε)],
if x ∈ Xn ∩ Wn then it is in Xn with T (x) = 1 + εr − ε exp(−aδn/ε)[k4 + E(1/ε)],
where r and r are given in Theorem 3 and either

||FXn(x)− PXn ◦ FXn(x)||0 ≤ exp

[
−β
ε

]
(k5 + E(1/ε))

or

||FY n(x)− PY n ◦ FXn(x)||0 ≤ exp

[
−β
ε

]
(k5 + E(1/ε));

depending on x ∈ Yn ∩ Wn or x ∈ Xn ∩ Wn, respectively.
(iii) For x ∈ Yn ∩ Wn, let the zeroes of FY n be located at −1 + θ̂1 < −1 + θ̂2 < · · · <

−1 + θ̂n−1 < θ̂n = 0. Let us define δ′i
def= θ̂i − θ̂i−1, i = 1, . . . , n, with θ̂0

def= −εr .
Then δ′ ∈ An and

δ′1 = δ1 + ε[exp(−aδn/ε)(k3 + E(1/ε))− exp(−aδ1/ε)(k3 + E(1/ε))] − ε(r − r)

δ′i = δi + ε[exp(−aδi−1/ε)(k4 + E(1/ε))− exp(−aδi/ε)(k3 + E(1/ε))] − ε(r − r),

i>1 odd

δ′i = δi + ε[exp(−aδi−1/ε)(k3 + E(1/ε))− exp(−aδi/ε)(k4 + E(1/ε))] + ε(r − r),

i even.

For x ∈ Xn ∩ Wn, let the zeroes of FXn be located at −1 + θ̂1 < −1 + θ̂2 < · · · <
−1 + θ̂n−1 < θ̂n = 0. Let us define δ′i

def= θ̂i − θ̂i−1, i = 1, . . . , n, with θ̂0
def= −εr .
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Then δ′ ∈ An and

δ′1 = δ1 + ε[exp(−aδn/ε)(k4 + E(1/ε))− exp(−aδ1/ε)(k4 + E(1/ε))] + ε(r − r)

δ′i = δi + ε[exp(−aδi−1/ε)(k3 + E(1/ε))− exp(−aδi/ε)(k4 + E(1/ε))]
+ε(r − r), i > 1 odd

δ′i = δi + ε[exp(−aδi−1/ε)(k4 + E(1/ε))− exp(−aδi/ε)(k3 + E(1/ε))]
−ε(r − r), i even.

The same comments concerning the “almost invariance” of Wn under the flow ψ made
right after the statement of Theorem 2 also apply in this case.

Differently from the positive feedback case neither FY n nor FXn are mappings close to

the identity. The same is of course true of the mappings GY n
def= δ → δ′ (from An to An) and

G Xn
def= δ → δ′ (from An to An) given in Theorem 4. In this case a more natural mapping

to be considered is the composition Fn
def= FXn ◦ FY n : Y n → Yn , or the corresponding

mapping for its zeroes which is Gn
def= G Xn ◦ GY n : An → An . From the expressions for

GY n and G Xn in Theorem 4 we get that G is given by (for simplicity all terms E(1/ε) are
omitted in the following equations)

δ′1 = δ1 + ε[K3 exp(−aδn/ε)− K3 exp(−aδ1/ε)]
δ′i = δi + ε[K4 exp(−aδi−1/ε)− K3 exp(−aδi/ε)], i = 3, 5, . . . , n

δ′i = δi + ε[K3 exp(−aδi−1/ε)− K4 exp(−aδi/ε)], i = 2, 4, . . . , n − 1,

(25)

where

K3 = k3 + k4 exp[a(r − r)] > 0 K4 = k3 exp[−a(r − r)] + k4 > 0.

Now, let x be an initial condition which satisfies the hypotheses of Theorem 4. Let δm < δi ,
i = 1, 2, . . . , n, with i �= m. For simplicity let us suppose that m is even (the case where
m is odd can also be analyzed). Now, if all terms in the equations in (25) are compared to
exp(−aδm/ε) and all those of order exp(−aδm/ε)E(1/ε) are neglected, then we are left with
the following set of equations:

δ′i = δi , for i = 1, 2, . . . , n, i �= m − 1, i �= m,

δ′m−1 = δm−1 + εK4 exp(−aδm/ε), (26)

δ′m = δm − εK4 exp(−aδm/ε).

This Eq. 26 is exactly the same as Eq. 15 obtained for the motion of zeroes in the positive
feedback case. So the same analysis made in the Sect. 3 for the annihilation of the closest
lying zeroes also applies to this case. In particular, assuming that the estimates for the motion
of zeroes given in Theorem 4 remain valid until some fast dynamical process eliminates two
zeroes that become sufficiently close, we get the following asymptotic expression for Td , the
time it takes for the pair of zeroes θm−1 and θm to disappear:

ln Td = δma

ε
+ ln

(
2

aK4

)
+ O(ε0)

The factor 2 appearing inside the logarithm is due to the approximate period 2 + ε(r + r) of
the metastable solutions of the negative feedback equation.

Finally, the same sort of comparison with numerical results as done at the end of the
previous section can also be done here. Moreover, the same comments about the assumption
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on the initial condition, δm < δi , i = 1, 2, . . . , n, with i �= m, and on the stability of periodic
solutions, also apply to the negative feedback case with some simple modifications.

4 A Remark on the Global Monotonicity Hypotheses

The hypotheses (HP2) and (HN2), namely f ′(x) ≥ 0 and f ′(x) ≤ 0 for x ∈ R, respectively,
can be considerably relaxed. This is a consequence of the following propositions.

Proposition 1 If f satisfies hypotheses (HP1) and (HP3), then there exist δ > 0, and a twice
continuously differentiable f̃ : R → R, such that f̃ satisfies (HP1), (HP2), (HP3) and
f (x) = f̃ (x) for x ∈ [−γ1 − δ, γ2 + δ].
Proposition 2 If f satisfies hypotheses (HN1), (HN3), (HN5), and

(HN2′)

f ′(x) = df

dx
(x) ≤ 0, for x ∈ [−γ1, γ2]

(HN4′)

| f ( f (x))| > |x | for x ∈ (−γ1, 0) ∪ (0, γ2),

then there exist δ > 0, and a twice continuously differentiable f̃ : R → R, such that f̃
satisfies (HN1), (HN2), (HN3), (HN4), (HN5) and f (x) = f̃ (x) for x ∈ [−γ1 − δ, γ2 + δ].

We shall prove proposition 2, the proof of proposition 1 being similar.
Hypotheses (HN2′), (HN3), and (HN5) imply that f ′(−γ1) < 0, f ′(γ2) < 0, and

f ′(−γ1) f ′(γ2) < 1. Thus, there exists δ > 0 such that if γ̃1
def= γ1 + δ and γ̃2

def= γ2 + δ then
f ′(x) < 0 for x ∈ [−γ̃1,−γ1] ∪ [γ2, γ̃2] and

k1
def= min{ f ′(x) : x ∈ [−γ̃1, γ1]}, k2

def= min{ f ′(x) : x ∈ [γ2, γ̃2]}
satisfy 0 < k1k2 < 1. Let η1 > 0 and η2 > 0 be given by

η1 = min

{−2 f ′(γ̃2)

| f ′′(γ̃2)| ,
−2 f ′(−γ̃1)

| f ′′(−γ̃1)|
}
, η2 = −A + √

A2 + 4C B

B
,

where A > 0, B > 0, and C > 0 are given by

A = | f ′′(−γ̃1)k2| + | f ′′(γ̃2)k1|, B = | f ′′(−γ̃1) f ′′(γ̃2)|, C = 1 − k1k2.

Let η > 0 be such that η < min{η1, η2} and γ̂1
def= γ̃1 + η, γ̂2

def= γ̃2 + η. Let f̃ be defined as

f̃ (x) = f (x), x ∈ [−γ̃1, γ̃2]
f̃ (x) = f (−γ̃1)+ f ′(−γ̃1)(x + γ̃1)+ f ′′(−γ̃1)

(x + γ̃1)
2

2
+ f ′′(−γ̃1)

(x + γ̃1)
3

6η
,

x ∈ [−γ̂1,−γ̃1]
f̃ (x) = f (γ̃2)+ f ′(γ̃2)(x − γ̃2)+ f ′′(γ̃2)

(x − γ̃2)
2

2
− f ′′(γ̃2)

(x − γ̃2)
3

6η
, x ∈ [γ̃2, γ̂2]

f̃ (x) = f (−γ̃1)− f ′(−γ̃1)η+ f ′′(−γ̃1)
η2

3
+

[
f ′(−γ̃1)− f ′′(−γ̃1)

η

2

]
(x+γ̂1), x ≤ −γ̂1

f̃ (x) = f (γ̃2)+ f ′(γ̃2)η + f ′′(γ̃2)
η2

3
+

[
f ′(γ̃2)+ f ′′(γ̃2)

η

2

]
(x − γ̂2), x ≥ γ̂2
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The function f̃ is twice continuously differentiable, and since f̃ ′′(x) �= 0 for x ∈ (−γ̂1,−γ̃1)

then f̃ ′(x) ≤ max{ f̃ ′(−γ̃1), f̃ ′(−γ̂1)} for x ∈ [−γ̂1,−γ̃1]. The choice of δ and η < η1 imply
that f̃ ′(−γ̃1) < 0 and f̃ ′(−γ̂1) < 0, respectively. Thus f̃ ′(x) < 0 for x ∈ [−γ̂1,−γ̃1].
A similar argument gives f̃ ′(x) < 0 for x ∈ [γ̃2, γ̂2]. Since f̃ ′(x) = f̃ ′(−γ̂1) < 0 for
x ≤ −γ̂1 and f̃ ′(x) = f̃ ′(γ̂2) < 0 for x ≥ γ̂2, we get that f̃ (x) ≤ 0 for x ∈ R. Finally,
we claim that | f̃ ( f̃ (x))| < |x | for x ∈ (−∞,−γ1) ∪ (γ2,∞). The proof of our claim is
the following. Since f̃ ′(x) < 0 for x ∈ (−∞,−γ1] ∪ [γ2,∞), f̃ (−γ1) = f (−γ1) = γ2,
and f̃ (γ2) = f (γ2) = −γ1 then x ∈ (−∞,−γ1) implies f (x) ∈ (γ2,∞), and x ∈
(γ2,∞) implies f (x) ∈ (−∞,−γ1). Let F(x) = f ( f (x)). Since F(−γ1) = −γ1 and
F(γ2) = γ2, in order to prove the claim it is enough to show that F ′(x) < 1 for x ∈
(−∞,−γ1] ∪ [γ2,∞). If x1 ∈ (−∞,−γ1), then x2 = f (x1) ∈ (γ2,∞) (if x1 ∈ (γ2,∞),
then x2 = f (x1) ∈ (−∞,−γ1)) and F ′(x1) = f ′(x2) f ′(x1). So, to prove that F ′(x) < 1
for x ∈ (−∞,−γ1] ∪ [γ2,∞), it is enough to show that f ′(x2) f ′(x1) < 1 for any x1 ∈
(−∞,−γ1] and x2 ∈ [γ2,∞). Since f̃ ′′(x) �= 0 for x ∈ (−γ̂1,−γ̃1) and f̃ ′(x) = f̃ (−γ̂1)

for x ≤ −γ̂1 then f̃ ′(x) ≥ min{ f ′(−γ̃1), f̃ ′(−γ̂1)} for x ≤ −γ̃1. From the definition of k1

we get 0 > f̃ ′(x) ≥ min{k1, f̃ ′(−γ̂1)} for x ≤ −γ1 Similarly, 0 > f̃ ′(x) ≥ min{k2, f̃ ′(γ̂2)}
for x ≥ γ2. Therefore

f̃ ′(x1) f̃ ′(x2) ≤ max{k1k2, k1 f̃ ′(γ̂2), k2 f̃ ′(−γ̂1), f̃ ′(−γ̂1) f̃ ′(γ̂2)}.

Now, the definition of η2 is such that the right hand side of this inequality is smaller than
one.

Propositions 1 and 2 say that if f satifies certain hypotheses on the finite interval
[−γ1, γ2], then it is possible to find another function f̃ , that coincides with f in the interval
[−γ1 − δ, γ2 + δ], δ > 0, and such that f̃ satisfies the hypotheses of either Theorem 1 or
Theorem 3. Therefore, the transition layer equations with f̃ replacing f admit transition
layer solutions, and since these solutions take values in the interval [−γ1, γ2], they are also
solutions to the transition layer equations for f . Thus we obtain the existence of transition
layer solutions to the original transition layer equations under the weaker hypotheses in prop-
ositions 1 and 2. The analysis of long transients made in Theorems 2 and 4 are still valid
provided the initial conditions generate solutions that take values inside [−γ1 − δ, γ2 + δ].
Solutions that take values outside this interval may not be analyzed with the results in this
paper. Indeed the reasoning above shows that without a global monotonicity hypothesis,
Eq. 1 can have several “invariant intervals” that support metastable patterns. To avoid such
problems we decided to state our results under the global monotonicity hypothesis. For those
interested in problems where the global monotonicity hypothesis is not valid but the hypoth-
eses in propositions 1 and 2 hold, the following proposition ([13] Proposition 1.1) may be
very useful in the characterization of invariant intervals.

Proposition 3 (Mallet-Paret and Nussbaum) Let x(t; ε, φ) be the solution of Eq.1 where
φ ∈ C0[−1, 0] is the initial condition, ε > 0, and f : R → R is a continuous function.
Then the following holds.

