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Abstract

In this article we investigate the stability of quantized yrast states in a mixture of two distinguishable
equal mass bosonic atoms confined in a ring. We focus in the study of energetic stability since the
Bloch analysis and the Bogoliubov theory establishes that only energetically stable quantized yrast
states are capable of sustain a persistent current. In the framework of the Bogoliubov theory we study
the stability in two different cases chosen by physical considerations. In one case we analyze how the
inter and intraspecies interaction strengths affect the stability of a selected quantized yrast state
specified by the angular momentum per particle and the population imbalance. In the other case, for a
fixed dynamics specified by given values of interaction strengths, we determine the stability of
quantized yrast states as function of the angular momentum per particle and the population
imbalance. We also examined the stability of the mixture in the rarefied limit and we found a critical
value of the population imbalance which gives the size of the window of energetic stabilityand a
critical value of angular momentum per particle which is an upper bound of the possible values of
angular momentum per particle carried by energetically stable quantized yrast states.

1. Introduction

The properties of superfluidity of a system of ultra cold atoms confined in a ring has been extensively studied in
recent years, both experimentally [ 1-5] and theoretically [6-8]. The experiments of references [1-5] have
managed to create in the laboratory persistent currents in this system. At the theoretical side an analysis by Bloch
[9] concluded that the occurrence of persistent currents is related to the stability of yrast states. As the angular
momentum L, commutes with the Ring Hamiltonian H the stationary states can be chosen to be simultaneous
eigenstates of L, and H. The state with the lowest energy for a given L, where L is an eigenvalue of L., is referred to
as yrast state. According to Bloch only yrast states which are local minima of the yrast spectrum are capable of
sustain a persistent current. Variational methods [7, 8], the Bogoliubov theory (when applicable) [6] and a
truncated diagonalization of the Ring Hamiltonian [6] have been employed to calculate the yrast spectrum. The
main conclusion from these calculations was that only yrast states with an integer angular momentum per
particle % = L,with|l]| = 1, 2, ..., is capable of sustain a persistent current. These states are known as quantized
yrast (QY) states [6].

A non trivial extension of the previous case is to investigate persistent currents in systems which are a
mixture of two ultra cold distinguishable atoms confined in a torus where the transverse component is so tight
that the system is effectively one dimensional, the ring [6, 12, 15]. If A and B are the labels of the two species, we
have a mixture of N4 atoms of specie A and N atoms of specie B, the total number of atoms being equal to
N = N, + Npand the total angular momentumequalto L = L, + Lg. At fixed value of N the number of
atoms of each species can be parameterized as Ny = %(1 — fland N3 = %(1 + f) where fis the population
imbalance, | f| < 1. The atoms interact via a contact interaction with strengths Uy 4 , Upgand U, p. Quantitative
studies of this system have been done only by variational methods in the limit of equal [10-14] and unequal [15]
interaction strengths.

© 2018 The Author(s). Published by IOP Publishing Ltd
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In this article we investigate, in the framework of the Bogoliubov theory, the stability properties of current
carrying QY states. In our analysis we consider equal intraspecies interaction strengths, Uyy = Ugg = U
different from interspecies interaction strength U, . In the Bogoliubov theory the determination of the stability
of an equilibrium state is based on the following criterion: (i) if at least one eigenvalue is complex the equilibrium
state is dynamically unstable; (ii) if the energies of the elementary excitations are all real the equilibrium state is
dynamically stable [18—20]; (iii) if the energies of the elementary excitations are all real and positive the
equilibrium state is energetically stable [15, 20, 21]. This criterion is based on the following property [22]: The
eigenvalues of the Bogoliubov-de Gennes diagonalization problem can be complex or real. When the
eigenvalues are real they come in pairs of eigenvectors with opposite eigenvalues and opposite norm. To each of
these pairs we associate an elementary excitation whose energy is the eigenvalue of the eigenvector with
positive norm.

Since an energetically stable QY state is alocal minimum and taking into consideration the Bloch analysis [9]
we conclude that only the energetically stable QY states are capable of sustain a persistent current. We focus our
investigation in the study of the energetic stability of the QY states. We solved the Bogoliubov-de Gennes
equations of the model to find analytic expressions for the energies of the elementary excitations written in terms
of the system parameters (Uysp, U, I, f). Two of these parameters, I and f, specify the QY state and the other two,
Uypand U, specify the dynamics. Based on the stability criterion we determine the inequalities that when
satisfied define the domain of dynamical and energetic stability in the four dimensional space of system
parameters [12, 15].

