
Journal of Physics Communications

PAPER • OPEN ACCESS

Mixture of two ultra cold bosonic atoms confined in
a ring: stability and persistent currents
To cite this article: E T D Matsushita and E J V de Passos 2018 J. Phys. Commun. 2 035023

 

View the article online for updates and enhancements.

You may also like
Microscopic study of ground state bands in
N = 45 and 46 isotones in mass region
A  70–80
Preeti Verma, Suram Singh, Arun Bharti et
al.

-

Microscopic study of electromagnetic
properties and band spectra of neutron
deficient 133,135,137Sm
Rakesh K. Pandit, R.K. Bhat, Rani Devi et
al.

-

Persistent currents in a two-component
Bose–Einstein condensate confined in a
ring potential
J Smyrnakis, M Magiropoulos, Nikolaos K
Efremidis et al.

-

This content was downloaded from IP address 143.107.135.170 on 10/02/2022 at 00:19

https://doi.org/10.1088/2399-6528/aab377
https://iopscience.iop.org/article/10.1088/1361-6471/ab6ee0
https://iopscience.iop.org/article/10.1088/1361-6471/ab6ee0
https://iopscience.iop.org/article/10.1088/1361-6471/ab6ee0
https://iopscience.iop.org/article/10.1088/1674-1137/43/12/124108
https://iopscience.iop.org/article/10.1088/1674-1137/43/12/124108
https://iopscience.iop.org/article/10.1088/1674-1137/43/12/124108
https://iopscience.iop.org/article/10.1088/1674-1137/43/12/124108
https://iopscience.iop.org/article/10.1088/1674-1137/43/12/124108
https://iopscience.iop.org/article/10.1088/0953-4075/47/21/215302
https://iopscience.iop.org/article/10.1088/0953-4075/47/21/215302
https://iopscience.iop.org/article/10.1088/0953-4075/47/21/215302


J. Phys. Commun. 2 (2018) 035023 https://doi.org/10.1088/2399-6528/aab377

PAPER

Mixture of two ultra cold bosonic atoms confined in a ring: stability
and persistent currents

ETDMatsushita1 andE JVdePassos
Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, C.E.P. 05389-970, São Paulo, São Paulo, Brazil
1 The author towhomany correspondence should be addressed

E-mail: edutoshio@uol.com.br and edutoshio@uol.com.br

Keywords: persistent currents, dynamical and energetic stabilities, ultra cold bosonic atoms in a ring, quantized yrast states

Abstract
In this article we investigate the stability of quantized yrast states in amixture of two distinguishable
equalmass bosonic atoms confined in a ring.We focus in the study of energetic stability since the
Bloch analysis and the Bogoliubov theory establishes that only energetically stable quantized yrast
states are capable of sustain a persistent current. In the framework of the Bogoliubov theory we study
the stability in two different cases chosen by physical considerations. In one casewe analyze how the
inter and intraspecies interaction strengths affect the stability of a selected quantized yrast state
specified by the angularmomentumper particle and the population imbalance. In the other case, for a
fixed dynamics specified by given values of interaction strengths, we determine the stability of
quantized yrast states as function of the angularmomentumper particle and the population
imbalance.We also examined the stability of themixture in the rarefied limit andwe found a critical
value of the population imbalancewhich gives the size of thewindowof energetic stability and a
critical value of angularmomentumper particle which is an upper bound of the possible values of
angularmomentumper particle carried by energetically stable quantized yrast states.

1. Introduction

The properties of superfluidity of a systemof ultra cold atoms confined in a ring has been extensively studied in
recent years, both experimentally [1–5] and theoretically [6–8]. The experiments of references [1–5]have
managed to create in the laboratory persistent currents in this system. At the theoretical side an analysis by Bloch
[9] concluded that the occurrence of persistent currents is related to the stability of yrast states. As the angular
momentum Lz commutes with the RingHamiltonianH the stationary states can be chosen to be simultaneous
eigenstates of Lz andH. The state with the lowest energy for a given L, where L is an eigenvalue of Lz, is referred to
as yrast state. According to Bloch only yrast states which are localminima of the yrast spectrum are capable of
sustain a persistent current. Variationalmethods [7, 8], the Bogoliubov theory (when applicable) [6] and a
truncated diagonalization of the RingHamiltonian [6] have been employed to calculate the yrast spectrum. The
main conclusion from these calculations was that only yrast states with an integer angularmomentumper
particle lL