(i) Let I ⊆ R be a closed (possibly infinite) interval such that f (I ) ⊆ I . If

φ(t) ∈ I for all t ∈ [−1, 0] (27)

then x(t; ε, φ) ∈ I for all t ≥ 0. If in addition φ(0) ∈ int(I ), where “int” denotes
interior, then x(t; ε, φ) ∈ int(I ) for all t ≥ 0.
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Fig. 3 Example of a function f that is not globally monotone but displays monotonicity in an interval that is
attractive

(ii) Further, define the set

I∞ =
∞⋂

n=0

f n(I );

necessarily I∞ is a closed connected subset of I . If I∞ �= ∅, then the solution x(t; ε, φ)
of Eq.1 with (27) satisfies

dist (x(t; ε, φ), I∞) → 0 as t → ∞
where “dist” denotes distance from a point to a set.

Using proposition 3 we easily find examples of function f that are not globally monotone
but satisfy the conditions in either propositions 1 or 2 and, moreover, any initial condition
generates a solution that after a finite time has values inside the interval [−γ1 −δ, γ2 +δ] (see
for instance Fig. 3). So, in this case, the results in the present work apply to any solution of
the Eq. 1. This question of attracting monotonicity intervals is further analized in [19] where
explicit examples are presented.

5 Proof of Theorem 1

To prove Theorem 1 it is sufficient to show the existence and uniqueness of r∗ and φ. The
existence of r∗∗ and χ is a consequence of this result applied to Eq. 3 after the change of
variables y → −y. If f is odd then φ(t) = −χ(t) is a consequence of the symmetry of Eq. 3
with respect to the change of variables y → −y.

The proof of Theorem 1 will be given in several steps. In Sect. 5.1 we consider a family
of auxiliary problems defined in compact sets [−L , L] of the real line. We show that these
problems have solutions φL , rL for all L . In Sect. 5.2 we show that rL is uniformly bounded
with respect to L , from above and below, and that there is a sequence Ln , n = 1, 2, . . ., of
values of L such that φLn , rLn → φ, r∗, in compact subsets of R, as n → ∞. In Sect. 5.3 we
show that the function φ obtained in Sect. 5.2 has the properties in Theorem 1. In Sect. 5.4 we
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show that for a given r∗ there is only one φ and we obtain its asymptotic behavior as stated
in Theorem 1. Finally, in Sect. 5.5 we prove the uniqueness of r∗ among all possible r ∈ R.

5.1 A Family of Approximating Problems

From Sect. 5.1 through 5.4 we shall assume that r > 0. The following definitions are useful:

• For L > 0, let CL be the Banach space defined by

CL
def= {z : [−L , L] → R | z continuous}, ||z||L = sup

|t |≤L
|z(t)|.

• Let �L be the following subset of CL (endowed with the induced topology)

�L
def= {z ∈ CL | z(0) = 0, t ≤ t ′ ⇒ z(t) ≤ z(t ′), −γ1 ≤ z(t) ≤ γ2}.

Proposition 4 The set �L has the following properties:
(i) it is bounded,

(ii) it is closed,
(iii) it is convex.

These properties can be easily verified.
Let X be the set of functions given by

X
def= {z : R → R | z continuous for t ∈ R, nondecreasing for t < 0,

strictly increasing for t > 0, z(0) < 0,

lim
t→−∞ z(t) = −γ1, and lim

t→∞ z(t) = γ2}.

We endow X with the metric d(x, z) = supt∈R
|x(t)− z(t)|. Denoting by z|L the restriction

of a function z : R → R to the interval [−L , L], we define the set X L as

X L
def= {z : R → R | z|L ∈ �L , z(t) = −γ1, t < −L , z(t) = γ2, t > L}.

We endow X L with the the metric d(x, z) = sup|t |≤L |x(t)− z(t)|. Notice that every function
in X L is an extension to R of a function in �L , originally defined on the interval [−L , L].
We denote this extension mapping by � : �L → X L . We define a mapping AL : X L → X
by

AL z(t)
def= e−t

t∫
−∞

es f (z(s))ds =
0∫

−∞
es f (z(s + t))ds.

It can be verified that AL z indeed belongs to X . For each z ∈ X there exists a unique r(z) ∈ R,
r(z) > 0, such that z(r(z)) = 0. For a fixed L , the composed function r ◦ AL : X L → R+
satisfies the following bounds, independent of z.

Proposition 5 For a given L and any z ∈ X L we have

e−Lγ1

γ2
+ 1 ≤ er◦AL (z) ≤ γ1

γ2
+ eL .
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Proof In the following, to simplify the notation, we will write r ◦ AL(z) just as r . The
definition of AL implies that

r∫
−∞

es f (z(s))ds = 0. (28)

If r ≤ L then the upper bound for r is trivial. So, let us assume that r > L . Using that
− f (z(s)) ≤ γ1 for s ≤ 0 and that f (z(s)) ≥ 0 for s ≥ 0, Eq. 28 implies

γ1 = γ1

0∫
−∞

esds ≥ −
0∫

−∞
es f (z(s))ds =

r∫
0

es f (z(s))ds ≥
r∫

L

es f (z(s))ds = γ2[er − eL ].

This inequality implies the upper bound for r . Equation (28) implies that

e−Lγ1 −
0∫

−L

es f (z(s))ds =
r∫

0

es f (z(s))ds. (29)

The lower bound for r comes from the following inequality obtained from Eq. 29

e−Lγ1 ≤
r∫

0

es f (z(s))ds ≤ γ2(e
r − 1).

��
We define the set X∗ as

X∗
def= {z : R → R| z continuous for t ∈ R, nondecreasing for t < 0,

strictly increasing for t > 0,

lim
t→−∞ z(t) = −γ1, and lim

t→∞ z(t) = γ2}.
We endow X∗ with the metric d(x, z) = supt∈R

|x(t) − z(t)|. We define the mapping Tr :
X → X∗ as Tr z(t) = z(t + r(z)) and the restriction mapping � : X∗ → �L . Finally, we
define a mapping AL : �L → �L as

AL = � ◦ Tr ◦ AL ◦ �. (30)

AL z : [−L , L] → R is continuous, bounded, nondecreasing, and satisfies AL z(0) = 0. So,
AL z indeed belongs to �L . A more explicit way to write AL is

AL z(t)
def= e−t−r

t+r∫
−∞

es fL(z(s))ds, (31)

where

fL(z(s)) = −γ1 for s < −L ,

fL(z(s)) = γ2 for s > L ,

fL(z(s)) = f (z(s)) for |s| ≤ L .

Proposition 6 The mapping AL : �L → �L (Eq.30) is continuous.
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Proof � and � are continuous, and to prove the proposition 6 we show that AL and Tr

are continuous. The continuity of AL is proved in the following way. As f is continuously
differentiable there exists a constant μ such that

| f (x)− f (y)| ≤ μ|x − y| for − γ1 ≤ x ≤ γ2, −γ1 ≤ y ≤ γ2.

Thus, if x ∈ X L , z ∈ X L , satisfy d(x, z) < δ then

|AL x(t)− AL z(t)| =
∣∣∣∣∣∣

∞∫
0

e−s[ f (x(t − s))− f (z(t − s))]ds

∣∣∣∣∣∣

≤ μδ

∞∫
0

e−sds = μδ,

implying the continuity of AL . Before proving the continuity of Tr , it should be reminded
that r is a function of the point z ∈ X L to which Tr is applied. Let us denote by z, z′ two
points in X and by r and r ′ their respective zeroes (z(r) = 0, z′(r ′) = 0), or, equivalently,
the values of the function r at z and z′ ( r(z) = r , r(z′) = r ′). We want to show that for any
given z ∈ X and ε > 0 there exists a δ > 0 such that d(z, z′) < δ implies that

d(Tr ′ z′, Tr z) = sup
t∈R

|Tr ′ z′(t)− Tr z(t)| = sup
t∈R

|z′(t + r ′)| − |z(t + r)| < ε,

where we have used the notation Tr z(t) = z(t + r) and Tr ′ z′(t) = z′(t + r ′). Let δ < ε/2.
Since

|z′(t + r ′)− z(t + r)| = |z′(t + r ′)− z(t + r ′)+ z(t + r ′)− z(t + r)|
≤ |z′(t + r ′)− z(t + r ′)| + |z(t + r ′)− z(t + r)|,

and |z′(t + r ′)− z(t + r ′)| < δ < ε/2 for any t ∈ R, we just have to show that it is possible
to further decrease δ > 0 such that the following inequality becomes true

sup
t∈R

|Tr ′ z(t)− Tr z(t)| = d(z(t + r ′), z(t + r)) = d(z(t + r ′ − r), z(t)) < ε/2.

The continuity, monotonicity, and boundedness of z imply that z is uniformly continuous.
So, it is possible to find the desired δ if we show that the function z → r(z) is continuous,
namely, that for any given z ∈ X and ε > 0 there exists a δ > 0 such that d(z′, z) < δ

implies |r ′ − r | < ε. Setting ε1
def= min{ε, r/2}, we have z(r − ε1) < 0 < z(r + ε1) as z is

strictly increasing on (0,∞). Taking δ
def= min{|z(r − ε1)|, z(r + ε1)} > 0, for z′ such that

d(z, z′) < δ, we have also z′(r − ε1) < 0 < z′(r + ε1) so that z′ has a zero r ′ satisfying
|r − r ′| ≥ ε1 ≤ ε, which proves that z → r(z) is continuous and ends the proof of the
proposition 6. ��
Proposition 7 The mapping AL is completely continuous, namely, AL is continuous and
maps bounded sets into compact sets (see [9] Sect. 2.2).

Proof Since �L ⊂ CL is bounded and AL : �L → �L is continuous by proposition 6, to
prove that AL is completely continuous, it is enough to show that the range of AL is compact.
This is a consequence of the Arzela-Ascoli’s theorem if we show that there exists a constant
K ′, independent of z ∈ �L , such that

|AL z(t)− AL z(t ′)| ≤ K ′|t − t ′| for all |t | ≤ L , |t ′| ≤ L .
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The definition of AL , and the fact that r(z) > 0, imply that the above inequality is true if
there exists a constant K , independent of z ∈ X L , such that

|AL z(t)− AL z(t ′)| ≤ K |t − t ′| for all t > −L , t ′ > −L . (32)

For |t | < L , AL z is differentiable, and

d

dt
AL z(t) = −AL z(t)+ f (z(t)),

which implies ∣∣∣∣ d

dt
AL z(t)

∣∣∣∣ ≤ |AL z(t)| + | f (z(t))| ≤ 2 max{γ1, γ2}. (33)

For t > L , AL z is explicitly given by

AL z(t) = e−t

⎧⎨
⎩−e−Lγ1 +

L∫
−L

es f (z(s))ds + γ2(e
t − eL)

⎫⎬
⎭

= e−t
{

AL z(L)+ γ2(e
t − eL)

}
,

which implies that AL z is differentiable and∣∣∣∣ d

dt
AL z(t)

∣∣∣∣ ≤ e−t |AL z(L)| + γ2 ≤ 2γ2. (34)

Inequalities (33) and (34), and the continuity of AL z at t = L , imply that inequality (32) is
true, thus proving the proposition 7. ��

The following proposition is an immediate consequence of the definition of �L .

Proposition 8 The null function 0 ∈ �L is not a fixed point of AL .

Finally, propositions 4, 7 and 8, and the Schauder fixed point theorem (see for instance
[9], Sect. 2.2), imply the following lemma.

Lemma 1 The mapping AL : �L → �L has a fixed point φL different from 0.

5.2 Uniform Bounds

Taking the fixed point φL given by Lemma 1, we set

φL∗(s) = �(φL)(s),

i.e.,

φL∗(s) = φL(s) for |s| ≤ L ,

φL∗(s) = −γ1 for s < −L ,

φL∗(s) = γ2 for s > L .

Furthermore, we denote by rL = r ◦ AL ◦ �(φL) the zero of AL ◦ �(φL), i.e.

e−rL

rL∫
−∞

es f (φL∗(s))ds = 0. (35)

123



224 J Dyn Diff Equat (2010) 22:203–252

Our goal in this section is to find bounds, independent of L , for rL and for the derivative of
φL . From the definition of AL (Eq. 31), for |t | ≤ L , we have

φL(t) = e−t−rL

t+rL∫
−∞

es f (φL∗(s))ds. (36)

Using (35) we can rewrite Eq. 36 as

φL(t) = e−t−rL

t+rL∫
rL

es f (φL∗(s))ds. (37)

We shall find an upper bound for rL in several steps.

Proposition 9 There exists M1 > 0 such that if L > M1 then rL < L.

Proof Let us assume that rL ≥ L . Then, from (37), we obtain that for t ∈ [0, L]

φL(t) = e−t−rL γ2

t+rL∫
rL

esds = γ2(1 − e−t ). (38)

Now, using (38), the facts that | f (z)| ≥ |z| for −γ1 ≤ z ≤ γ2, and φL(0) = 0, we get

γ1 ≥ −
0∫

−∞
es f (φL∗(s))ds =

rL∫
0

es f (φL∗(s))ds

≥
rL∫

0

esφL∗(s)ds ≥
L∫

0

esγ2(1 − e−s)ds = γ2[(eL − 1)− L].

This inequality holds if, and only if, L ≤ M1, where M1 is the positive root of

γ1

γ2
+ 1 = eM1 − M1.

Therefore, if L > M1 then rL < L . ��
Proposition 10 For L > M1 the following two inequalities are true:

φL(rL )

f (φL(rL))
≥ 1 − e−rL , (39)

γ1

g(rL)
≥ φL(rL), (40)

where g(rL) = erL − 1 − rL .