Nevertheless we found two cases where physical considerations reduce the study in the four dimensional
space to a study in two dimensional planes spanned by a pair of system parameters with the other pair kept at
fixed values. One is when we are studying the stability of a selected QY state. In this case we fix the values of and f
equal to the labels of the selected QY state which reduce the inequalities in the four dimensional space into
inequalities in the U x U plane. The stability diagram in this plane defines the domain of energetic stability
and displays the stability as a function of U,z and U. Measurements to determine experimentally the stability
diagram is in principle feasible through the mechanism of Feshbach resonance. In the other case we are studying
the stability at fixed dynamics. If we fix the values of U, and U, the inequalities in the four dimensional space
reduce into inequalities in the / x fplane. However, from the viewpoint of physics, fis a bounded quantity,
| f] < 1,and the physical values of fand I are restricted to the sector of the ! x fplane, the sector of physical
significance (SPS), defined by inequalities |/| >> 0 and|f| < 1.Indeed in this work we consider only [ = 0 states
sinceal = 0 state does not carry a current. This restricts the investigation to the region of the SPS defined by the
inequalities |/| > land|f| < 1.From now on we denoted this region as SPS ;. The QY states appear when we
postulate a correspondence between points in the |I| > 1region of SPS of coordinates (/, f) and the QY states
whose labels are these coordinates. This correspondence extends to the stability properties. The regime of
stability of a QY state is equal to the regime of stability of the corresponding point in the SPS ;> 1. The domain of
dynamical and energetic stability in the SPS ;> is determined by the intersection of the domainsin the l x f
plane of the above named inequalities and the domain of SPS ;. ; which displays the stability of the QY states as
function of land f. The experimental determination of the stability diagram requires the measurements of
stability of all QY states which, in principle, can be done.

We do not know of any work that determines the effect of the inter and intraspecies interaction strengths in
the stability of QY states and its dependence on the angular momentum per particle and population imbalance.
In the literature we can find the theoretical work [15] which investigates the stability of mixtures in a ring. Both
of us deduced inequalities that when satisfied define the domain of dynamical e energetic stabilities and study the
stability in two dimensional planes spanned by pairs of system parameters. We differ from [15] not only by the
subject under investigation but also by the way that the inequalities are handled. Reference [15] is mainly
interested in establishing under what conditions mixtures of two Bose condensates where the occupied states are
eigenvectors of the angular momentum operator with different eigenvalues, I, = I, can be yrast states. On the
other hand, in this article we investigate the stability of QY states where [, = I5. With respect to the inequalities,
itis where appears one of the novelties of our work, that is, the choice of two dimensional planes based on
physical considerations which led to descriptions with straightforward physical interpretation and experimental
relevance. Differently from us, the choice of planes in [15] is not based on physical considerations which led to
descriptions lacking physical and experimental meaning.

This article is organized as follows: In section 2 we describe the system under consideration and we define the
states that will be identified with the QY states compatible with the Bogoliubov theory. We discussed briefly our
method to solve the Bogoliubov-de Gennes equations of the model and we found analytic expressions for the
energy of the elementary excitations written in terms of the system parameters. Based on the stability criterion,
we determine the inequalities that when satisfied are the necessary and sufficient conditions for QY states to be
dynamically and energetically stable. In section 3 we present the stability diagram in the U,p x U plane to show
that the energetic phase boundary is the positive branch of a hyperbola and how the inter and intraspecies
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interaction strengths affect the stability. The stability in the rarefied limit of the minority component was also
examined. In section 4 we present the stability diagram in the SPS,;;» and we investigate the consequences of the
occurrence of two critical quantities: f.;;(]) and I,;;. In section 5 we present our conclusions.

2. Bogoliubov stability criterion

In our system, a two-component gas is confined in a tight toroidal trap of radius R and cross-section S, the ring.
The two-component gas is a mixture of N, atoms of specie A and N atoms of specie Bwith N = N, + N fixed.