N
= , with l 1, 2,= ¼∣ ∣ , is capable of sustain a persistent current. These states are known as quantized

yrast (QY) states [6].
A non trivial extension of the previous case is to investigate persistent currents in systemswhich are a

mixture of two ultra cold distinguishable atoms confined in a toruswhere the transverse component is so tight
that the system is effectively one dimensional, the ring [6, 12, 15]. IfA andB are the labels of the two species, we
have amixture ofNA atoms of specieA andNB atoms of specieB, the total number of atoms being equal to
N=NA+NB and the total angularmomentum equal to L=LA+LB . Atfixed value ofN the number of
atoms of each species can be parameterized as N f1A

N

2
= -( ) and N f1B

N

2
= +( )where f is the population

imbalance, f 1∣ ∣ . The atoms interact via a contact interactionwith strengthsUAA ,UBB andUAB. Quantitative
studies of this systemhave been done only by variationalmethods in the limit of equal [10–14] and unequal [15]
interaction strengths.
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In this article we investigate, in the framework of the Bogoliubov theory, the stability properties of current
carryingQY states. In our analysis we consider equal intraspecies interaction strengths,UAA=UBB≡U
different from interspecies interaction strengthUAB. In the Bogoliubov theory the determination of the stability
of an equilibrium state is based on the following criterion: (i) if at least one eigenvalue is complex the equilibrium
state is dynamically unstable; (ii) if the energies of the elementary excitations are all real the equilibrium state is
dynamically stable [18–20]; (iii) if the energies of the elementary excitations are all real and positive the
equilibrium state is energetically stable [15, 20, 21]. This criterion is based on the following property [22]: The
eigenvalues of the Bogoliubov-deGennes diagonalization problem can be complex or real.When the
eigenvalues are real they come in pairs of eigenvectors with opposite eigenvalues and opposite norm. To each of
these pairs we associate an elementary excitationwhose energy is the eigenvalue of the eigenvector with
positive norm.

Since an energetically stableQY state is a localminimumand taking into consideration the Bloch analysis [9]
we conclude that only the energetically stableQY states are capable of sustain a persistent current.We focus our
investigation in the study of the energetic stability of theQY states.We solved the Bogoliubov-deGennes
equations of themodel tofind analytic expressions for the energies of the elementary excitations written in terms
of the systemparameters (UAB,U, l, f ). Two of these parameters, l and f, specify theQY state and the other two,
UAB andU, specify the dynamics. Based on the stability criterionwe determine the inequalities that when
satisfied define the domain of dynamical and energetic stability in the four dimensional space of system
parameters [12, 15].

Nevertheless we found two cases where physical considerations reduce the study in the four dimensional
space to a study in two dimensional planes spanned by a pair of systemparameters with the other pair kept at
fixed values. One is whenwe are studying the stability of a selectedQY state. In this case wefix the values of l and f
equal to the labels of the selectedQY state which reduce the inequalities in the four dimensional space into
inequalities in theUAB×U plane. The stability diagram in this plane defines the domain of energetic stability
and displays the stability as a function ofUAB andU.Measurements to determine experimentally the stability
diagram is in principle feasible through themechanism of Feshbach resonance. In the other case we are studying
the stability atfixed dynamics. If we fix the values ofUAB andU, the inequalities in the four dimensional space
reduce into inequalities in the l×fplane. However, from the viewpoint of physics, f is a bounded quantity,
f 1∣ ∣ , and the physical values of f and l are restricted to the sector of the l×f plane, the sector of physical
significance (SPS), defined by inequalities l 0∣ ∣ and f 1∣ ∣ . Indeed in this workwe consider only l 0¹ states
since a l=0 state does not carry a current. This restricts the investigation to the region of the SPS defined by the
inequalities l 1∣ ∣ and f 1∣ ∣ . Fromnowonwe denoted this region as SPS l 1∣ ∣ . TheQY states appear whenwe
postulate a correspondence between points in the l 1∣ ∣ region of SPS of coordinates (l, f ) and theQY states
whose labels are these coordinates. This correspondence extends to the stability properties. The regime of
stability of aQY state is equal to the regime of stability of the corresponding point in the SPS l 1∣ ∣ . The domain of
dynamical and energetic stability in the SPS l 1∣ ∣ is determined by the intersection of the domains in the l×f
plane of the above named inequalities and the domain of SPS l 1∣ ∣ which displays the stability of theQY states as
function of l and f. The experimental determination of the stability diagram requires themeasurements of
stability of all QY states which, in principle, can be done.