Proof From (37), proposition 9 and 0 ≤ t ≤ rL we obtain

φL(t) = e−t−rL

t+rL∫
rL

es f (φL∗(s))ds

≥ e−t−rL

t+rL∫
rL

es f (φL∗(rL))ds = f (φL(rL))[1 − e−t ].
(41)
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For t = rL this inequality gives (39). From inequality (41), proposition 9, and φL(0) = 0,
we obtain

γ1 ≥ −
0∫

−∞
es f (φL∗(s))ds =

rL∫
0

es f (φL(s))ds

≥
rL∫

0

esφL(s)ds ≥
rL∫

0

es f (φL(rL))(1 − e−s)ds

= f (φL(rL))[erL − 1 − rL ] ≥ φL(rL )g(rL).

��
The fact that f is continuously differentiable, f (0) = 0, and df

dz (0) = ν > 1, imply that
there exists b > 0 such that

f (z)

z
>
ν + 1

2
for 0 ≤ z ≤ b. (42)

The function g appearing in proposition 10 has the following properties:

g(0) = 0,
dg

dr
(r) > 0 for r > 0, lim

r→∞ g(r) = ∞.

Therefore, there exists a unique r∗ such that g(r∗) = γ1/b and g(r) > γ1/b, for r > r∗. This
and inequality (40) imply that

φL(rL) ≤ γ1

g(rL)
< b, if rL > r∗. (43)

Now, let r∗∗ be the only positive root of

2

ν + 1
= 1 − e−r∗∗ .

This implies that

2

ν + 1
< 1 − e−r if r > r∗∗. (44)

Lemma 2 Let r = max{r∗, r∗∗} and L > M1. Then rL ≤ r independent of L.

Proof Let us assume that rL > r . This and inequality (43) imply that φL(rL) < b. Using
(39) and (44) (since rL > r ) we obtain

φL(rL)

f (φL(rL))
≥ 1 − e−rL >

2

ν + 1
.

But this inequality, and the fact thatφL (rL) < b, contradict inequality (42). Therefore rL ≤ r .
��

Lemma 3 Let L > M1 and

r
def= γ1e−r

γ1 + γ2
> 0.

Then r ≤ rL , independent of L.
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Proof Since rL < L (proposition 9) the function φL is differentiable for t ∈ [−L , 0]. Dif-
ferentiating expression (36) and using that f (z) ≤ z for z ∈ [−γ1, 0] we obtain that, for
t ∈ [−L , 0],

φ̇L(t) = −φL(t)+ f (φL(t + rL))

≤ − f (φL(t))+ f (φL(t + rL)) = d

dt

t+rL∫
t

f (φL(s))ds.

Integrating this inequality in the interval [−L , 0], we obtain

− φL(−L) ≤
rL∫

0

f (φL(s))ds −
−L+rL∫
−L

f (φL(s))ds ≤ (γ1 + γ2)rL . (45)

Equation 36, Lemma 2, the fact that rL < L , and that φL(s) < 0 for s < 0, imply that

φL(−L) = eL−rL {−γ1e−L +
−L+rL∫
−L

es f (φL(s))ds} ≤ −e−rL γ1 ≤ −e−rγ1. (46)

Adding inequalities (45) and (46) proves the Lemma 3. ��
Lemma 4 There exist infinite sequences Ln, rn, φn, n = 1, 2, . . ., with Ln → ∞ as n → ∞,
such that the limits

rn → r > 0, and φn → φ s n → ∞
converge. Moreover, φn converges uniformly, on compact intervals, to a function φ having
the following properties:

– it is continuously differentiable and nondecreasing;
– φ(0) = 0;
– −γ1 ≤ φ(t) ≤ γ2 for t ∈ R;
– it is a solution of the transition layer Eq.3.

Also, φ̇n converges to φ̇ uniformly on compact intervals.

Proof Let L = L1, L2, L3, . . . be an infinite sequence of values of L and rLk , φLk , k =
1, 2, . . . be their corresponding sequences of rL and φL . Propositions 2 and 3 imply that
the sequence rLk is bounded from above and below by positive numbers. The sequence φLk

is bounded, −γ1 ≤ φLk (t) ≤ γ2, |t | ≤ Lk , and it is equicontinuous (the equicontinuity
is a consequence of estimates (33) and (34) that are independent of L and are also valid
for φL ). The remainder of the proof of this lemma involves standard limiting arguments for
sub-sequences of φLk and rLk using “Helly’s 2nd theorem” (see, for instance, [10]), and the
fact that φLk , rLk satisfy the integral identity (36). ��
5.3 The Nontriviality of φ

We shall here show that the function φ, obtained in the Lemma 4, satisfies

lim
t→−∞φ(t) → −γ1, lim

t→∞φ(t) → γ2.

The following lemma shows that, to prove this, we only need to establish that φ(t) is
nontrivial, i.e., there exists M such that φ(M) �= 0.
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Lemma 5 If there exists M such that φ(M) �= 0 then φ(−t)φ(t) < 0 for all t �= 0 and

lim
t→−∞φ(t) → −γ1, lim

t→∞φ(t) → γ2.

Proof We remind that φ is nondecreasing and φ(0) = 0. Therefore, either M > 0 and
φ(M) > 0 or, conversely, M < 0 and φ(M) < 0. Assume that the former holds, and denote
by t∗ = sup{t |φ(t) = 0}. As φ is a solution of Eq. 3 we have φ̇(t∗) = f (φ(t∗ + r)) > 0.
Given that φ is nondecreasing, we have φ(t) < 0 for t < t∗. This, and the fact that φ(0) = 0
imply that t∗ = 0 and φ(−t)φ(t) < 0 for t �= 0. Conversely, assume that M < 0 and
φ(M) < 0. Then, φ(r) > 0 and we are back to the previous case. Indeed, suppose this is
false, i.e. φ(r) = 0. Then φ(t) = 0 for t ∈ [0, r ], because φ is nondecreasing. But this
contradicts the fact that φ is a solution of Eq. 3 (Lemma 4). Indeed, in this case the theorem
of uniqueness of backward continuation of solutions of (3) would imply φ(t) = 0 for all
t < 0, which is false. In summary, we have established so far that if there exists M such that
φ(M) �= 0 then

φ(−t)φ(t) < 0 for all t �= 0. (47)

This, the bounds −γ1 ≤ φ(t) ≤ γ2, t ∈ R, (47), and the integral equation satisfied by φ,

φ(t) =
0∫

−∞
es f (φ(s + t + r))ds, (48)

imply the limits in the statement of Theorem 1, namely

lim
t→−∞φ(t) → −γ1, lim

t→∞φ(t) → γ2.

Indeed, using that φ̇ ≥ 0 we conclude that the limits limt→±∞ |φ(t)| def= |φ(±∞)| exist and
are bounded by max{γ1, γ2}. So, we can take the limits on both sides of Eq. 48 to conclude
that φ(±∞) = f (φ(±∞)). This, inequalities −γ ≤ φ(−∞) < 0 and 0 < φ(∞) ≤ γ2, and
the hypothesis (HP1) on f (see Sect. 2) imply the above limits. ��

To complete the proof of the first part of Theorem 1, the only thing remaining is to establish
that φ is nontrivial.

Lemma 6 φ is nontrivial, i.e., there exists M such that φ(M) �= 0.

The proof of this is the content of the rest of the section, and will be given in a few steps. We
start with the following proposition.

Proposition 11 We shall assume that Lemma 6 is false. Denoting ν = f ′(0), then, for
any K > r , where r is the number given in Lemma 4, there exists a continuous function
x : [−K , K ] → R, continuously differentiable on [−K , K − r) that satisfies the linear
equation

ẋ(t) = −x(t)+ νx(t + r), for t ∈ [−K , K − r). (49)

and has the following properties: ẋ(t) ≥ 0, x(0) = 0, x(−t)x(t) < 0 for t �= 0, and
ẋ(0) > 0.
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Proof Let us consider the sequences Ln, rn, φn , n = 1, 2, . . . of Lemma 4. As we are assum-
ing that Lemma 6 is false, then, for any K > 0,

||φn ||K = sup
−K≤t≤K+rn

|φn(t)| → 0 as n → ∞.

Let NK be such that Ln > K + 2rn for n > NK . Since φ̇n(t) ≥ 0, for t ∈ (−Ln, Ln − rn),
and for each n > NK there are two possibilities: either (i) ||φn ||K = |φn(−K )| or (ii)
||φn ||K > |φn(−K )|, and ||φn ||K = |φn(K + rn)|.

First, assume that there are infinitely many values n1, n2, . . ., of n > NK , such that
||φn ||K = |φn(−K )|. In this case we consider the sub-sequence φn1 , φn2 , . . ., which,
after relabeling, we denote again as φ1, φ2, . . . Then we define a sequence of functions
xn : (−Ln, Ln) → R, as

xn(t) = φn(t)

|φn(−K )| .

Clearly ||xn ||K = 1. The function φn is differentiable for t ∈ (−Ln, Ln −rn). Differentiating
expression (36) we find that in this interval φn satisfies

φ̇n(t) = −φn(t)+ f (φn(t + rn)).

This implies that xn , n > NK , is differentiable on (−Ln, Ln − rn), satisfies ẋn(t) ≥ 0, and

ẋn(t) = −xn(t)+ νxn(t + rn)+ R(|φn(−K )|, xn(t + rn)), (50)

where R is a continuous function such that R(0, x) = 0 and, for ξ �= 0,

R(ξ, x)
def= −νx + f (ξ x)

ξ
with ν = f ′(0) > 1.

Integrating Eq. 50 we obtain that xn also satisfies the following integral equation:

xn(t) = et0−t xn(t0)−
t0+rn∫

t+rn

es−t−rn [νxn(s)+ R(|φn(−K )|, xn(s))]ds (51)

for −Ln < t ≤ t0 < Ln −rn . Given any θ > 0, θ < r/4, let NK ,θ be such that r −θ < rn , for
n > NK ,θ . Each function xn is nondecreasing and satisfies |xn(t)| ≤ 1 for t ∈ [−K , K +r−θ ]
and n > NK ,θ . Therefore by “Helly’s second theorem” (see for instance [10]) there exists
a subsequence xn1 , xn2 , . . ., of xNK ,θ+1, xNK ,θ+2, . . ., that converges point-wise to a nonde-
creasing function x on the interval [−K , K +r −θ ]. After relabeling we denote the sequence
xn1 , xn2 , . . . as x1, x2, . . .. We claim that this sequence of functions is uniformly equicon-
tinuous on the interval |t | ≤ K . Indeed, for t ∈ [−K , K + rn], |xn(t)| ≤ 1, which implies
that |R(|φn(−K )|, xn(t + rn))| → 0 as n → ∞, uniformly with respect to t , since by
hypothesis |φn(−K )| → 0 as n → ∞. This, Eq. 50, and the uniform boundedness of |xn(t)|,
t ∈ [−K , K + rn], imply that |ẋn(t)| is uniformly bounded for t ∈ [−K , K ] and n > 1,
which implies the uniform equicontinuity of xn , for |t | ≤ K . Therefore x is continuous for
|t | ≤ K and xn → x converges uniformly, for |t | ≤ K , as n → ∞. This, Eq. 50, and the
fact that R(||φn ||K , x(t + rn)) → 0 as n → ∞ uniformly for t ∈ [−K , K ] imply that x
is continuously differentiable on the interval [−K , K − r) and satisfies the linear Eq. 49.
Finally, taking the limit as n → ∞ in Eq. 51, for −K < t ≤ t0 ≤ K − θ , and using the
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Lebesgue dominated convergence theorem we obtain that x satisfies the equation

x(t) = et0−t x(t0)−
t0+r∫

t+r

es−t−rνx(s)ds for − K < t ≤ t0 ≤ K − θ. (52)

Furthermore, x(−K ) = −1, ẋ ≥ 0, and x(0) = 0. These properties, the fact that x is a
solution of Eq. 49, and an argument similar to the one that lead us to statement (47), imply
that x(−t)x(t) < 0, for t �= 0, and ẋ(0) > 0, as stated in the proposition.

Now, we assume that in the sequences Ln, rn, φn , n = 1, 2, . . . of Lemma 4, there are
only finitely many values of n > NK , such that ||φn ||K = |φn(−K )|. In this case we
consider the sub-sequence φn1 , φn2 , . . ., that does not include these values of n. After rela-
beling, we denote this sequence as φ1, φ2, . . .. Then we define a new sequence of functions
xn : (−Ln, Ln) → R, as

xn(t) = φn(t)

|φn(K + rn)|
and repeat the same steps of the first case to obtain a sequence of functions x1, x2, . . . which
converges to a limit function x : [−K , K + r − θ ] which has the following properties: it
is nondecreasing, it is continuous for |t | ≤ K , it is continuously differentiable and satisfies
Eq. 49 on the interval [−K , K − r), and it satisfies Eq. 52 on the interval t ∈ [−K , K − θ ].
The difference in this case is that x(−K ) may be equal to zero. In order to prove that x(t) is
not identically zero on the interval [−K , K − r) we need the following argument.

The hypothesis on f imply that f (x) ≥ x for 0 ≤ x ≤ γ2. So, for −rn ≤ t < Ln − rn

the following inequality holds:

φ̇n(t) = −φn(t)+ f (φn(t + rn)) ≥ −φn(t)+ φn(t + rn) = d

dt

t+rn∫
t

φn(s)ds

or after integrating

φn(t0)−
t0+rn∫
t0

φn(s)ds ≥ φn(t)−
t+rn∫
t

φn(s)ds

with −rn ≤ t ≤ t0 < Ln − rn . Let us divide this last expression by φn(K + rn), take t = 0
and t0 = K + r/2 to get

xn(K + r/2)−
K+r/2+rn∫
K+r/2

xn(s)ds ≥ −
rn∫

0

xn(s)ds.