2
The Ring Hamiltonian, in units of %RZ’ in second quantization reads [12, 15]

i 1 i
H= Z Z mzas,mas’m + 5 Z Z Uss’aiml g my Fs,m3 As',my 5m1+m2,m3+m4 M
s m s,s’ m;
where a; ,,, (aim) is the bosonic annihilation (creation) operator of an atom of specie s = A, Bin an eigenstate of
I, with eigenvalue mand Uy = % with 27U,y being the effective interaction strength between atoms of

%, where a is the respective s—wave scattering length [12, 15].
In a mean field theory, a current carrying QY state is a mixture of two Bose condensed states where N, atoms

of specie A and Ny atoms of specie B occupy the same eigenstate of , of eigenvalue / and wave function

0,(0) = %e’w and angular momentum equal to L = N, I + Nl = Nlwith|l| > 1.1In the Bogoliubov theory

species sand s’ confined in a ring, in units of

the QY state is identified with the vacuum of the shifted operators c; ,,, defined by as ,,, = ¢, + 20, Whichisa
coherent state of the annihilation operator of atoms in the occupied states [16]. The c-numbers z, ;are
determined by imposing that the vacuum is an equilibrium state which requires that the mean value of the
Hamiltonian in the vacuum [17],

1
<H> = Z lzlzs,l|2 + E Z Uss/lzs,llzlzs’llzr (2)
s s,s"

is stationary with respect to the variations of the z, ; subject to the number-conserving constraints N; = |z |* for
s = A, Bleading to the equations

Uy = 12+ Ny Usa + NgUup (3a)
g = 1> + NgUpg + Ny Up. (3b)

The equations (34) and (30) are invariant by a phase change of the z, ;and therefore they can be chosen real and
equalto zy; = \/VA and zp; = \/ﬁ

The next step is to write the Grand-Hamiltonian H = H — }__ 1 N; as a normal order expansion with
respect to the shifted operators, H = Z?:o ‘H;, where the term ; involves i shifted operators. The dynamics in
the neighborhood of an equilibrium state is described by an Effective Hamiltonian which is the normal ordered
expansion of the Grand-Hamiltonian up to the second order in the shifted operators. Since H, is a constant and
'H, identically zero (stationary condition) the Effective Hamiltonian reduces to the quadratic term H, given by

Hy = Z Z [(q* + 291) b5 + Uss’ijNs’]CinCs’,Hq

!
q s

1 A
+ E Z Z Uss/\/ NNy (Cs,lJqus’,lfq + Cs’,lfq Cil+q) 4)
q s

withm = [ + gwhere qis the transferred angular momentum (relative angular momentum). An inspection of
the coupling structure of (4) shows that only pairs (! = g), and (I = g)pare coupled which allow us to express
'H, as direct sum of a doublet and quadruplets specified by the magnitude of the transferred angular momentum

9

0

Hy = HY + S HP (5)
q>0
with
1
0
H(z) — Z hs,l;s’,lcilcs’,l + EAs,l;s’,l(Cs,le’,l + CJJCL) (6)
5,8
1
H(zq) = ZI:hs,lJr/\q;s’,lJrXqCSTZJF)\qu’,lthq + 5A5,1+)\q;5’,l+/\’q(cs,l+)\qcs’,l+)\’q + CJJ‘F)\'LICSTHALI)] (7)
s,s"

AN
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where A\, X' = +£1 give the sign of the transferred angular momentum and

hs,l+)\q;5’,l+)\’q - [(q2 + 2)\‘]1)65,5’ + Uss’\/l\]st/]éx\,/\’ (8)
As,lJr/\q;s’,lJr/\’q = USS/VI\]SNS/é/\,*)\/' (9)

The energies and the composition of the elementary excitations are found solving the Bogoliubov-de Gennes
(BdAG) equations which correspond to solve the eigenvalue problem of a non-hermitian matrix n MV = EV

with M = [Z %

tion of 8 x 8 matrix which has been done for I = 0leading to a double degenerate spin and density modes
whose excitation energies are [12, 14, 15]

and n = diag(1l, —1).Inaquadruplet, the eigenvalue problem reduces to the diagonaliza-

1
Eq= \/E[CAA + g+ y(can + 55)? — 4(carcss — 2p)] (10a)
1
E, = \/E[CAA + cgg — \/(CAA + cgp)? — 4(cancss — cap) ] (10b)
where
can = q7(q* + 2UaaNy), s =q°(q° + 2UpsNg)  and  cap = 2q°UppVNa Ng. (10¢)