We do not knowof anywork that determines the effect of the inter and intraspecies interaction strengths in
the stability ofQY states and its dependence on the angularmomentumper particle and population imbalance.
In the literature we canfind the theoretical work [15]which investigates the stability ofmixtures in a ring. Both
of us deduced inequalities that when satisfied define the domain of dynamical e energetic stabilities and study the
stability in two dimensional planes spanned by pairs of systemparameters.We differ from [15]not only by the
subject under investigation but also by theway that the inequalities are handled. Reference [15] ismainly
interested in establishing underwhat conditionsmixtures of twoBose condensates where the occupied states are
eigenvectors of the angularmomentumoperator with different eigenvalues, l lA B¹ , can be yrast states. On the
other hand, in this article we investigate the stability ofQY states where lA=lB.With respect to the inequalities,
it is where appears one of the novelties of ourwork, that is, the choice of two dimensional planes based on
physical considerations which led to descriptions with straightforward physical interpretation and experimental
relevance. Differently fromus, the choice of planes in [15] is not based on physical considerations which led to
descriptions lacking physical and experimentalmeaning.

This article is organized as follows: In section 2we describe the systemunder consideration andwe define the
states that will be identifiedwith theQY states compatible with the Bogoliubov theory.We discussed briefly our
method to solve the Bogoliubov-deGennes equations of themodel andwe found analytic expressions for the
energy of the elementary excitationswritten in terms of the systemparameters. Based on the stability criterion,
we determine the inequalities that when satisfied are the necessary and sufficient conditions forQY states to be
dynamically and energetically stable. In section 3we present the stability diagram in theUAB×U plane to show
that the energetic phase boundary is the positive branch of a hyperbola and how the inter and intraspecies
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interaction strengths affect the stability. The stability in the rarefied limit of theminority component was also
examined. In section 4we present the stability diagram in the SPS l 1∣ ∣ andwe investigate the consequences of the
occurrence of two critical quantities: fcrit(l) and lcrit. In section 5we present our conclusions.

2. Bogoliubov stability criterion

In our system, a two-component gas is confined in a tight toroidal trap of radiusR and cross-section S, the ring.
The two-component gas is amixture ofNA atoms of specieA andNB atoms of specieBwithN=NA+NB fixed.

The RingHamiltonian, in units of
MR2

2

2

 , in second quantization reads [12, 15]

H m a a U a a a a
1

2
1

s m
s m s m

s s m
ss s m s m s m s m m m m m

2
, ,

,
, , , , ,

i

1 2 3 4 1 2 3 4åå åå d= +
¢

¢ ¢ ¢ + + ( )† † †

where as,m (as m,
† ) is the bosonic annihilation (creation) operator of an atomof specie s=A,B in an eigenstate of

lzwith eigenvaluem andUss
Ra

S

4 ss=¢ ¢ with U2 ssp ¢ being the effective interaction strength between atoms of

species s and s¢ confined in a ring, in units of
MR2

2

2

 , where ass¢ is the respective s–wave scattering length [12, 15].
In amean field theory, a current carryingQY state is amixture of twoBose condensed states whereNA atoms

of specieA andNB atoms of specieB occupy the same eigenstate of lz of eigenvalue l andwave function
el

il1

2
f q =

p
q( ) and angularmomentum equal to L=NA l+NBl=Nlwith l 1∣ ∣ . In the Bogoliubov theory

theQY state is identifiedwith the vacuumof the shifted operators cs,m defined by as,m=cs,m+zs,lδm,lwhich is a
coherent state of the annihilation operator of atoms in the occupied states [16]. The c–numbers zs,l are
determined by imposing that the vacuum is an equilibrium state which requires that themean value of the
Hamiltonian in the vacuum [17],

H l z U z z
1

2
, 2

s
s l

s s
ss s l s l

2
,

2

,
,

2 2å åá ñ = +
¢

¢ ¢∣ ∣ ∣ ∣ ∣ ∣ ( )

is stationarywith respect to the variations of the zs,l subject to the number-conserving constraints N zs s l,
2= ∣ ∣ for

s=A,B leading to the equations

l N U N U a3A A AA B AB
2m = + + ( )

l N U N U b. 3B B BB A AB
2m = + + ( )

The equations (3a) and (3b) are invariant by a phase change of the zs,l and therefore they can be chosen real and
equal to z NA l A, = and z NB l B, = .