Now, suppose that x(t) = 0 for t ∈ [−0, K + r − θ). Then limn→∞ xn(K + r/2) = 0,
since θ < r/4 implies K + r/2 < K + r − θ , and limn→∞ xn(s) → 0 uniformly on the
interval [0, r ]. Therefore from the above inequality we get

lim
n→∞

K+r/2+rn∫
K+r/2

xn(s)ds ≤ 0.
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But this is false since xn is a nondecreasing function of t , x(K + rn) = 1, and therefore the
integral on the left hand side of the above inequality must be larger then r/2 for any n. So,
we conclude that x(t) is not identically zero for t ∈ [−0, K + r − θ).

Finally, suppose that x(t) = 0 for t ∈ [−0, K ] and x(t) > 0 on some interval t ∈
(K + α, K + r − θ), for some α > 0 and α < r − θ . Since x is a solution of Eq. 52 with
t0 = K − θ , it follows that x(K + α − r) < 0 which is false. So, x(K ) > 0 and again an
argument similar to the one that lead us to statement (47), imply that x(−t)x(t) < 0, for
t �= 0, and ẋ(0) > 0. ��

Let us define the function

y(t)
def= −x(−t), t ∈ (−K , K ],

where x is the function given in proposition 11. This function satisfies the equation

ẏ(t) = +y(t)− νy(t − r), for t ∈ (−K + r, K ], (53)

and has the following properties:

ẏ ≥ 0, (54)

y(0) = 0, (55)

y(−t)y(t) < 0 for t �= 0. (56)

The following lemma contradicts the assumption that we can choose an arbitrarily large
K > 0, thus proving Lemma 6.

Lemma 7 There exists M > 0 such that if K > M then no function y : (−K + r, K ] → R

which is a solution of Eq.53 simultaneously satisfies properties (54), (55), and (56).

To prove this Lemma 7 we need some definitions from the theory of linear delayed dif-
ferential equations (see [2,9]). The characteristic equation related to Eq. 53 is

P(λ)
def= λ− 1 + νe−rλ = 0. (57)

All the roots of this characteristic equation are on the left hand side of a vertical straight line
(c) in the complex plane. The fundamental solution ξ of Eq. 53 is defined as the one that
satisfies ξ(t) = 0 for t < 0, and ξ(0) = 1. For 0 ≤ t ≤ r it is explicitly given by ξ(t) = et .
The Laplace transform of ξ can be written in terms of P as

ξ̂ (u)
def=

∞∫
0

e−utξ(t)dt = 1

P(u)
. (58)

The function ξ̂ is defined for u complex and is analytic on the left hand side of the line (c).
Using the inverse integral for the Laplace transform (see [2,9]) the fundamental solution has
the following integral representation in terms of P

ξ(t) =
∫
(c)

1

P(λ)
eλt dλ. (59)

Let

η
def= max{Reλ|P(λ) = 0}. (60)
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There is at most one pair of complex conjugate roots λ1, λ1 of (57) (or a single real root) such
that Reλ1 = η. In the case that λ1 is not real, then λ1, λ1 are simple roots of the characteristic
Eq. 57. Let

η′ def= max{Reλ|P(λ) = 0, λ �= λ1, λ �= λ1 < η}. (61)

Using (59) it can be shown [9], [2] that if η < 0 then there exist 0 < a < −η, and b > 0,
such that

|ξ(t)| < be−at , t > 0. (62)

If η ≥ 0 and λ1 = η + ωi , ω �= 0, then there exist constants a �= 0, b > 0, c ∈ [0, 2π), and
d ∈ (η′, η), such that

|ξ(t)− aeηt cos(ωt + c)| ≤ betd , t ≥ 0. (63)

This estimate is a consequence of (59) and the residue theorem (see [2] p. 116, ex.1). For
−K + r ≤ t ′ < t ≤ K the following “variation of constants formula” (see [2,9]) is valid

y(t) = y(t ′)ξ(t − t ′)− ν

0∫
−r

ξ(t − t ′ − s − r)y(t ′ + s)ds. (64)

The Eq. 64, and the above properties of ξ , will be used to prove Lemma 7. In order to simplify
the explanation we break the proof into the following three propositions (propositions 12,
13, and 14).

Proposition 12 Assume that η defined in (60) satisfies η < 0, and that Eq.53 has a solution
y satisfying (55), (56), and such that ẏ ≥ 0 for t ∈ [0, r ]. Then, there is M1 > 0 such that
y(K ) < y(r) for all K > M1. In particular y cannot satisfy (54) if K > M1.

Proof The variation of constants formula (64) with t ′ = r and inequality (62) imply

y(t) ≤ y(r)

⎧⎨
⎩|ξ(t − r)| + ν

0∫
−r

|ξ(t − r − s − r)|ds

⎫⎬
⎭

≤ y(r)be−a(t−r)

⎧⎨
⎩1 + ν

0∫
−r

ea(s+r)ds

⎫⎬
⎭

= y(r)be−a(t−r)
{

1 + ν

a
(ear − 1)

}
,

where y(r) > 0. Now, there is M1 such that

be−a(K−r)
{

1 + ν

a
(ear − 1)

}
< be−a(M1−r)

{
1 + ν

a
(ear − 1)

}
= 1

for all K > M1. This implies that y(K ) < y(r), thus proving the proposition. ��
Proposition 13 Assume that η defined in (60) satisfies η ≥ 0, and that λ1 = η + iω, with
ω > 0. Moreover, assume that Eq.53 has a solution y satisfying (55) and such that y(t) < 0
for t ∈ [−K , 0). Then there is M2 > 0 such that for all K > M2 there is t ∈ (0, K ] such
that y(t) < 0. In particular, y cannot satisfy (56) if K > M2.

123



232 J Dyn Diff Equat (2010) 22:203–252

Proof In this case Eq. 63 implies that

|e−ηtξ(t)− a cos(ωt + c)| ≤ be−(η−d)t .

This equation, the fact that η − d > 0, and ξ(t) > 0 for t ∈ [0, r ], imply that there exists a
t = t∗ > r such that ξ(t∗) = 0 and ξ(t) > 0 for t ∈ [0, t∗). We claim that

ξ(t∗) = 0 �⇒ ξ(t) < 0 for t ∈ (t∗, t∗ + r). (65)

Indeed, ξ satisfies Eq. 53 implying that ξ̇ (t∗) = −νξ(t∗ − r) < 0. Therefore, ξ(t) is negative
in some interval (t∗, δ). If ξ(δ) = 0 and δ < t∗ + r then ξ̇ (δ) = −νξ(δ − r) < 0, which is
absurd. So, δ ≥ t∗ + r and ξ(t) < 0 for t ∈ (t∗, t∗ + r).

Now, let us take M2 = t∗ + r and K > M2. The variation of constants formula (64) with
t ′ = 0 and t = t∗ + r implies

y(t∗ + r) = −ν
0∫

−r

ξ(t∗ − s)y(s)ds.

As y(s) < 0 for s < 0, and ξ(t) < 0 for t ∈ (t∗, t∗ + r), it follows that y(t∗ + r) < 0, thus
proving the proposition. ��
Proposition 14 Assume that η defined in (60) satisfies η ≥ 0 and that λ1 = η. Furthermore,
assume that Eq.53 has a solution y satisfying (54), and (55). Then there is M3 > 0 such that
y(−r) ≥ 0 for all K > M3. In particular, y cannot satisfy (56) if K > M3.

Proof Let ζ : [0,∞) → R be the function defined as

ζ(t)
def= ξ(t)− ν

0∫
−r

ξ(t − s − r)ds. (66)

Suppose that there exists t > 0 such that

ζ(t) ≤ 0. (67)

Let us take M3 = t + 2r and K > M3. The variation of constants formula (64) with
t ′ = −t − r and t = −r implies

y(−r) = y(−t − r)ξ(t)− ν

0∫
−r

ξ(t − s − r)y(−t − r + s)ds. (68)

y is nondecreasing, and y(0) = 0, so we obtain that y(−t − r + s) ≤ y(−t − r) ≤ 0 for
s ∈ [−r, 0]. This, together with Eqs. 68 and 67, imply that

y(−r) ≥ y(−t − r)

⎧⎨
⎩ξ(t)− ν

0∫
−r

ξ(t − s − r)ds

⎫⎬
⎭ = y(−t − r)ζ(t) ≥ 0.

To finish the proof of this proposition it remains to be shown that there exists t such that (67)
is true. To this end, let us define the function ζ̂ : (η,∞) → R as

ζ̂ (u)
def=

∞∫
0

e−utζ(t)dt. (69)
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Substitution of (66) into (69) gives

ζ̂ (u) =
∞∫

0

e−utζ(t)dt

=
∞∫

0

e−utξ(t)dt − ν

∞∫
0

0∫
−r

e−utξ(t − s − r)dsdt

= ξ̂ (u)− ν

0∫
−r

∞∫
0

e−utξ(t − s − r)dtds

= ξ̂ (u)− ν

0∫
−r

e−u(s+r)

∞∫
−s−r

e−ut ′ξ(t ′)dt ′ds

= ξ̂ (u)

{
1 − ν(1 − e−ur )

u

}
= ξ̂ (u)

u
[u − ν + νe−ur ], (70)

where ξ̂ (u), u ∈ (η,∞), is the Laplace transform of ξ restricted to the infinite interval
(η,∞). Equations 58 and 70 imply that

ζ̂ (u) = ξ̂ (u)

u
[u − ν + νe−ur ] = 1

u P(u)
[u − ν + νe−ur ]. (71)

Notice that

P(u) > 0 for u > η, (72)

because η is the largest real root of P(u) = 0 and P(u) → ∞ as u → ∞. Using that
P(η) = 0, P is continuous, and ν > 1, we obtain that there is an ε > 0 such that

u − ν + νe−ur = P(u)− ν + 1 < 0 for u ∈ (η, η + ε]. (73)

Combining Eqs. 71–73 we obtain that ζ̂ (η+ ε) < 0. This and the definition (69) of ζ̂ imply
that ζ(t)must be negative on some interval, which implies the existence of t as stated in (67).

��
Propositions 12, 13, and 14, exhaust all the possibilities for η. Therefore Lemma 7 is

proved and so is the existence part of Theorem 1. ��
5.4 Asymptotic Behavior of φ

The linearization of Eq. 3 at either equilibria, x(t) = −γ1 or x(t) = γ2, leads to an equation
of the following type:

ẋ(t) = −x(t)+ ax(t + r), (74)

where 0 < a = a1 = f ′(−γ1) < 1 at x(t) = −γ1, and 0 ≤ a = a2 = f ′(γ2) < 1 at
x(t) = γ2. The characteristic equation associated to Eq. 74 is

λ+ 1 = aeλr . (75)

Since r > 0, the characteristic Eq. 75 has only one root λ with real part less than or equal
to zero (see [23]). Moreover, this λ is real and has multiplicity one. This implies that the
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equilibrium x(t) = γ2 of Eq. 3 is hyperbolic and it has a one-dimensional stable manifold
(see [9]). For a given r∗ there is only one family of solutions φ connecting x(t) = −γ1 to
x(t) = γ2, parameterized by time translations (one-parameter family). Below we show that
φ̇(t) > 0, for t ∈ R, implying that there is only one solution such that φ(0) = 0. Moreover,
as a consequence of a variation of constant formula, φ admits an asymptotic expansion for
t → +∞ as in the statement of Theorem 1, where λ = −ν2 is the solution of (74) with
negative real part (see [9] chapters 9 and 10, or [4] Theorems 3.2 and 3.4). From Eq. 75 we
see that 0 < ν2 < 1.

We shall now show that φ̇(t) > 0, for t ∈ R. Suppose there is a value t such that φ̇(t) = 0.
Then differentiating Eq. 3 we get ẍ(t) = f ′(φ(t + r∗))φ̇(t + r∗). Since f ′ > 0 (hypothesis
(HP3)) and φ̇ ≥ 0 then ẍ(t) = 0, and φ̇(t + r∗) = 0. Repeating this argument inductively,
we get that for a sufficiently large integer k > 0 there exists a t̃ = t + kr∗ > 0 such that
φ̇(t̃) = 0. Notice that φ(t̃ + r∗) < γ2 because φ is a solution on the stable manifold of the
equilibrium γ2, and must approach γ2 in a exponential way, as described above. But then,
from Eq. 3 and hypothesis (HP1), we get φ(t̃) = f (φ(t̃ + r∗)) > φ(t̃ + r∗), which is absurd.

Now, let us consider the linearization of Eq. 3 at x(t) = −γ1, namely Eq. 74 with 0 <
a = a1 = f ′(−γ1) < 1. In this case it is possible to show (see [23]) that among all solutions
λ of Eq. 74 the one with smallest positive real part is real and has multiplicity one. It will
be denoted as λ = ν1. The proof that the asymptotic expression in Theorem 1 for φ holds,
as t → −∞, is more difficult than in the case t → +∞ because the unstable manifold of
x(t) = −γ1 is infinite dimensional. Nevertheless, using that φ̇(t) > 0 for all t , we can show
that the discrete Liapunov function V given in [4] is one and, as a consequence of Theorems
3.2 and 3.4 of Cao [4], we obtain the asymptotic expression in the statement of Theorem
(1). We remark that to apply the results in [4] to Eq. 3 we must change variables t → −t
to obtain a delayed equation. Moreover, at this point it is used the hypothesis f ′(−γ1) > 0.
If f ′(−γ1) = 0 then it could happen that, as t → −∞, φ(t) → −γ1 faster than any expo-
nential (see [4] and [1]). If we exclude the possibility of super-exponential solutions, then
it is natural that the dominant term in the expansion of φ in terms of eigenfunctions of the
linearized problem starts with exp(ν1t). All other eigenfunctions have real part larger than ν1

and have nontrivial imaginary part. So, if the term exp(ν1t) would not be the dominant one
in the expansion of φ, then φ(t) would oscillate around −γ1, as t → −∞, and this would
violate the property φ̇(t) > 0.