An inspection of the BAG eigenvalue problem shows that the ] = 0 and I = 0 cases differ by the presence ofa -
dependent shift +2¢/, [15]. The eigenvalue problem for the shifted eigenvalues E = Egi + 29I becomes
independent of /and equal to the | = 0 case. Therefore the excitation energies for = 0 are non degenerate and
equalto E; £ 2qgl and E; £ 2ql. Besides knowing thatin the / = 0 eigenvalue problem the eigenvectors with
positive norm have positive eigenvalues, from the above named properties we conclude that eigenvectors of the
I = 0 eigenvalue problem with positive shifted eigenvalues have positive norm. The doublet diagonalization
gives two zero energy modes which does not affect the stability of the QY states and will be ignored from now on.

2.1. Dynamical stability criterion

According to the Bogoliubov theory an equilibrium state is dynamically stable if all the excitation energies are
real. The existence of at least one complex energy is sufficient to guarantee the dynamical instability of the
corresponding equilibrium state. As E; < E,;we see that the energies of the quadruplet with magnitude of
transferred angular momentum q are real if E? is real and positive. From (10a) and (10b), this condition is
satisfied if

caa + cgg > 0, CAACBB — CﬁB >0 and (can + CBB)Z — 4(cancpg — CiB) > 0. (11)

The last inequality is always satisfied since it is equal to (cas — cgp)* + 4¢3 > 0. The other two inequalities of
(11) can be cast into the form

(D1) q* + UsaNy + UpgNg > 0

4 2
(D2) % + %(UAANA + UssNp) + NuNg(Upa Ugs — UZp) > 0 (12)

When these inequalities are satisfied the energies of this quadruplet are real. However we need to find the
conditions under which the energies of all quadruplets are real. It is easily seen that the polynomial in the
inequality (D1) is an increased function of g whereas the inequality in (D2) is an increased function of g in the
domain defined by (D1). Thus if they are satisfied for § = g, = 1 then theyare satisfied forallg > gin. We
conclude that the equilibrium state is dynamically stable if [12, 15]

(D1) 1+ UsaNsy + UggNg > 0
1 1
(D2) Yl E(UAANA + UppNp) + NaNp(Upa Ups — Uzp) > 0 (13)

Notice that these inequalities do not depend on the angular momentum per particle / of the QY state,
consequently the QY states are all dynamically stable or all unstable.

2.2. Energetic stability criterion
According to the Bogoliubov theory an equilibrium state is energetically stable if all the excitation energies are
real and positive. As E; > E,, the energies of a quadruplet q are real and positive if E; > 2q/ which implies that

can+ g — 8¢ >0 and  (caa — 49°1%)(caz — 49%%) — cip > 0. (14)
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The inequalities (14) can be cast into the form

(E1) q* — 41> + UsaNy + UpgNg > 0
24y 2
(4 ) ) 41

— 42
(E2) 7 (UaNa + UpsN) + NaNyp(Upa Upp — Upy) > 0 (15)
The analysis of these inequalities is analogous to the previous case. Therefore it follows that the equilibrium state
is energetically stable if [12, 15]

(E1) 1 — 4% + UsaNy + UggNg > 0

(1 — 4122 L= 412

(E2) (UsaNi + UggNp) + NyNp(Usa Ugs — U3p) > 0 (16)

Different from the dynamical stability conditions, the energetic stability conditions depend on the angular
momentum per particle [ of the QY state.

To give a preview of the kind of analysis that these inequalities will be subjected, consider the limit of equal
interaction strengths discussed in References [12, 15]. Taking Uyy = Upp = U,p = Ulin the inequalities (26), it
is easily seen that they are incompatible and consequently there is no energetically stable QY states with |I| > 1
[10, 12, 15]. On the other hand, from inequalities (13), we see that the QY states are dynamically stable
ifUN > —.

3. Stability of a selected QY state as a function of the interaction strengths U,z and U

In this section we discuss the properties of energetic stability of a selected QY state of angular momentum per
particle equal to /in a mixture of population imbalance equal to f, in function of the intra and interspecies
interaction strengths, u and uyp, where u = NUand usg = NUyp. As already pointed out we will not consider
thel = 0 QY state since it does not carry a current.