The next step is towrite theGrand-Hamiltonian H Ns s s mº - å as a normal order expansionwith
respect to the shifted operators, i i0

4 = å = , where the term i involves i shifted operators. The dynamics in
the neighborhood of an equilibrium state is described by an EffectiveHamiltonianwhich is the normal ordered
expansion of theGrand-Hamiltonian up to the second order in the shifted operators. Since 0 is a constant and

1 identically zero (stationary condition) the EffectiveHamiltonian reduces to the quadratic term 2 given by

q ql U N N c c

U N N c c c c

2

1

2
4

q s s
s s ss s s s l q s l q

q s s
ss s s s l q s l q s l q s l q

2
,

2
, , ,

,
, , , ,

 åå

åå

d= + +

+ +

¢
¢ ¢ ¢ + ¢ +

¢
¢ ¢ + ¢ - ¢ - +

[( ) ]

( ) ( )

†

† †

withm=l+qwhere q is the transferred angularmomentum (relative angularmomentum). An inspection of
the coupling structure of (4) shows that only pairs (l±q)A and (l±q)B are coupledwhich allow us to express

2 as direct sumof a doublet and quadruplets specified by themagnitude of the transferred angularmomentum
q,

5
q

q
2 2

0

0
2  å= +

>

( )( ) ( )

with

h c c c c c c
1

2
6

s s
s l s l s l s l s l s l s l s l s l s l2

0

,
, ; , , , , ; , , , , , å= + D +

¢
¢ ¢ ¢ ¢ ¢( ) ( )( ) † † †

h c c c c c c
1

2
7q

s s
s l q s l q s l q s l q s l q s l q s l q s l q s l q s l q2

,
,

, ; , , , , ; , , , , , å= + D +

l l

l l l l l l l l l l
¢
¢

+ ¢ + ¢ + ¢ + ¢ + ¢ + ¢ + ¢ + ¢ ¢ + ¢ +
⎡
⎣⎢

⎤
⎦⎥( ) ( )( ) † † †
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where , 1l l¢ =  give the sign of the transferred angularmomentum and

h q ql U N N2 8s l q s l q s s ss s s, ; ,
2

, ,l d d= + +l l l l+ ¢ + ¢ ¢ ¢ ¢ ¢[( ) ] ( )

U N N . 9s l q s l q ss s s, ; , ,dD =l l l l+ ¢ + ¢ ¢ ¢ - ¢ ( )

The energies and the composition of the elementary excitations are found solving the Bogoliubov-deGennes
(BdG) equationswhich correspond to solve the eigenvalue problemof a non-hermitianmatrix E h =

with h
h

 = D
D

⎡
⎣⎢

⎤
⎦⎥ and η=diag(1,−1). In a quadruplet, the eigenvalue problem reduces to the diagonaliza-

tion of 8×8matrix which has been done for l=0 leading to a double degenerate spin and densitymodes
whose excitation energies are [12, 14, 15]

E c c c c c c c a
1

2
4 10d AA BB AA BB AA BB AB

2 2= + + + - -[ ( ) ( ) ] ( )

E c c c c c c c b
1

2
4 10s AA BB AA BB AA BB AB

2 2= + - + - -[ ( ) ( ) ] ( )

where

c q q U N c q q U N c q U N N c2 , 2 and 2 . 10AA AA A BB BB B AB AB A B
2 2 2 2 2º + º + º( ) ( ) ( )

An inspection of the BdG eigenvalue problem shows that the l=0 and l 0¹ cases differ by the presence of a l–
dependent shift ql2 , [15]. The eigenvalue problem for the shifted eigenvalues E E ql2shift=  becomes
independent of l and equal to the l=0 case. Therefore the excitation energies for l 0¹ are non degenerate and
equal to E ql2d  and E ql2s  . Besides knowing that in the l=0 eigenvalue problem the eigenvectors with
positive normhave positive eigenvalues, from the above named properties we conclude that eigenvectors of the
l 0¹ eigenvalue problemwith positive shifted eigenvalues have positive norm. The doublet diagonalization
gives two zero energymodes which does not affect the stability of theQY states andwill be ignored fromnowon.

2.1.Dynamical stability criterion
According to the Bogoliubov theory an equilibrium state is dynamically stable if all the excitation energies are
real. The existence of at least one complex energy is sufficient to guarantee the dynamical instability of the
corresponding equilibrium state. AsEs<Edwe see that the energies of the quadruplet withmagnitude of
transferred angularmomentum q are real if Es

2 is real and positive. From (10a) and (10b), this condition is
satisfied if

c c c c c c c c c c0, 0 and 4 0. 11AA BB AA BB AB AA BB AA BB AB
2 2 2+ > - > + - - >( ) ( ) ( )

The last inequality is always satisfied since it is equal to c c c4 0AA BB AB
2 2- + >( ) . The other two inequalities of

(11) can be cast into the form

D q U N U N

D
q q

U N U N N N U U U

1 0

2
4 2

0 12

AA A BB B

AA A BB B A B AA BB AB

2

4 2
2

+ + >

+ + + - >

( )