5.5 Uniqueness of r∗

Now, consider Eq. 3 with r ≤ 0. The real part of any root λ of the characteristic Eq. 75 is
strictly negative, for all a such that |a| < 1. So, for r ≤ 0 both equilibria x(t) = −γ1 and
x(t) = γ2 of Eq. 3 are stable and there cannot exist a solution that connects them. Therefore,
Eq. 3 cannot admit a solution with the properties of φ if r ≤ 0. So, only the case r > 0 needs
to be considered.

Let us assume that r and r , 0 < r < r , are values of r associated to solutions φ and φ,
respectively, as in Theorem 1. Let ν1 > 0 and −ν2 < 0 be the two real roots of the characteris-
tic Eq. 75 with r = r . Let ν1 > 0 and −ν2 < 0 be the corresponding roots for r = r . It can be
shown that ν1 > ν1 and ν2 > ν2. These inequalities and the asymptotic expressions in The-
orem 1 imply that there exists M sufficiently large such that φ(t) > φ(t) for |t | > M . Since

both φ̇ and φ̇ are continuously differentiable and nondecreasing, we conclude that there is a

translationφ
α

ofφ,φ
α
(t) = φ(t−α), and a value t̃ of t such thatφ(t̃) = φ

α
(t̃), φ̇(t̃) = φ̇

α
(t̃),

andφ(t) > φ
α
(t), for t > t̃ . At the point t̃ Eq. 3 implies f (φ

α
(t̃+r)) = f (φ(t̃+r)) and since
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f ′(x) > 0 for −γ1 < x < γ2 (hypothesis (HP3)) we conclude that φ
α
(t̃ + r) = φ(t̃ + r).

But r < r and φ̇
α
(t) ≥ 0 imply φ

α
(t̃ + r) ≥ φ

α
(t̃ + r) = φ(t̃ + r) which is absurd because

φ(t) > φ
α
(t), for t > t̃ . Therefore, there can exist only one value of r∗ as stated in Theorem 1.

6 Comments on the Proof of Theorem 3

As already mentioned, the statement of Theorem 3 (given in Sect. 3) differs slightly from
the original statement given in Chow, Lin and Mallet-Paret [6]. In this section we analyze
the modifications introduced by us. The Eq. (1.1) r in [6], after the time change t → −t ,
is given by

ẏ(t) = −y(t)+ f (z(t + r)),

ż(t) = −z(t)+ f (y(t + r)). (76)

For this equation Chow, Lin and Mallet-Paret ([6] Theorem 2.1) proved the existence of a
unique r > 0 and a unique solution (y, z), up to time translation, such that y(−∞) = −γ1,
y(∞) = γ2, z(−∞) = γ2, z(∞) = −γ1, ẏ(t) ≥ 0, and ż(t) ≤ 0. Furthermore, they showed
that the strict inequalities, ẏ(t) > 0 and ż(t) < 0, hold as long as z(t) < γ2 and −γ1 < y(t).
Therefore, the time translation indeterminacy of their solution may be removed by imposing
y(0) = 0. Under this condition the following proposition holds.

Proposition 15 Let (y, z), with y(0) = 0, be the solution given by Theorem 2.1 in [6].
Let c be the only value of t such that z(c) = 0. Then |c| < r .

Proof Equation 76 implies that ẏ(0) = f (z(r)) > 0, because ẏ(t) > 0 if y(t) < γ2. Then
f ′(z) < 0 implies z(r) < 0 and using that ż(t) < 0 if z(t) > −γ1 we get c < r . In the same
way Eq. 76 implies ż(c) = f (y(c + r)) < 0 which implies y(c + r) > 0. Since y(0) = 0
and ẏ(0) > 0 it follows that c + r > 0. ��

The functions φ(t) and χ(t) (Eq. 18 in Theorem 3) are then defined as φ(t) = y(t),
χ(t) = z(t + c), r = r − c > 0, and r = r + c > 0.

The asymptotic expressions (19) given in the Theorem 3 are not given explicitly in [6], so
we shall obtain them now. Equation 17 either linearized at the equilibrium (y, z) = (−γ1, γ2)

or at (y, z) = (γ2,−γ1) can be written as

ẏ(t) = −y(t)+ pz(t + r),

ż(t) = −z(t)+ qy(t + r), (77)

where either (p, q) = ( f ′(γ2), f ′(−γ1)) or (p, q) = ( f ′(−γ1), f ′(γ2)), respectively. If λ
is the eigenvalue of the system with eigenfunction (y(t), z(t)) = (c̃1, c̃2)eλt , Eq. 77 gives(

λ+ 1 −peλr

−qeλr λ+ 1

) (
c̃1

c̃2

)
=

(
0
0

)
, (78)

and λ satisfies the characteristic equation

λ+ 1 = ±heλr (79)

where h = √
pq, 0 < h < 1 due to hypotheses (HN3) and (HN5), and r = (r + r)/2 > 0.

Equation 79 has exactly two real roots (−νa,−νb), non positive, satisfying −νa < −1 <
−νb < 0; furthermore, the (c̃1, c̃2) coefficients in the eigenfunctions associated to them
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satisfy ca1ca2 > 0 and cb1cb2 < 0 (see [6], proposition 2.1). Now, consider the asymptotic
behavior of the solution (φ(t), χ(t)) as t → ∞. This solution is in the two dimensional stable
manifold of the hyperbolic equilibrium (y(t), z(t)) = (γ2,−γ1). Therefore, (φ(t), χ(t)) has
an asymptotic expansion as (see [9], Chaps. 8 and 9, or use the variation of constants formula,
write Eq. 77 as a perturbation of Eq. 17, and use that f is twice differentiable):

φ(t) = γ2 + αca1e−νa t + βcb1e−νbt + Rφ(t),

χ(t) = −γ1 + αca2e−νa t + βcb2e−νbt + Rχ (t)

where α and β are real parameters, |α| + |β| > 0, and

|Rφ(t)| + |Rχ (t)|
|α|e−νa t + |β|e−νbt

→ 0 as t → ∞. (80)

We claim that β �= 0. Indeed, if β = 0 then

(γ2 − φ(t))(χ(t)+ γ1) = −(αca1e−νa t + Rφ(t))(αca2e−νa t + Rχ (t))

= −α2ca1ca2e−2νa t + R(t)

where |R(t)|/e−2νa t → 0, as t → ∞, due to Eq. 80. This equation and ca1ca2 > 0 imply that
(γ2 − φ(t))(χ(t) + γ1) < 0 for t sufficiently large which is impossible because φ(t) ≤ γ2

and χ(t) ≥ −γ1 for all t . So, β must be different from zero. Since 0 < νb < 1 < νa , the
expressions (19) in the Theorem 3 for the asymptotic behavior of (φ, χ), for t → ∞, hold
with 0 < ν = νb < 1, b2 = −βcb1 > 0, and c1 = βcb2 > 0.

Now, let us turn to the more complicated case of the asymptotic behavior for t → −∞.
Among all solutions of Eq. 79, the solution with smallest positive real part is real. It will be
denoted by μ > 0. The (c̃1, c̃2) coefficients in the eigenfunctions associated to μ satisfy
c̃1c̃2 < 0. The following lemma eliminates the possibility of super-exponential convergence
for t → −∞.

Lemma 8 Given any constantσ > μ there exist constants K (σ ) and T (σ ) such that |φ(t)| +
|χ(t)| ≥ K eσ t , for t < T (σ ).

This shows that the solution (φ(t), χ(t)) does not converge super exponentially fast to
(−γ1, γ2) as t → −∞. This and a standard argument using the variation of constants
formula for linear advanced equations, imply that as t → −∞ the solution (φ(t), χ(t)) has
the asymptotic expressions (19) as given in the Theorem 3. To prove Lemma 8 is the only
thing that remains in order to complete the proof of the Theorem 3. The proof of Lemma 8
will be made in several steps, and for the solution of Eq. 76 instead of Eq. 77.

Proposition 16 Given any σ > μ there exists a pair (P, Q), 0 < P < p, 0 < Q < q,
where (p, q) = ( f ′(γ2), f ′(−γ1)) such that σ is a real positive solution of

λ+ 1 = Heλr

where H = √
P Q.

Proof Notice that the equation in the proposition is the characteristic Eq. 79 with the + choice
of sign and h = √

pq replaced by H . σ is the only positive root of the above characteristic
equation, and the function H → σ , defined for 0 < H < 1 is strictly decreasing and onto
(0,∞). So, given σ > μ there exists a unique H < h such that σ solves the above charac-
teristic equation, and P = p

√
H/h and Q = q

√
H/h have the required properties. ��
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Now, for a given σ we choose P and Q as in proposition 16, and rewrite Eq. 76 as

Ẏ (t) = −Y (t)+ P Z(t + r)+ F(Z(t + r)),

Ż(t) = −Z(t)+ QY (t + r)+ G(Y (t + r)) (81)

where

Y (t) = y(t)− (−γ1) > 0, lim
t→−∞ Y (t) = 0,

Z(t) = z(t)− γ2 < 0, lim
t→−∞ Z(t) = 0,

and

F(Z) = f (Z + γ2)− P Z , G(Y ) = f (Y − γ1)− QY.

Notice that F ′(0) = p− P > 0 and G ′(0) = q − Q > 0. Therefore, the asymptotic behavior
of Y and Z implies that given σ > μ there exists a T (σ ) ∈ R such that

F(Z(t + r)) ≤ 0, for t < T (σ ),

G(Y (t + r)) ≥ 0, for t < T (σ ). (82)

Consider the adjoint equation to Eq. 81 after neglecting F and G, namely

η̇(t) = η(t)− Qψ(t − r),

ψ̇(t) = ψ(t)− Pη(t − r). (83)

Notice that (η(t), ψ(t)) = e−σ t (a1, a2) is a solution of Eq. 83, with a1 > 0 and a2 < 0
satisfying the following equation

(−σ − 1 Qeσr

Peσr −σ − 1

) (
a1

a2

)
=

(
0
0

)
. (84)

Now, multiplying by η(t) (ψ(t)) the equation in the first (second) line of (81), integrating
both equations from t to T (σ ) > t (integrating by parts the left hand side of the equations),
adding the resulting two equations, and using that (η, ψ) is a solution of (83) (this is a stan-
dard procedure to handle linear systems of delayed differential equations as described in [9]),
we obtain

u(t) = u(T (σ ))+
T (σ )∫
t

e−σ s[Pa1 F(Z(s + r))+ Qa2G(Y (s + r))]ds, (85)

where

u(t) = −e−σ t [a1Y (t)+ a2 Z(t)] + eσr

t+r∫
t

e−σ s[Pa1 Z(s)+ Qa2Y (s)]ds.

Using that a1 > 0, a2 < 0, P < 0, Q < 0, and inequalities (82), it follows that the integral
in the right hand side of Eq. 85 is positive, implying u(t) ≥ u(T (σ )) for all t ≤ T (σ ).

Proposition 17 The function u is positive for all t ∈ R. In particular, u(t) > u(T (σ ))
def=

c(σ ) > 0, for all t < T (σ ).
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Proof In view of the inequality at the end of the last paragraph, it is enough to prove that

u(t) > 0 for t ∈ R. Let �(s)
def= a1 P Z(s) + a2 QY (s). For all s ∈ R, �(s) > 0 because

a1 > 0, a2 < 0, P < 0, Q < 0, Y (s) > 0 and Z(s) < 0 (the proof that these last strict
inequalities hold for all s ∈ R, under the hypothesis f ′(−γ1) f ′(γ2) > 0, is given in [6]
propositions 2.6 and 2.7). Moreover, �̇(s) = a1 P Ż(s) + a2 QẎ (s) ≥ 0 because Ẏ (s) ≥ 0
and Ż(s) ≤ 0. Therefore,

t+r∫
t

e−σ s[Pa1 Z(s)+ Qa2Y (s)]ds =
t+r∫
t

e−σ s�(s)ds ≥ �(t)

t+r∫
t

e−σ sds

= �(t)
e−σ t

σ
(1 − e−rσ ).

This and the definition of u(t) imply

u(t) ≥ −e−σ t [a1Y (t)+ a2 Z(t)] + eσr�(t)
e−σ t

σ
(1 − e−rσ )

= e−σ t

σ
{Y (t)[−σa1 + (eσr − 1)a2 Q] + Z(t)[−σa2 + (eσr − 1)a1 P]}.

From Eq. 84 we get −σa1 + eσr Qa2 = a1 and −σa2 + eσr Pa1 = a2. Substituting these
equations in the above inequality we obtain

u(t) ≥ e−σ t

σ
{Y (t)[a1 − a2 Q] + Z(t)[a2 − a1 P]}.

Again from Eq. 84 we get (1+σ)a1 = eσr Qa2, and from proposition 16 we getσ+1 = Heσr

which imply Qa2 = Ha1, and analogously we get Pa1 = Ha2. So substituting these equa-
tions in the inequality above we finally get

u(t) ≥ e−σ t

σ
{Y (t)a1(1 − H)+ Z(t)a2(1 − H)} > 0

because a1 > 0, a2 < 0, Y (t) > 0, Z(t) < 0, and 0 < H < 1. ��
Now, we prove Lemma 8. From proposition 17 and the definition of u(t) we get for

t < T (σ )

eσr

t+r∫
t

e−σ s[Pa1 Z(s)+ Qa2Y (s)]ds = eσr

t+r∫
t

e−σ s�(s)ds

≥ e−σ t [a1Y (t)+ a2 Z(t)] + c > c

because a1 > 0, a2 < 0, Y (t) > 0, and Z(t) < 0. As in the proof of proposition 17 we have
�(s) > 0 and �̇(s) ≥ 0 which together with the previous inequality imply

ce−σr ≤
t+r∫
t

e−σ s�(s)ds ≤ �(t + r)

t+r∫
t

e−σ sds = �(t + r)
e−σ t

σ
(1 − e−rσ ),

from which we derive

�(t + r) > eσ t cσ

erσ − 1
.
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Let C
def= min{−a1 P, a2 Q} > 0. Then

C(|Y (t)| + |Z(t)|) = C(Y (t)− Z(t)) ≥ a1 P Z(t)+ a2 QY (t) = �(t).