3.1. Dynamical stability
In terms of the system parameters the inequalities (13) take the form

(D1) u+1>0
2 2

1 f,
D) |u+ ——| —uly — P
1—f; 1—flj

>0 (17)

where f, and [, are the labels of the selected QY state. The next step is to determine the domains of these two
inequalities. The inequality (D2) is a second order polynomial in u of roots equal to

Uy = —ﬁ + Julg + az(fp) (18)
p

where a( f,) is the semi-major axis given by

o

a(f,) = q

(19)

The curves u = u are, respectively, the positive and negative branches of the hyperbola that arises when we take
the equal sign in (D2). The inequality (D2) can be expressed as (u — 1, )(u — u_) > Oandsince u, > u_ it
reducestou — u, > 0oru — u_ <0which splits (17) into two disjoint inequalities: (a) (D1) u > —1;(D2)
u—u,>0and (b)(D1)u > —1;(D2)u — u_ <0. Theboundaries of these inequalities are the branches of the
hyperbola referred above. Concerning the inequality (D1) we see that its domain is the semi-plane # > —1and
the boundary the straightline u = —1. To determine the intersection between (D1) and (D2) notice that the
inequalities # > —1andu — u_ <0 are incompatible, therefore the negative branch is discarded. On the other
hand the domain of 4 — u, > 0isimmersed in the domain of u > —1. Consequently their intersection is
u — u > Oitself. Thus, the dynamical phase boundary is the positive branch 4 = u, and the dynamically stable
domain is the internal region of this branch, u > u,.

The dynamical phase boundary has a parametric dependence on f,. When f,, = 0, this curve are the straight
linesu = —1 + |uyp|. For fp = 0, itisan increased function of |u,g| with a minimum at u, g = 0, the value of u

1

L+f°

at the minimum is equal to u,;, = — Atf, = 1, uisindependent of u,z and equal to the straight

lineuy = —~
=—
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3.2. Energetic stability

The dynamically stable domain can be split as the union of two disjoint domains: the energetically stable and
unstable domains. Besides we can define two limits: one when dynamical stability is equivalent to energetic
stability and the other when dynamical stability is equivalent to energetic instability. Having this in mind, to start
our discussion we write the inequalities (16) in the form

(E1) u—(4l;—1)>0
2 2 2
41 — 1 _ 4l — Df,
2 2
L —f} 1 —f}

E2) |u - (20)

A comparison between inequalities (17) and (20) shows that its analysis goes through identical steps. Therefore
we can assert that the energetic phase boundary is the positive branch of the hyperbola that arises when we take
the equal signin (E2), u = u, the energetically stable domain being the internal region of this branch, u > u
with

4l§ -1 > .
u, = - + Juig + a*(lp, ) (21)
P

where a(l,,, f,) is the semi-major axis given by

@y — Df,

= (22)

a(lp: fp) =

In figure 1 we present the stability diagramsin the usz X u plane for selected QY states. We select mixtures with
equal population (f, = 0),amoderate imbalance (f, = 0.50) and a rarefied minority component (f, = 0.98).
For each value of f, we take [, = 1,2, 3. The graphs in each panel display the domain of energetic stability (green
area), the domain of energetic or dynamical instability (red area) and the energetic phase boundary (orange
curve) which exhibits the stability of selected QY states as a function of the inter and intraspecies interaction
strengths. The figure 1 shows that energetic phase boundary depends on the parameters [, and f, through the
dependence of the hyperbola parameters on these quantities. Indeed for an equal population mixture f, = 0 the
energetic phase boundary are the straight lines 4 = 413 — 1 + |usp| which coincides with the asymptotes of the
hyperbolaat f, = 0. For fp = 0 the energetic phase boundary is an increased function of |u, 5| with minimum at
4y —1
1-f,
fp — 1limit (the third row in figure 1), shows that u is nearly independent of 11, s and equal to uin(l,,, f,) which

usp = 0and the value of u at the minimum equal to u,;, (1, fp ) = . An inspection of these graphs in the

coincides with f, , — 1 limit of (21). This consideration reveals that f, = 1isan asymptote of the energetic phase
boundary in the rarefied limit which implies that in the mixture we always have a seed of the minority
component.