( ) ( ) ( ) ( )

When these inequalities are satisfied the energies of this quadruplet are real. However we need tofind the
conditions under which the energies of all quadruplets are real. It is easily seen that the polynomial in the
inequality (D1) is an increased function of qwhereas the inequality in (D2) is an increased function of q in the
domain defined by (D1). Thus if they are satisfied for q=qmin=1 then they are satisfied for all q>qmin.We
conclude that the equilibrium state is dynamically stable if [12, 15]

D U N U N

D U N U N N N U U U

1 1 0

2
1

4

1

2
0 13

AA A BB B

AA A BB B A B AA BB AB
2

+ + >

+ + + - >

( )

( ) ( ) ( ) ( )

Notice that these inequalities do not depend on the angularmomentumper particle l of theQY state,
consequently theQY states are all dynamically stable or all unstable.

2.2. Energetic stability criterion
According to the Bogoliubov theory an equilibrium state is energetically stable if all the excitation energies are
real and positive. AsEd>Es, the energies of a quadruplet q are real and positive if E ql2s > which implies that

c c q l c q l c q l c8 0 and 4 4 0. 14AA BB AA BB AB
2 2 2 2 2 2 2+ - > - - - >( )( ) ( )
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The inequalities (14) can be cast into the form

E q l U N U N

E
q l q l

U N U N N N U U U

1 4 0

2
4

4

4

2
0 15

AA A BB B

AA A BB B A B AA BB AB

2 2

2 2 2 2 2
2

- + + >
-

+
-

+ + - >

( )

( ) ( ) ( ) ( ) ( )

The analysis of these inequalities is analogous to the previous case. Therefore it follows that the equilibrium state
is energetically stable if [12, 15]

E l U N U N

E
l l

U N U N N N U U U

1 1 4 0

2
1 4

4

1 4

2
0 16

AA A BB B

AA A BB B A B AA BB AB

2

2 2 2
2

- + + >
-

+
-

+ + - >

( )

( ) ( ) ( ) ( ) ( )

Different from the dynamical stability conditions, the energetic stability conditions depend on the angular
momentumper particle l of theQY state.

To give a preview of the kind of analysis that these inequalities will be subjected, consider the limit of equal
interaction strengths discussed in References [12, 15]. TakingUAA=UBB=UAB=U in the inequalities (26), it
is easily seen that they are incompatible and consequently there is no energetically stableQY states with l 1∣ ∣
[10, 12, 15]. On the other hand, from inequalities (13), we see that theQY states are dynamically stable
ifUN 1

2
> - .

3. Stability of a selectedQY state as a function of the interaction strengthsUAB andU

In this sectionwe discuss the properties of energetic stability of a selectedQY state of angularmomentumper
particle equal to l in amixture of population imbalance equal to f, in function of the intra and interspecies
interaction strengths, u and uAB, where u≡NU and uAB≡NUAB. As already pointed outwewill not consider
the l=0QY state since it does not carry a current.

3.1.Dynamical stability
In terms of the systemparameters the inequalities (13) take the form

D u

D u
f

u
f

f

1 1 0

2
1

1 1
0 17AB

p
2

2

2 p

p
2

2

+ >

+
-

- -
-

>
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( )

( ) ( )

where fp and lp are the labels of the selectedQY state. The next step is to determine the domains of these two
inequalities. The inequality (D2) is a second order polynomial in u of roots equal to

u
f

u a f
1

1
18AB

p
2

2 2
p= -

-
 + ( ) ( )

where a( fp) is the semi-major axis given by

a f
f

f1
. 19p

p

p
2

=
-

( ) ( )

The curves u=u± are, respectively, the positive and negative branches of the hyperbola that arises whenwe take
the equal sign in (D2). The inequality (D2) can be expressed as (u− u+)(u− u−)>0 and since u+>u− it
reduces to u− u+>0 or u− u−<0which splits (17) into two disjoint inequalities: (a) (D1) u>−1; (D2)
u− u+>0 and (b) (D1) u>−1; (D2)u− u−<0. The boundaries of these inequalities are the branches of the
hyperbola referred above. Concerning the inequality (D1)we see that its domain is the semi-plane u>−1 and
the boundary the straight line u=−1. To determine the intersection between (D1) and (D2)notice that the
inequalities u>−1 and u− u−<0 are incompatible, therefore the negative branch is discarded.On the other
hand the domain of u− u+>0 is immersed in the domain of u>−1. Consequently their intersection is
u− u+>0 itself. Thus, the dynamical phase boundary is the positive branch u=u+ and the dynamically stable
domain is the internal region of this branch, u>u+.