The last two inequalities imply the inequality in Lemma 8.
Now, the asymptotic behavior in Theorem 3 and the fact that φ̇(t) ≥ 0 and χ̇ (t) ≤ 0

imply that χ(t) < γ2 and φ(t) > −γ1, for all t ∈ R. This and a result in [6] (Theorem 2.1)
mentioned in the beginning of this section imply that φ̇(t) > 0 and χ̇ (t) < 0 for all t ∈ R.

Finally, we have to show the inequality (20) in Theorem 3. Equation 78, the definitions

of μ, ν, b1, b2, c1, c2, and A
def= f ′(γ2) and B

def= f ′(−γ1), imply the following equations

(1 + μ)b1 = −A exp(μr)c2,

(1 + μ)c2 = −B exp(μr)b1,

(1 − ν)b2 = −B exp(−νr)c1,

(1 − ν)c1 = −A exp(−νr)b2.

Dividing the first and the fourth equations of this system we get:

ln

(
c1c2

b1b2

)
+ μr + νr = ln

(
1 + μ

1 − ν

)
> 0.

Finally, dividing the second and the third equations of this system we get the inequality (20):

ln

(
b1b2

c1c2

)
+ μr + νr = ln

(
1 + μ

1 − ν

)
> 0.

7 Proof of Theorem 2

The proof of Theorem 2 will be given through a series of propositions and lemmas. The
following proposition is concerned with the numbers ηi appearing in the Eq. 7.

Proposition 18 For a given ξ > 0 the equation φε(t) = χε(t − ξ) has a unique solution of
the form

t = t (ξ, ε) = ξμ2

μ2 + ν2
+ ε

μ2 + ν2
ln

(
b2

c2

)
+ εE(1/ε).

In the same way, for a given ξ > 0 the equation χε(t) = φε(t − ξ) has a unique solution of
the form

t = t (ξ, ε) = ξν1

μ1 + ν1
+ ε

μ1 + ν1
ln

(
c1

b1

)
+ εE(1/ε).

E is defined in Eq.9.

Proof From Theorem 1 we get that φ̇ε > 0 and χ̇ε < 0. So, if a solution to each equation in
the proposition exists, then it is unique. The asymptotic formulas for φ and χ in Theorem 1
imply (definitions of E and E− given in (9) and (10), respectively)

φε(t) = −γ1 + b1 exp(ν1t/ε)[1 + E−(t/ε)],
φε(t) = γ2 − b2 exp(−ν2t/ε)[1 + E(t/ε)]; (86)

χε(t) = γ2 − c2 exp(μ2t/ε)[1 + E−(t/ε)],
χε(t) = −γ1 + c1 exp(−μ1t/ε)[1 + E(t/ε)]. (87)

123



240 J Dyn Diff Equat (2010) 22:203–252

For ε < 1 there exists α independent of ε, sufficiently small, 0 < α < 1, such that φε(αξ) <
χε(αξ − ξ) (for t = αξ ) and φε(ξ − αξ) > χε(−αξ) (for t = ξ − αξ ). So, a solution t of
the equation exists and αξ < t < ξ − αξ . Using the asymptotic expressions above we write
φε(t) = χε(t − ξ) as

b2 exp(−ν2t/ε)[1 + E(t/ε)] = c2 exp(μ2[t − ξ ])[1 + E−([t − ξ ]/ε)].
Taking the ln of both sides we get

t = ξμ2

μ2 + ν2
+ ε

μ2 + ν2
ln

(
b2

c2

)
+ ε

μ2 + ν2
{E(t/ε)− E−([t − ξ ]/ε)}.

So, the a priori bound αξ < t < ξ−αξ , implies the result in the statement of the proposition.
��

Corollary 1 The numbers ηi appearing in Eq.7 are approximately given by,

ηi = θi−1 + μ2

μ2 + ν2
δi + ε

μ2 + ν2
ln

(
b2

c2

)
+ εE(1/ε), i odd,

and

ηi = θi−1 + ν1

μ1 + ν1
δi + ε

μ1 + ν1
ln

(
c1

b1

)
+ εE(1/ε), i even.

We recall that δi = θi − θi−1 > 0 and θ0
def= −εr .

Proof It is enough to notice that for i odd ηi is defined as the solution of φε(t − θi−1) =
χε(t − θi ) and for i even as the solution of χε(t − θi−1) = φε(t − θi ). ��

Before presenting the Lemma 9, which is the main point in the proof of Theorem 2, it is
convenient to introduce some notation. We define

θ̃i = θi + εr, i = 0, 1, . . . , n.

Notice that θ̃0 = 0 and θ̃n = 1 + εr . We also define

�i = φε(ηi − θ̃i−1)− χε(ηi − θ̃i ), for i odd,

�i = χε(ηi − θ̃i−1)− φε(ηi − θ̃i ), for i even. (88)

Lemma 9 For a given δ ∈ An, let x be the solution of Eq.1 that satisfies the initial condition
x(t) = z(t + 1), for t ∈ [−1, 0], where z is the function given in (7). Then for t ∈ [0, 1 + η1]

x(t) = φε(t − θ̃i )+
i∑

j=0

exp[−(t − η j )/ε]� j , ηi ≤ t < ηi+1, 0 ≤ i ≤ n, i even,

x(t) = χε(t − θ̃i )+
i∑

j=0

exp[−(t − η j )/ε]� j , ηi ≤ t < ηi+1, 1 ≤ i < n, i odd, (89)

with the definitions �0
def= 0, η0

def= 0, and ηn+1
def= 1 + η1.

Proof For t ∈ [0, 1] Eq. 1 with the above initial condition can be written as

ε ẋ(t) = −x(t)+ f (z(t)).
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For t ∈ [0, η1), from Eq. 7, we get

ε ẋ(t) = −x(t)+ f (φε(t + εr)).

Since x(0) = 0, this equation is solved by x(t) = φε(t) (see Eq. 4).
For t ∈ [ηi , ηi+1), 1 ≤ i < n, i odd, Eq. 1 becomes

ε ẋ(t)+ x(t) = f (χε(t − θi )). (90)

Notice that x p(t) = χε(t − θ̃i ) = χε(t − θi − εr) is a particular solution of this equation,
for t ∈ [ηi , ηi+1). The Eq. 90 is a linear non-homogeneous equation for x , since the right
hand side of the equation is given. Moreover, x(t) = x p(t)+ ∑i

j=0 exp[−(t − η j )/ε]� j is
also a solution of this Eq. 90 for t ∈ [ηi , ηi+1), because each term exp[−(t − η j )/ε]� j is a
solution of the linear homogeneous equation ε ẋ(t)+ x(t) = 0.

For t ∈ [ηi , ηi+1), 2 ≤ i ≤ n, i even, Eq. 1 becomes

ε ẋ(t)+ x(t) = f (φε(t − θi )). (91)

Now, x p(t) = φε(t − θ̃i ) = φε(t − θi − εr) is a particular solution of the Eq. 91 for
t ∈ [ηi , ηi+1). Likewise the i odd case x(t) = x p(t) + ∑i

j=0 exp[−(t − η j )/ε]� j is a
solution of Eq. 91 for t ∈ [ηi , ηi+1).

So, we have shown that the functions given in Eq. 89 solve Eq. 1 in the intervals (ηi , ηi+1).
If we show that these solutions glue continuously at the points η1, . . . , ηn then they will also
glue differentially, since the differential equation is satisfied in a neighborhood of ηi , and the
Lemma 9 will be proved. At ηi , 1 ≤ i < n, the function x (89) for i odd satisfies

x(ηi )− lim
t→ηi−

= χε(ηi − θ̃i )+
i∑

j=0

exp[−(ηi − η j )/ε]� j

−{φε(ηi − θ̃i−1)+
i−1∑
j=0

exp[−(ηi − η j )/ε]� j

= χε(ηi − θ̃i )− φε(ηi − θ̃i−1)+�i = 0,

due to the definition of �i , Eq. 88. In the same way we show that at ηi , 2 ≤ i ≤ n, i even,
the continuity of x holds. ��
Proposition 19 The �i , i = 1, . . . , n, defined in (88) satisfy the following estimates. For i
odd, 1 ≤ i < n,

�i = exp

[ −μ2ν2

μ2 + ν2

δi

ε

]
(k1 + E(1/ε))

where

k1 = −b2 exp

[ −ν2

μ2 + ν2
ln(b2/c2)+ ν2r

]
+ c2 exp

[
μ2

μ2 + ν2
ln(b2/c2)− μ2r

]
< 0. (92)

For i even, 2 ≤ i ≤ n,

�i = exp

[ −μ1ν1

μ1 + ν1

δi

ε

]
(k2 + E(1/ε))

where

k2 = −b1 exp

[
ν1

μ1 + ν1
ln(c1/b1)− ν1r

]
+ c1 exp

[ −μ1

μ1 + ν1
ln(c1/b1)+ μ1r

]
> 0. (93)
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Proof For i odd, from corollary 1, and the definitions θ̃i = θi + εr and δi = θi − θi−1 > 0,
we get

ηi − θ̃i−1 = ηi − θi−1 − εr = μ2

μ2 + ν2
δi + ε

[
1

μ2 + ν2
ln(b2/c2)− r

]
+ εE(1/ε),

and

ηi − θ̃i = ηi − δi − θi−1 − εr = −ν2

μ2 + ν2
δi + ε

[
1

μ2 + ν2
ln(b2/c2)− r

]
+ εE(1/ε).

These expressions, the definition of�i (Eq. 88), the fact that ηi − θ̃i−1 > 0 and ηi − θ̃i < 0
for ε small, and the asymptotic expressions for φε and χε given in Eqs. 86 and 87, respec-
tively, imply the estimate for�i in statement of the proposition 19 (i odd). Now, consider the

function G(t)
def== φε(t − θi−1)− χε(t − θi ). This function satisfies Ġ(t) > 0, G(ηi ) = 0,

and therefore G(ηi − εr) = �i < 0. This shows that k1 < 0. The results for ηi with i even
are obtained in the same way. ��
Proposition 20 For i = 1, 2, . . . , n the following holds

i∑
j=0

exp[η j/ε]� j = exp[ηi/ε]�i (1 + E(1/ε)).

Proof For j odd, from corollary 1 and proposition 19 we get

exp[η j/ε]� j = exp

[
θ j−1

ε
+ μ2

μ2 + ν2

δ j

ε
+ 1

μ2 + ν2
ln

(
b2

c2

)
+ E(1/ε)

]

× exp

[ −μ2ν2

μ2 + ν2

δ j

ε

]
(k1 + E(1/ε))

= B j exp

(
1

ε(μ2 + ν2)
[μ2(1 − ν2)θ j + ν2(1 + μ2)θ j−1]

)

def= B j exp[a j/ε], (94)

where B j < 0 is a function of ε that remains bounded and strictly negative as ε → 0.
Analogously, for j even,

exp[η j/ε]� j = exp

[
θ j−1

ε
+ ν1

μ1 + ν1

δ j

ε
+ 1

μ1 + ν1
ln

(
c1

b1

)
+ E(1/ε)

]

× exp

[ −μ1ν1

μ1 + ν1

δ j

ε

]
(k2 + E(1/ε))

= B j exp

(
1

ε(μ1 + ν1)
[ν1(1 − μ1)θ j + μ1(1 + ν1)θ j−1]

)

def= B j exp[a j/ep], (95)

where B j > 0 is a function of ε that remains bounded and strictly positive as ε → 0. So,

i∑
j=0

exp[η j/ε]� j =
i∑

j=0

exp[a j/ε]B j ,

where a j are quantities that do not depend on ε, and B j (ε) are continuous and remain bounded
and strictly different from zero as ε → 0. Therefore, if aJ > a j , j = 1, . . . , i} (recall
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that �0 = 0) then
∑i

j=0 exp[a j/ε]B j = exp[aJ /ε]BJ (1 + E(1/ε)). So, for 1 ≤ j ≤ i
we must find the largest exponent amongst those in Eqs. 94 and 95. From Theorem 1 we
have that 0 < μ1 < 1 and 0 < ν2 < 1, so the constants multiplying θ j and θ j−1 in
Eqs. 94 and 95 are positive. For i odd, this, and the fact that θk < θk+1, imply ai > a j ,
for all j odd with 1 ≤ j < i , and ai−1 > a j , for all j even with 2 ≤ j < i − 1. So,
max{a j : 1 ≤ j ≤ i − 2} < max{ai−1, ai }. The same happens for i even. Now, for i odd,
using that θi > θi−1 > θi−2, we get

ai = 1

ε(μ2 + ν2)
[μ2(1 − ν2)θi + ν2(1 + μ2)θi−1] > θi−1

ε
,

ai−1 = 1

ε(μ1 + ν1)
[ν1(1 − μ1)θi−1 + μ1(1 + ν1)θi−2] < θi−1

ε
,

which implies that ai > ai−1. For i even, using that θi > θi−1 > θi−2, we get

ai = 1

ε(μ1 + ν1)
[ν1(1 − μ1)θi + μ1(1 + ν1)θi−1] > θi−1

ε
,

ai−1 = 1

ε(μ2 + ν2)
[μ2(1 − ν2)θi−1 + ν2(1 + μ2)θi−2] < θi−1ε,

which implies that ai > ai−1. ��
Lemma 10 Let x be the solution of Eq.1 that is given in Lemma 9. It satisfies x(0) = 0
and, for ε sufficiently small, x has n zeroes in the interval (0, 1 + η1), x(θ ′

i ) = 0, with
0 < θ ′

1 < θ ′
2, . . . , θ

′
n < 1 + η1.