To better our understanding of the rarefied limit, notice that in the previous discussion it was shown that in
this limit the energetic phase boundary is independent of 14 g. This suggests the interpretation that, in this limit,
we have a mixture of two non-mutually interacting gases: a majority component and a rarefied minority
component. Of course the condition of energetic stability of the mixture reduces to conditions of energetic

e 42 -1 4121 . .
stability for each component (16) (a) u > ;n and(b) u > ;n .Asn, < npwe see that (b) is automatically
‘A ‘B
. . . . .. . e e . S 1-
satisfied if (a) is satisfied. Therefore the condition of energetic stability is given by u > 41‘_ fl since ny = Tf*’

P

42 -1
Note that the boundary u = —*

coincides with the fp — 1limit of the curve u = u, inthe uyp X uplane.

p

Therefore we conclude that the stability of the mixture when fp — 1lis dominated by the stability of the
minority component.

The conclusion from all this is that energetically stable two-component QY states does not evolve
continuously to states of one component when f, — 1since we always have a seed of the minority component
[10, 12]. Asareinforcement of the exactness of this conclusion note thatat f, = 1, the inequalities (16) are
incompatible which means that f, = 1is not defined in the energetic stable domain [12].

4. Stability of the QY states at fixed dynamics

In this section, our task is mainly to determine for fixed values of wand uyp, u = upand usp = gy, the
energetically stable QY states. The intersection of the domains of (13) and (16) in the ! x fplane with the SPS
defines, respectively, the domains of dynamical and energetic stabilities in this sector of the I x fplane. In our

6
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Figure 1. Stability diagrams in the u45 X u plane for different values of population imbalance f,, (rows) and angular momentum per
particle [, (columns). Each pair of values [, and f,, selects a QY state. The green area is the region in the u45 x u plane where the QY
state is energetically stable, consequently, capable to sustain persistent currents. The red area is the domain of energetic or dynamical
instability. The orange curve is the energetic phase boundary which is the positive branch of an hyperbola. These graphs exhibit the
dependence of the phase boundary on the parameters f, and I,. Indeed when f, starts to increase, for a fixed value of I,,, the region
where the phase boundary is nearly constant increases and, in the fp — 1limit, uis a constant equal to tmin (I fp) = lp_} ! . Notice
P
thatu = u, equation (21), grows very fast when fp — 1

work we consider only [ = 0 states sinceal = 0 state does not carry a current which restricts our study of
stability to the SPS >, the |/| < 1regionisnot subject of our analysis.

4.1. Dynamical Stability
The inequalities (13) can be written as

D) up > —1
(D2) f2 < p(0) (23)
where
(up + 1)? — u? )
p p

Asp(0) > 1, theinequalities (23) are equivalent to

DD up > -1
D2)|fl < p0) (25)
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Figure 2. (a) Dynamically stable domain (blue area) in the SPS ;> ;. (b) Energetically stable domain (green area) in the SPS ;> ;. The
red area is the energetically unstable domain. The figures above are not in scale to facilitate the visualization of our procedure to
determine the stability of the mixture. The white area is the domain SPS ;.

The dynamically stable domain is given by the intersection of (25) with the SPS ;> ;. As p(0) > 1 we see that the
SPS > isimmersed in the domain of (D2). Therefore their intersection is the SPS ;> ; itself, consequently all
QY states with |/| > 1are dynamically stable. The dynamically stable domain is shown in figure 2(a).

4.2. Energetic stability
We write the inequalities (16) in the form

u, + 1
EDP2< 2~
(E1) 2
(E2) f*<p (26)
with
A2 —u, — 1) —
p() = P 27)

The first step is to determine the domain of (26) inthe  x fplane. f* is a positive quantity therefore p(l) cannot
be negative. Since p(l) is a quadratic polynomial in 7, its four roots are | = &I, and = +I_ where

1
Iy = \/Z(up + 1 % |uapyl) - (28)

Once we know the roots, the signs of p(I) are easily determined. We find that p(I) > 0intheintervals|l| < I_and
[I] > 1, withagapintheinterval I_ < || < I,. Thus (26) splits into two disjoint inequalities: (a) (E1) I? < MPTH,
(E2)f* < p(l), (E3) |]| > I, and (b) (E1) 12 < %‘ (E2)f* < p(D), (E3)|l] < L. Theinequalities (E3) are
respectively equivalent to 2 — Wl @ and 2 — 2L < - @ which show that (E1) and (E3) in (a)
are incompatible inequalities and it is discarded. On the other hand, in (b) the domain |/| < I_isimmersed in
the domain of (E1), therefore, the intersection s |I| < L_ itself which reduces (26) to