The dynamical phase boundary has a parametric dependence on fp.When fp=0, this curve are the straight
lines u u1 AB= - + ∣ ∣. For f 0p ¹ , it is an increased function of uAB∣ ∣with aminimumat uAB=0, the value of u

at theminimum is equal to u
fmin

1

1 p

= -
+

. At fp=1, u is independent of uAB and equal to the straight

line u 1

2
= - .
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3.2. Energetic stability
The dynamically stable domain can be split as the union of two disjoint domains: the energetically stable and
unstable domains. Besides we can define two limits: onewhen dynamical stability is equivalent to energetic
stability and the other when dynamical stability is equivalent to energetic instability. Having this inmind, to start
our discussionwewrite the inequalities (16) in the form

E u l

E u
l

f
u
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A comparison between inequalities (17) and (20) shows that its analysis goes through identical steps. Therefore
we can assert that the energetic phase boundary is the positive branch of the hyperbola that arises whenwe take
the equal sign in (E2), u=u+, the energetically stable domain being the internal region of this branch, u>u+
with

u
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f
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where a(lp, fp) is the semi-major axis given by
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Infigure 1we present the stability diagrams in the uAB×u plane for selectedQY states.We selectmixtures with
equal population ( fp=0), amoderate imbalance ( fp=0.50) and a rarefiedminority component ( fp=0.98).
For each value of fp we take lp=1, 2, 3. The graphs in each panel display the domain of energetic stability (green
area), the domain of energetic or dynamical instability (red area) and the energetic phase boundary (orange
curve)which exhibits the stability of selectedQY states as a function of the inter and intraspecies interaction
strengths. Thefigure 1 shows that energetic phase boundary depends on the parameters lp and fp through the
dependence of the hyperbola parameters on these quantities. Indeed for an equal populationmixture fp=0 the
energetic phase boundary are the straight lines u l u4 1 ABp

2= - + ∣ ∣which coincides with the asymptotes of the
hyperbola at fp=0. For f 0p ¹ the energetic phase boundary is an increased function of uAB∣ ∣withminimumat

uAB=0 and the value of u at theminimumequal to u l f,
l

fmin p p

4 1

1

p
2

p

=
-

-
( ) . An inspection of these graphs in the

f 1p  limit (the third row infigure 1), shows that u is nearly independent of uAB and equal to umin(lp, fp)which
coincides with f 1p  limit of (21). This consideration reveals that fp=1 is an asymptote of the energetic phase
boundary in the rarefied limit which implies that in themixture we always have a seed of theminority
component.

To better our understanding of the rarefied limit, notice that in the previous discussion it was shown that in
this limit the energetic phase boundary is independent of uAB. This suggests the interpretation that, in this limit,
we have amixture of two non-mutually interacting gases: amajority component and a rarefiedminority
component. Of course the condition of energetic stability of themixture reduces to conditions of energetic

stability for each component (16) (a) u
l

n
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>
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and (b) u
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. As nA=nBwe see that (b) is automatically

satisfied if (a) is satisfied. Therefore the condition of energetic stability is given by u
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Note that the boundary u
l

f

4 1

1

p
2

p

=
-

-
coincides with the f 1p  limit of the curve u=u+ in the uAB×u plane.

Thereforewe conclude that the stability of themixturewhen f 1p  is dominated by the stability of the

minority component.
The conclusion from all this is that energetically stable two-componentQY states does not evolve

continuously to states of one componentwhen f 1p  sincewe always have a seed of theminority component

[10, 12]. As a reinforcement of the exactness of this conclusion note that at fp=1, the inequalities (16) are
incompatible whichmeans that fp=1 is not defined in the energetic stable domain [12].

4. Stability of theQY states atfixed dynamics

In this section, our task ismainly to determine forfixed values of u and uAB, u=up and uAB=uABp, the
energetically stableQY states. The intersection of the domains of (13) and (16) in the l×f planewith the SPS
defines, respectively, the domains of dynamical and energetic stabilities in this sector of the l×f plane. In our
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workwe consider only l 0¹ states since a l=0 state does not carry a current which restricts our study of
stability to the SPS l 1∣ ∣ , the l 1<∣ ∣ region is not subject of our analysis.