For i odd, 1 ≤ i < n, θ ′
i satisfies the following estimate:

θ ′
i = θi + εr − σi with σi = ε exp

[
−bδi

ε

]
(k3 + E(1/ε)), (96)

where (recall that δi = θi − θi−1 > 0),

b
def= ν2(1 + μ2)

μ2 + ν2
> 0, k3 = k1

χ̇ (0)
exp

[
1

μ2 + ν2
ln(b2/c2)− r

]
> 0,

and k1 < 0 (Eq.92, proposition 19).
For i even, 2 ≤ i ≤ n, θ ′

i satisfies the following estimate:

θ ′
i = θi + εr − σi , with σi = ε exp

[
−aδi

ε

]
(k4 + E(1/ε)), (97)

where

a = μ1(1 + ν1)

μ1 + ν1
> 0, k4 = k2

φ̇(0)
exp

[
1

μ1 + ν1
ln(c1/b1)− r

]
> 0,

and k2 > 0 (Eq.93, proposition 19). We define θ ′
0 = 0 and σ0 = 0.

Proof Let us consider the case of i odd. From Lemma 9, θ ′
i is the solution of the following

equation

x(t) = χε(t − θ̃i )+
i∑

j=0

exp[−(t − η j )/ε]� j . (98)
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Let us define

T = t − θ̃i

ε
, and R(ε) =

i∑
j=0

exp[−(θ̃i − η j )/ε]� j = 0.

Then Eq. 98 can be written as

eT x(t) = eTχ(T )+ R
def= F(T, R) = 0,

where χ(T ) = χε(εT ) is the function given in Theorem 1. Function F(T, R) satisfies
F(0, 0) = 0 (because χ(0) = 0), ∂T F(0, 0) = χ̇(0), and ∂R F(0, 0) = 1. So, the solution of
F(T, R) is given by T = −[R/χ̇(0)] + O(R2), and using that εT = θ ′

i − θ̃i = θ ′
i − θi − εr ,

we get

θ ′
i = θi + εr − ε

R(ε)

χ̇(0)
(1 + O(R)). (99)

Now, from corollary 1 and propositions 19 and 20 we obtain

R(ε) = exp(−θ̃i/ε)

i∑
j=0

exp[η j/ε]� j = exp[−(θ̃i − ηi )/ε]�i (1 + E(1/ε))

= exp

[−ν2(1 + μ2)

μ2 + ν2

δi

ε

]
exp

(
1

μ2 + ν2
ln

(
b2

c2

)
− r

)
(k1 + E(1/ε)). (100)

Equations 100, 99, the expression (92) for k1, and the fact that χ̇ (0) < 0, imply that θ ′
i is

given by Eq. 96 in the statement of Lemma 10, for i odd.
For i even, from Lemma 9, θ ′

i is the solution of

x(t) = φε(t − θ̃i )+
i∑

j=0

exp[−(t − η j )/ε]� j = 0.

The same reasoning used in the case of i odd leads to the following expression

θ ′
i = θi + εr − ε

R(ε)

φ̇(0)
(1 + O(R)), (101)

where R is given by Eq. 100 (same expression as in the case i odd). Using corollary 1, and
propositions 19 and 20, R(ε) can be written as

R(ε) = exp(−θ̃i/ε)

i∑
j=0

exp[η j/ε]� j = exp[−(θ̃i − ηi )/ε]�i (1 + E(1/ε))

= exp

[−μ1(1 + ν1)

μ1 + ν1

δi

ε

]
exp

(
1

μ1 + ν1
ln

(
c1

b1

)
− r

)
(k2 + E(1/ε)). (102)

This equation, the Eq. 101, the expression (93) for k2, and the fact that φ̇(0) > 0, imply that
θ ′

i is as given by Eq. 97 in the statement of Lemma 10, for i even. ��
The initial condition that generates the solution x in Lemma 9 is in the set Xn (see the

paragraph after Eq. 10 for the definition of Xn and other function sets used below). Lemma 10
implies that, for ε sufficiently small, the first zero of x after t = 1 is given by θ ′

n < 1 + η1.
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Indeed, θ ′
n−1 = θn−1 + εr + E(1/ε) and θn−1 < 1, so θ ′

n−1 < 1 for ε sufficient small. Then,
using that θ ′

n = θn + εr + E(1/ε), θn = 1, and from corollary 1,

η1 − εr = −εr + θ0 + μ2

μ2 + ν2
δ1 + O(ε) = −2ε + μ2

μ2 + ν2
δ1 + O(ε) > 0,

we get that 1 < θ ′
n < 1 + η1, for ε sufficiently small. So, according to the definition of

Xn in Sect. 2, the initial condition of Lemma 9 is in Xn with T = θ ′
n . Then Lemma 10

implies that T is given by the expression (11) as stated in Theorem 2. From the definition of
Fn(x) = ψT (x) we get that Fn(x)(t) = x(t + θ ′

n), for t ∈ [−1, 0], where x is the solution
given in Lemma 9. Notice that for ε sufficiently small the zeroes of Fn(x) are located at
−1 + θ̂1 < −1 + θ̂2 < · · · < −1 + θ̂n−1 < 1 − θ̂n = 0, where θ̂i = 1 − θ ′

n + θ ′
i . Now, if we

define θ̂0 = −εr = θ0 as before and δ′i = θ̂i − θ̂i−1 = θ ′
i − θ̂ ′

i−1 then, from Lemma 10, we
get the Eqs. 13 in item (iii) of Theorem 2.

The following lemma completes the proof of item (ii) of Theorem 2.

Lemma 11 Let

β
def= min

{
μ2ν2

μ2 + ν2
δ1,

μ1ν1

μ1 + ν1
δ2,

μ2ν2

μ2 + ν2
δ3, . . . ,

μ2ν2

μ2 + ν2
δn

}

Then

sup
t∈[−1,0]

|Fn(x)(t)− Pn ◦ Fn(x)(t)| = ||Fn(x)− Pn ◦ Fn(x)||0

≤ exp

[
−β
ε

]
(k5 + E(1/ε)), (103)

where k5 = max{|k1|, |k2|}, and k1 and k2 are given in proposition 19 (Eqs.92, 93).

Proof Let θ ′
i be the zeroes of x as given in Lemma 10 (Eqs. 99 and 101). Using proposition

20 we can write the solution x(t) (89) (Lemma 9) as

x(t) = φε(t − θ̃i )+ exp[−(t − ηi )/ε]�i (1 + E(1/ε)), ηi ≤ t ≤ ηi+1, i even,
(104)

x(t) = χε(t − θ̃i )+ exp[−(t − ηi )/ε]�i (1 + E(1/ε)), ηi ≤ t ≤ ηi+1, i odd,

for i = 1, 2, . . . , n, where ηn+1
def= θ ′

n .
To prove Lemma 11, we have to compare x(t) to the following function

ẑ(t) = φε(t − (θ ′
n − 1 − εr)) = φε(t + σn), for − σn ≤ t ≤ η′

1,

ẑ(t) = χε(t − θ ′
1), for η′

1 < t ≤ η′
2,

ẑ(t) = φε(t − θ ′
2), for η′

2 < t ≤ η′
3,

. . .

ẑ(t) = φε(t − θ ′
n), for η′

n < t ≤ θ ′
n = 1 + εr − σn, (105)

where the numbers η′
i are such that ẑ is continuous. Notice that Pn ◦ Fn(x)(t) = ẑ(t + θ ′

n).
As in corollary 1 the numbers η′

i are approximately given by

η′
i = θ ′

i−1 + μ2

μ2 + ν2
δ′i + ε

μ2 + ν2
ln

(
b2

c2

)
+ εE(1/ε), i odd,

and
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η′
i = θ ′

i−1 + ν1

μ1 + ν1
δi + ε

μ1 + ν1
ln

(
c1

b1

)
+ εE(1/ε), i even,

where in the above expressions we shall use θ ′
0 = −σn . From these expressions, corollary 1,

and Lemma 10 we get

η′
i = ηi + εr + εE(1/ε), for i = 1, . . . , n.

In particular, for ε sufficiently small η′
i > ηi . Thus, for t ∈ [η′

i , ηi+1], i even, 2 ≤ i ≤ n,

with ηn+1
def= θ ′

n , we get from Eq. 105

x(t)− ẑ(t) = φε(t − θ̃i )− φε(t − θ ′
i )+ exp[−(t − ηi )/ε]�i (1 + E(1/ε)).

Let |�max | = max{|� j |, j = 1, 2, . . . , n}. From the definitions of β and k5 we get |�max | ≤
k5 exp−β/ε . Then using proposition 19 and Lemma 10 we get that for any t ∈ R the following
inequality holds:

|φε(t + σi )− φε(t)| = |σi |
∣∣∣∣∣∣

1∫
0

φ̇ε(t + sσi )ds

∣∣∣∣∣∣ ≤ |σi |
ε

max
t∈R

|φ̇(t)| def= |σi |
ε

k6

= |�max | |σi |
|�max |ε k6 = |�max |E(1/ε). (106)

So, for t ∈ [η′
i , ηi+1], with i even, we get

|x(t)− ẑ(t)| ≤ |�max |E(1/ε)+ |�i | ≤ |�max |(1 + E(1/ε)) ≤ k5 exp−β/ε(1 + E(1/ε)) .
In the same way we prove that |x(t) − ẑ(t)| ≤ k5 exp−β/ε(1 + E(1/ε)), for t ∈ [η′

i , ηi+1],
with i odd. Now, for t ∈ [−σn, η1] inequality (106) implies

|x(t)− ẑ(t)| = |φε(t)− φε(t + σn)| ≤ |�max |E(1/ε).
So, to finish the proof we have to show that the inequality (103) in the Lemma 11 is valid for
t ∈ ∪n

i=1[ηi , η
′
i ]. Let us do it for t ∈ [ηi , η

′
i ] with i odd, 1 < i ≤ n − 1. The cases i = 1 and

i even are proven in a similar way. From Eq. 105, and the expression for ẑ, for t ∈ [ηi , η
′
i ],

we get

x(t)− ẑ(t) = G(t)+ exp[−(t − ηi )/ε]�i (1 + E(1/ε)), where

G(t)
def= χε(t − θ̃i )− φε(t − θ ′

i−1).

Now, using the definition of η′
i , that χ̇ε < 0, θ ′

i = θ̃i − σi , and σi > 0 we get

0 = χε(η
′
i − θ̃i + σi )− φε(η

′
i − θ ′

i−1) < χε(η
′
i − θ̃i )− φε(η

′
i − θ ′

i−1 = G(η′
i ).

This, ηi < η′
i , and Ġ(t) < 0 imply that G(ηi ) > 0 and 0 < G(t) < G(ηi ) for t ∈ [ηi , η

′
i ].

From proposition 19, �i < 0 for i > 1 odd, implying

x(t)− ẑ(t) = G(t)+ exp[−(t − ηi )/ε]�i (1 + E(1/ε)) < G(t) < G(ηi ).

Thus from Eq. 106, from the definition (88) of �i , and for t ∈ [ηi , η
′
i ], i > 1 odd, we get

x(t)− ẑ(t) < G(ηi ) = χε(ηi − θ̃i )− φε(ηi − θ̃i−1)+ φε(ηi − θ̃i−1)

−φε(ηi − θ̃i−1 + σi−1) < �i + |�max |E(1/ε) < k5 exp−β/ε(1 + E(1/ε)).
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Finally, for t ∈ [ηi , η
′
i ] with i > 1 odd, using that G(t) > 0 we get:

x(t)− ẑ(t) = G(t)+ exp[−(t − ηi )/ε]�i (1 + E(1/ε))
> exp[−(t − ηi )/ε]�i (1 + E(1/ε)) > �i (1 + E(1/ε))
> −k5 exp−β/ε(1 + E(1/ε)).

��
The last part of Theorem 2 that has to be proven is its statement (i). This statement is a

consequence of the following Lemma 12.

Lemma 12 Let ψt (x)(s) = x(t + s) and ϕt (x)(s) = z̃(t + s), s ∈ [−1, 0], where x(t),
t ∈ [−1, 1 + η1] is the solution given in Lemma 9 and z̃(t) = z(t + 1), t ∈ R, where z is the
periodic extension of the function in Eq.7. Then

sup
t∈[−1,1+η1]

|x(t)− z̃(t)| ≤ exp

[
−β
ε

]
(k5 + E(1/ε)),

where η1 > 0 is given in corollary 1 and β and k5 are given in Lemma 11.

Proof From Lemma 9 the difference x(t) − z̃(t) is zero for t ∈ [−1, η1]. In the interval
[η1, 1 + η1 + εr ] the function z̃ is given by

z̃(t) = φε(t − θ̃i ) ηi + εr ≤ t < ηi+1 + εr, 0 ≤ i ≤ n, i even,

z̃(t) = χε(t − θ̃i )+
i∑

j=0

ηi + εr ≤ t < ηi+1 + εr, 1 ≤ i < n, i odd,

where we use η0 + εr
def= 0 and ηn+1

def= 1 + η1. Thus, from Lemma 9 and proposition 20,
for t ∈ [ηi + εr, ηi+1], i = 1, 2, . . . , n, we get

|x(t)− z̃(t)| =
∣∣∣∣∣∣

i∑
j=0

exp[−(t − η j )/ε]� j

∣∣∣∣∣∣ = |exp[−(t − ηi )/ε]�i (1 + E(1/ε))|

≤ exp

[
−β
ε

]
(k5 + E(1/ε)).