(E1D) || <
(E2) f* < p() (29)
Asp(l) > Ointheinterval |I| < I_, (E2)isequivalentto|f| < /p(l). The boundaries of this inequality are the

curves f = /p(l) and f = —./p(I) where the last one is the reflection with respect to the -axis of f = /p(]).
Intheinterval [l < I, f = /p(I) isadecreased function of |I| vanishing at the extrema, f(£/_) = 0, witha
maximum at/ = 0. The value at the maximum equal to /p(0) . Introducing the quantities

lag=1L and f. (D)= W (30)
the inequalities (29) can be written as
(ED) I < lerit
EDIf < faieD- (31

(31) are the inequalities whose intersection with SPS ;1 defines the domain of energetic stability. Its boundary
inthel x fplane s the closed curve

11 = faie D if [I| < leieand 0 < |f] < /p(0) (32)

whose domain is the internal region of this curve.
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Figure 3. Stability diagrams in the SPS | > for U, = 0.05, Uy, = 0.95U}, and for different values of N. We do not present the
boundaries for I < —1 since they are equal to the reflection with respect to the faxis of the boundaries for / > 1. The energetically
stable QY states are those whose corresponding points in SPS ;. ; arelocalized in the energetically stable domain (green area). An
inspection of the graphs for fixed values of N shows that f.;(]) is a decreased function of I whose largest value occur at/ = 1 vanishing
at] = I In the graphs we see that f.; (1) is weakly dependent of N and nearly equal to one. Concerning I, the graphs show that it is
aincreased function of N. As consequence, there is a value of N such that /;; = 1 and below this value of N all energetically stable QY
states disappear.

The energetically stable domain is defined by the intersection of (31) with the SPS ;- . Taking into account

that \/p(1/2) = landthat /p(l) isadecreased function of |/, we see that one is an upper bound of
fi > |I] = 1. Thus, the energetic phase boundary is the curve

11 = forie D if 1 < |l <leieand 0 < |f] < [y (D) (33)

with domain being the internal region of this curve. The stability diagram in the SPS ;>  is shown in figure 2(b).
The energetically stable QY states are those whose corresponding points in the SPS ;| are in the energetic stable
domain, figure 2(b).

To display the stability diagram in the SPS ;> ; we need to specify the values of 1, and u, .. The strength

ug = NUyy is proportional to N which is the total number of atoms in the mixture and Uy is the interaction
h?
. 2MR2 . . . .
unchanged we can change the values of u, by varying N. Taking roughly into account that in the experiments

the interaction strengths are nearly equal, we fix the values of the intra and interspecies interaction strengths
equalto U, = 0.05and Upp, = 0.95U,, in units of %ZRZ, to calculate the stability diagram for different values of
N, see figure 3. An inspection of these graphs shows that, for fixed values of N, f.;i(]) is a decreased function of |J|
where the size of the window of stability, 0 < | f| < f_; (1), islargestfor |/| = 1diminishing when |I|increases
and vanishingat|l| = I ;. These graphs also show that f_,;,(1) is weakly dependent on N and nearly equal to one.
Concerning /., these graphs reveals that /.;, is a increased function of N which is equal to Floor[8.4] = 8 at

N = 10°, panel (c),”. If N decreases, I.,;; also decreases and at N = 10*, which is one order of magnitude smaller
than the N = 10° mixture, l; is equal to Floor[3.0] = 3. This means that at this value of N, only QY states with
|| = 1canbe energetically stable. If we further lower the value of N, we can reach a point where all the
energetically stable QY states disappear which happenswhen N < 1.2 x 107, two orders of magnitude smaller
than the N = 10° mixture.