4.1.Dynamical Stability
The inequalities (13) can bewritten as

D u

D f p

1 1
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As p(0)>1, the inequalities (23) are equivalent to

D u

D f p

1 1

2 0 25

p > -

<

( )

( ) ∣ ∣ ( ) ( )

Figure 1. Stability diagrams in the uAB×uplane for different values of population imbalance fp (rows) and angularmomentumper
particle lp (columns). Each pair of values lp and fp selects aQY state. The green area is the region in the uAB×u planewhere theQY
state is energetically stable, consequently, capable to sustain persistent currents. The red area is the domain of energetic or dynamical
instability. The orange curve is the energetic phase boundarywhich is the positive branch of an hyperbola. These graphs exhibit the
dependence of the phase boundary on the parameters fp and lp. Indeedwhen fp starts to increase, for a fixed value of lp, the region

where the phase boundary is nearly constant increases and, in the f 1p  limit, u is a constant equal to u l f,
l

fmin p p

4 1

1

p
2

p
=

-

-
( ) . Notice

that u=u+, equation (21), grows very fast when f 1p  .
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The dynamically stable domain is given by the intersection of (25)with the SPS l 1∣ ∣ . As p(0)>1we see that the
SPS l 1∣ ∣ is immersed in the domain of (D2). Therefore their intersection is the SPS l 1∣ ∣ itself, consequently all
QY states with l 1∣ ∣ are dynamically stable. The dynamically stable domain is shown infigure 2(a).

4.2. Energetic stability
Wewrite the inequalities (16) in the form

E l
u

E f p l
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4
2 26

2 p
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u u
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Thefirst step is to determine the domain of (26) in the l×f plane. f 2 is a positive quantity therefore p(l) cannot
be negative. Since p(l) is a quadratic polynomial in l2, its four roots are l=±l+ and l=±l−where

l u u
1

4
1 . 28ABp p= +  ( ∣ ∣) ( )

Oncewe know the roots, the signs of p(l) are easily determined.Wefind that p(l)>0 in the intervals l l< -∣ ∣ and

l l> +∣ ∣ with a gap in the interval l l l< <- +∣ ∣ . Thus (26) splits into two disjoint inequalities: (a) (E1) l
u2 1

4

p<
+

,

(E2) f 2<p(l), (E3) l l> +∣ ∣ and (b) (E1) l
u2 1

4

p<
+

, (E2) f 2<p(l), (E3) l l< -∣ ∣ . The inequalities (E3) are

respectively equivalent to l
u u2 1

4 4

ABp p- >
+ ∣ ∣

and l
u u2 1

4 4

ABp p- < -
+ ∣ ∣

which show that (E1) and (E3) in (a)
are incompatible inequalities and it is discarded. On the other hand, in (b) the domain l l< -∣ ∣ is immersed in
the domain of (E1), therefore, the intersection is l l< -∣ ∣ itself which reduces (26) to

E l l

E f p l

1

2 292

<
<

-( ) ∣ ∣
( ) ( ) ( )

As p(l)>0 in the interval l l< -∣ ∣ , (E2) is equivalent to f p l<∣ ∣ ( ) . The boundaries of this inequality are the
curves f p l= ( ) and f p l= - ( ) where the last one is the reflectionwith respect to the l–axis of f p l= ( ) .
In the interval l l f p l,< =-∣ ∣ ( ) is a decreased function of l∣ ∣vanishing at the extrema, f (±l−)=0, with a
maximumat l=0. The value at themaximum equal to p 0( ) . Introducing the quantities

l l f l p land 30crit critº º- ( ) ( ) ( )

the inequalities (29) can bewritten as

E l l

E f f l

1

2 . 31
crit

crit

<
<

( ) ∣ ∣
( ) ∣ ∣ ( ) ( )

(31) are the inequalities whose intersectionwith SPS l 1∣ ∣ defines the domain of energetic stability. Its boundary
in the l×f plane is the closed curve

f f l l l f pif and 0 0 32crit crit = < <∣ ∣ ( ) ∣ ∣ ∣ ∣ ( ) ( )

whose domain is the internal region of this curve.

Figure 2. (a)Dynamically stable domain (blue area) in the SPS l 1∣ ∣ . (b)Energetically stable domain (green area) in the SPS l 1∣ ∣ . The
red area is the energetically unstable domain. The figures above are not in scale to facilitate the visualization of our procedure to
determine the stability of themixture. Thewhite area is the domain SPS l 1<∣ ∣ .
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The energetically stable domain is defined by the intersection of (31)with the SPS l 1∣ ∣ . Taking into account

that p 1 2 1=( ) and that p l( ) is a decreased function of l∣ ∣, we see that one is an upper bound of
f l l, 1crit ( ) ∣ ∣ . Thus, the energetic phase boundary is the curve

f f l l l f fif 1 and 0 1 33crit crit crit = < <∣ ∣ ( ) ∣ ∣ ∣ ∣ ( ) ( )

with domain being the internal region of this curve. The stability diagram in the SPS l 1∣ ∣ is shown infigure 2(b).
The energetically stableQY states are thosewhose corresponding points in the SPS l 1∣ ∣ are in the energetic stable
domain, figure 2(b).