For t ∈ [ηi , ηi + εr ], 1 ≤ i ≤ n, i odd,

x(t)− z̃(t) = G(t)+
i∑

j=0

exp[−(t − η j )/ε]� j , where G(t)
def= χε(t − θ̃i )−φε(t − θ̃i−1).

Then estimates similar to those made in the proof of Lemma 11 for a similar function

G appearing there give the inequality |x(t) − z̃(t)| ≤ exp
[
−β
ε

]
(k5 + E(1/ε)). The case

t ∈ [ηi , ηi + εr ], 2 ≤ i < n, i even, is proved likewise. ��

8 Proof of Theorem 4

The proof of Theorem 4 will be given through a series of propositions and lemmas. The
propositions and lemmas in this section have analogues in the previous section. Moreover,
the proofs use the same ideas. So, most of the proofs in this section will be omitted.
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Proposition 21 For a given ξ > 0 the equation φε(t) = χε(t − ξ) has a unique solution of
the form

t = t (ξ, ε) = ξμ

μ+ ν
+ ε

μ+ ν
ln

(
b2

c2

)
+ εE(1/ε).

In the same way, for a given ξ > 0 the equation χε(t) = φε(t − ξ) has a unique solution of
the form

t = t (ξ, ε) = ξμ

ν + μ
+ ε

ν + μ
ln

(
c1

b1

)
+ εE(1/ε),

μ, ν satisfying (20).

Proof The proof is similar to that of proposition 18. ��
Corollary 2 The numbers ηi , i = 1, 2, . . . , 2n appearing in Eq.23 are approximately given
by,

ηi = θi−1 + μ

μ+ ν
δi + ε

μ+ ν
ln

(
b2

c2

)
+ εE(1/ε), i odd,

ηi = θi−1 + μ

ν + μ
δi + ε

ν + μ
ln

(
c1

b1

)
+ εE(1/ε), i even, (107)

where δi = θi − θi−1 > 0, i = 1, 2, . . . 2n and θ0
def= −εr .

In the following we just prove the statements in Theorem 4 related to the initial condition
x ∈ Yn ∩ Wn , which is associated to δ ∈ An . The statements related to the initial condition
x ∈ Xn ∩ Wn are proved in the same way. Before presenting the Lemma 13, which is the
main point in the proof of Theorem 4, it is convenient to introduce some notation. We define

θ̃i = θi + εr , i = 1, 3, 5, . . . , n,

θ̃i = θi + εr , i = 2, 4, 6, . . . , n − 1,

with θ̃0 = 0 and

�i = χε(ηi − θ̃i−1)− φε(ηi − θ̃i ) i = 1, 3, 5, . . . , n,

�i = φε(ηi − θ̃i−1)− χε(ηi − θ̃i ) i = 2, 4, 6, . . . , n − 1. (108)

Lemma 13 For a given δ ∈ An, let x be the solution of Eq.1 that satisfies the initial condi-
tion x(t) = z(t + 1) (notice that the initial condition is in Yn ∩ Wn), for t ∈ [−1, 0], where
z is the function given in (23). Then on the interval t ∈ [0, 1 + η1]

x(t) = φε(t − θ̃i )+
i∑

j=0

exp[−(t − η j )/ε]� j ηi ≤ t < ηi+1, 1 ≤ i ≤ n, i odd,

x(t) = χε(t − θ̃i )+
i∑

j=0

exp[−(t − η j )/ε]� j ηi ≤ t < ηi+1, 0 ≤ i < n, i even,

(109)

with the definitions �0
def= 0, η0

def= 0, and ηn+1
def= 1 + η1.

Proof The proof is similar to that of Lemma 9. ��
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Proposition 22 The�i , i = 1, . . . , n, defined in (108) satisfy the following estimates. For i
odd, 1 ≤ i ≤ n,

�i = exp

[ −μν
μ+ ν

δi

ε

]
(k1 + E(1/ε))

where

k1 = c1 exp

[ −ν
μ+ ν

ln(b2/c2)+ νr

]
− b1 exp

[
μ

μ+ ν
ln(b2/c2)− μr

]
> 0. (110)

For i even, 2 ≤ i < n,

�i = exp

[ −νμ
ν + μ

δi

ε

]
(k2 + E(1/ε))

where

k2 = c2 exp

[
μ

ν + μ
ln(c1/b1)− μr

]
− b2 exp

[ −ν
ν + μ

ln(c1/b1)+ νr

]
< 0. (111)

Proof The inequalities for �i and the expressions for k1 and k2 are obtained in the same
way as those in proposition 19. The proofs that k1 > 0 and k2 < 0 are different. After some
algebraic manipulations of the expressions for k1 and k2 (Eqs. 110, 111) in the statement of
the proposition 22 can be written as

k1 = c1 exp

[ −ν
μ+ ν

ln(b2/c2)+ νr

]{
1 − exp

[
− ln

(
c1c2

b1b2

)
− μr − νr

]}

and

k2 = c2 exp

[
μ

ν + μ
ln(c1/b1)− μr

] {
1 − exp

[
ln

(
b1b2

c1c2

)
+ μr + νr

]}
.

These two inequalities, and the inequality (20) in Theorem 3, imply that k1 > 0 and k2 < 0.
��

Proposition 23 For i = 1, 2, . . . , n the following holds

i∑
j=0

exp[η j/ε]� j = exp[ηi/ε]�i (1 + E(1/ε)).

Proof The proof is similar to that of proposition 20. ��
Lemma 14 Let x be the solution of Eq.1 that is given in Lemma 13. It satisfies x(0) = 0
and, for ε sufficiently small, x has n zeroes in the interval (0, 1 + η1), x(θ ′

i ) = 0, with
0 < θ ′

1 < θ ′
2, . . . , θ

′
n < 1 + η1.

For i odd, 1 ≤ i ≤ n, θ ′
i satisfies the following estimate:

θ ′
i = θi + εr − σi with σi = ε exp

[
−aδi

ε

]
(k3 + E(1/ε)),

where

a
def= ν(1 + μ)

μ+ ν
> 0, k3 = k1

φ̇(0)
exp

[
1

μ+ ν
ln(b2/c2)− r

]
> 0,

and k1 > 0 is given in Eq.110 (proposition 22).
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For i even, 2 ≤ i < n, θ ′
i satisfies the following estimate:

θ ′
i = θi + εr − σi , with σi = ε exp

[
−aδi

ε

]
(k4 + E(1/ε)),

where a is given above and

k4 = k2

χ̇ (0)
exp

[
1

ν + μ
ln(c1/b1)− r

]
> 0,

and k2 < 0 is given in Eq.111 (proposition 22).

Proof The proof is similar to the proof of Lemma 10. ��
The initial condition that generates the solution x (Eq. 109) in Lemma 13 is in the set

Yn ∩ Wn . Lemma 14 implies that, for ε sufficiently small, the first zero of x after t = 1 is
given by θ ′

n < 1 + η1. The argument for this is similar to that in the previous section right
after the proof of Lemma 10. Moreover, for ε sufficiently small, Eq. 1 gives

ẋ(θ ′) = −x(θ ′)+ f (x(θ ′ − 1)) = f (x(εr − σn)) = f (x(εr + E(1/ε))) > 0

because 0 < εr + E(1/ε) < η1, x(εr + E(1/ε)) < 0, and for a negative feedback equa-
tion x f (x) < 0. So, x(t + θ ′), t ∈ [−1, 0], is in Xn and the initial condition x is in
Y n . This implies that the T appearing in item (ii) of Theorem 4 is given by T = θ ′

n and
Lemma 14 implies that T has the expression given in Theorem 4. From the definition of
FY n(x) = ψT (x) we get that FY n(x)(t) = x(t + θ ′

n), for t ∈ [−1, 0], where x is the solu-
tion (109) given in Lemma 13. Notice that for ε sufficiently small, the zeroes of FY n(x) are
located at −1 + θ̂1 < −1 + θ̂2 < · · · < −1 + θ̂n−1 < 1 − θ̂n = 0, where θ̂i = 1 − θ ′

n + θ ′
i .

Now, if we define θ̂0 = −εr and δ′i = θ̂i − θ̂i−1 = θ ′
i − θ̂ ′

i−1 then from Lemma 14 we get all
the equations in item (iii) of Theorem 4. The following lemma completes the proof of item
(ii) of Theorem 2.

Lemma 15 Let

β
def= μν

μ+ ν
min {δ1, δ2, δ3, . . . , δn} .

Then

sup
t∈[−1,0]

|FY n(x)(t)− PY n ◦ FY n(x)(t)| ≤ exp

[
−β
ε

]
(k5 + E(1/ε)),

where k5 = max{|k1|, |k2|}, and k1 and k2 are given in Eqs.110, 111 (proposition 22).

Proof The proof of this lemma is similar to that of Lemma 11, excepting the proof that
η′

i > ηi . So we shall only give the proof of this inequality. Here η′
i is defined as the roots of

the following equations:

0 = φε(η
′
i − θ ′

i )− χε(η
′
i − θ ′

i−1) i = 1, 3, . . . , n,

0 = χε(η
′
i − θ ′

i )− φε(η
′
i − θ ′

i−1) i = 2, 4, . . . , n − 1,

where θ ′
0

def= −σn . Using proposition 21 we get that:

η′
i = θ ′

i−1 + μ

μ+ ν
δ′i + ε

μ+ ν
ln

(
b2

c2

)
+ εE(1/ε), i = 2, 4, . . . , n − 1,

η′
i = θ ′

i−1 + μ

μ+ ν
δi + ε

μ+ ν
ln

(
c1

b1

)
+ εE(1/ε), i = 1, 3, . . . , n,
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where δ′i = θ ′
i − θ ′

i−1. Then using corollary 2 and Lemma 14, after some manipulation we
get

η′
i = ηi + ε

μ+ ν

[
ln

(
b2b1

c2c1

)
+ +νr + μr

]
+ εE(1/ε)

= ηi + n + εE(1/ε), i = 2, 4, . . . , n − 1

η′
i = ηi + ε

μ+ ν

[
ln

(
c2c1

b2b1

)
+ +νr + μr

]
+ εE(1/ε)

= ηi + n + εE(1/ε), i = 1, 3, . . . , n (112)

Then the last inequality in Theorem 3 implies that ηi < η′
i , for i = 1, 2, . . . , n. Now, let

x be the solution (109) in Lemma 13, and ẑ be the analogue of that function ẑ (Eq. 105)
used in the proof of Lemma 11. To prove the above inequality, it is equivalent to show that

|x(t)− ẑ(t)| ≤ exp
[
−β
ε

]
(k5 + E(1/ε)), for t ∈ [θ ′ − 1, θ ′]. As in the proof of Lemma 11

we split the proof of this inequality into two parts. First we show that the inequality holds
inside the intervals t ∈ [η′

i , ηi+1]. This is done in the same way as in the proof of Lemma 11.
Then we must show the inequality holds for t ∈ [ηi , η

′
i ]. This last part has one point that is

not a straightforward modification of the corresponding part in the proof of Lemma 11. This
point is highlighted in the proof given below.

Let t ∈ [ηi , η
′
i ] with i even, 2 ≤ i ≤ n − 1. The case i odd is proven in a similar way. In

this case the function to be bounded is

x(t)− ẑ(t) = G(t)+ exp[−(t − ηi )/ε]�i (1 + E(1/ε)),
where G(t)

def= χε(t − θ̃i )− φε(t − θ ′
i−1).

Using the same arguments used in the proof of Lemma 11, we show that 0 < G(t) < G(ηi ).
Now, the only significant difference with the proof of Lemma 11 is how to bound G(ηi ) (in
this case G(ηi ) is not by definition approximately �i ). From the expression (107) for ηi , i
even, in corollary 2, we get

G(ηi ) = χε

[ −ν
ν + μ

δi + ε

ν + μ
ln

(
c1

b1

)
− εr + εE(1/ε)

]
+

−φε
[

μ

ν + μ
δi + ε

ν + μ
ln

(
c1

b1

)
− εr + σi−1 + εE(1/ε)

]
.

As φε(x) = φ(x/ε), χε(x) = χ(x/ε), and σi−1 = εE(1/ε) (from Lemma 14) we get

G(ηi ) = χ

[ −ν
ν + μ

δi

ε
+ 1

ν + μ
ln

(
c1

b1

)
− r + E(1/ε)

]
+

−φ
[

μ

ν + μ

δi

ε
+ 1

ν + μ
ln

(
c1

b1

)
− r + E(1/ε)

]
.

Finally, using the asymptotic expressions (19) for φ and χ provided in Theorem 3, we get
G(ηi ) = −�i (1 + E(1/ε)) > 0. The rest of the proof is similar to that of Lemma 11. ��

The last part of Theorem 4 that has to be proved is its statement i . Its proof follows closely
the proof of Lemma 12, the existing differences being similar to those encountered in the
proof of Lemma 15, therefore they can be handled in the same way (in particular, the identity
ηn+i = η′

i + E(1/ε), that appears in Eq. 112, is useful at this point). So the proof of part i of
Theorem 4 will be omitted.
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Finally, there is the case where the initial condition x ∈ Xn ∩ Wn . The proof of this case
is essentially the same as that outlined above. In most parts it is enough to exchange “i odd”
by “i even” and vice versa.
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