The Reference [5] is the first experimental work to study persistent currents in a two-component Bose gas
consisting of atoms of 87Rb in two different hyperfine states, F = 1,mp = land F = 1, mp = 0, confinedina
tight toroidal trap. In this work they select QY states with / = 3 and measure the stability of these states as a
function of the population imbalance. They found that there is an (/) such that only QY states with
[ f] > f.; (D) are stable. In other words, f.,;;() is alower bound of the possible values of | f|. They conclude saying
thatlarge | f|is fundamentally stable and small | f| fundamentally unstable. In our work we found just the
opposite, that s, there is f.;,() such that only QY states with | f| < f_,, (1) are energetically stable. In other words,
ferie(D) is an upper bound of the possible values of | f|. We conclude that small | f|is fundamentally energetically
stable and large | f| fundamentally energetically unstable, just the opposite of the conclusion of Reference [5].
Notice that our disagreement is of qualitative nature which is worse than quantitative one. We do not know how
to explain this disagreement. However we differ in what characterize the onset of the instability. In our work we

strength between atoms of species sand s’, in units of . Thus even when the states of the mixture are

2 Floor[x] is a function of a continuous variable x defined by Floor[x] = nifn < x < n 4 1 with nbeing the largest integer less or equal to x.
In our case, the prescription to pull out integer values from continuous values of /is [[] = Floor[l + %]
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are probing the stability of small oscillations of the mixture in the neighborhood of an equilibrium state. In other
words, we are probing the stability of its normal modes. In this case an unstable normal mode is responsible for
the onset of the instability. In the experimental determination of the stability we should follow the time
evolution of a state constructed by the action of a weak perturbation of the equilibrium state. On the other hand,
Reference [5] characterizes the onset of instability by the time of occurrence of the first phase slip, a criterion
whose physical content is completely different from ours. An experimental work that probes the stability of
small oscillations would settle these matters.

5. Conclusions

Our analysis of the stability diagram in the U,p x U plane reveals how the inter and intraspecies interaction
strengths affect the stability of a selected QY state specified by f,, and . In particular it shows that the dynamical
and energetic phase boundaries are positive branches of hyperbolas. In the dynamical case the hyperbola has

1 . . . . 42 -1
center at (0, — 1f2) and semi-major axes a = . = 7 whereas in the energetic case has center at (O, 1"1[2)
p p p
. ;= Df, . . - .
and semi-major axes a = 7 | The experimental confirmation of these predictions are in principle
P

feasible through the mechanism of Feshbach resonance. The stability in the rarefied limit (f, — 1) wasalso
examined. Our study revealed that, in this limit, the energetic phase boundary is independent of interspecies
interaction strength suggesting that we have a mixture of two non-mutually interacting gases: majority and
rarefied minority components. The conclusion from this analysis is that when fp — 1, energetically stable two-
component QY states does not evolve continuously to states of one component once there is always a seed of the
minority component. Besides we have shown that the stability is dominated by the minority component.

Equally well, for a fixed dynamics, the stability diagram in the SPS ;> determines the stability of the QY
states as a function of land f. As in the previous case we found analytic expressions for the dynamical and
energetic phase boundaries. An inspection of the stability diagram in the SPS ;. ; reveals that (a) All QY states are
dynamically stable; (b) Exist a I.; in the sense that there is none energetically stable QY state with || > I ;. In
other words, I is an upper bound of the possible values of |/| carried by an energetically stable QY state; (c) I is
anincreased function of u, — |uypy|, therefore it decreases when u,, — |up,| decreases, reaching the value
lerit = 1. This happens when u;, — |uap,| = 3. Below this value all the energetically stable QY states disappear;
(d) There is af.;(]) in the sense that, for a given /, only QY states with fin theinterval 0 < | f| < f ;. (I) are
energetically stable. As f;(]) is a decreased function of |1, its largest value occur at |/| = 1, diminishing when |/|
increases and vanishing when || = 1.

The experimental confirmation of these predictions requires the measurements of the stability of all QY
states which can be done. An example of this kind of measurement was performed in the experiment described
in Reference [5] where they select QY states with I = 3 and measure the stability as a function of the population
imbalance. In other words they go along the straight line/ = 3 in the SPS ;> ;. The conflict between our work
and Reference [5] about the nature of the critical value of population imbalance can be clarified by an
experiment designed to determine the stability of the normal modes of the mixture.

In summary, the analysis of the properties of the stability diagrams in these two planes shows its
straightforward physical interpretation and experimental relevance which emphasizes the importance of a
choice of planes guided by physical considerations.
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