To display the stability diagram in the SPS l 1∣ ∣ weneed to specify the values of up and uABp. The strength
u NUss ss=¢ ¢ is proportional toNwhich is the total number of atoms in themixture andUss¢ is the interaction

strength between atoms of species s and s¢, in units of
MR2

2

2

 . Thus evenwhen the states of themixture are

unchangedwe can change the values of uss¢ by varyingN. Taking roughly into account that in the experiments
the interaction strengths are nearly equal, wefix the values of the intra and interspecies interaction strengths

equal toUp=0.05 andU U0.95ABp p= , in units of
MR2

2

2

 , to calculate the stability diagram for different values of

N, see figure 3. An inspection of these graphs shows that, forfixed values ofN, fcrit(l) is a decreased function of l∣ ∣
where the size of thewindowof stability, f f l0 crit <∣ ∣ ( ), is largest for l 1=∣ ∣ diminishingwhen l∣ ∣ increases
and vanishing at l lcrit=∣ ∣ . These graphs also show that fcrit(1) is weakly dependent onN and nearly equal to one.
Concerning lcrit, these graphs reveals that lcrit is a increased function ofNwhich is equal to Floor[8.4]=8 at
N=105, panel (c),2. IfN decreases, lcrit also decreases and atN=104, which is one order ofmagnitude smaller
than theN=105mixture, lcrit is equal to Floor[3.0]=3. Thismeans that at this value ofN, onlyQY states with
l 1=∣ ∣ can be energetically stable. If we further lower the value ofN, we can reach a point where all the
energetically stableQY states disappear which happenswhenN<1.2×103, two orders ofmagnitude smaller
than theN=105mixture.

The Reference [5] is the first experimental work to study persistent currents in a two-component Bose gas
consisting of atoms of 87Rb in two different hyperfine states, F=1,mF=1 and F=1,mF=0, confined in a
tight toroidal trap. In this work they selectQY states with l=3 andmeasure the stability of these states as a
function of the population imbalance. They found that there is an fcrit(l) such that onlyQY states with
f f lcrit>∣ ∣ ( ) are stable. In other words, fcrit(l) is a lower bound of the possible values of f∣ ∣. They conclude saying
that large f∣ ∣ is fundamentally stable and small f∣ ∣ fundamentally unstable. In ourworkwe found just the
opposite, that is, there is fcrit(l) such that onlyQY states with f f lcrit<∣ ∣ ( ) are energetically stable. In otherwords,
fcrit(l) is an upper bound of the possible values of f∣ ∣.We conclude that small f∣ ∣ is fundamentally energetically
stable and large f∣ ∣ fundamentally energetically unstable, just the opposite of the conclusion of Reference [5].
Notice that our disagreement is of qualitative naturewhich is worse than quantitative one.We do not knowhow
to explain this disagreement. However we differ inwhat characterize the onset of the instability. In ourworkwe

Figure 3. Stability diagrams in the SPS l 1∣ ∣ forU U U0.05, 0.95ABp p p= = and for different values ofN.We do not present the
boundaries for l<−1 since they are equal to the reflectionwith respect to the f axis of the boundaries for l>1. The energetically
stableQY states are thosewhose corresponding points in SPS l 1∣ ∣ are localized in the energetically stable domain (green area). An
inspection of the graphs forfixed values ofN shows that fcrit(l) is a decreased function of lwhose largest value occur at l=1 vanishing
at l=lcrit. In the graphswe see that fcrit(1) is weakly dependent ofN and nearly equal to one. Concerning lcrit, the graphs show that it is
a increased function ofN. As consequence, there is a value ofN such that lcrit=1 and below this value ofN all energetically stableQY
states disappear.

2
Floor[x] is a function of a continuous variable x defined by Floor[x]=n if n�x<n+1with n being the largest integer less or equal to x.

In our case, the prescription to pull out integer values from continuous values of l is l lFloor 1

2
= +⎡⎣ ⎤⎦[ ] .
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are probing the stability of small oscillations of themixture in the neighborhood of an equilibrium state. In other
words, we are probing the stability of its normalmodes. In this case an unstable normalmode is responsible for
the onset of the instability. In the experimental determination of the stability we should follow the time
evolution of a state constructed by the action of aweak perturbation of the equilibrium state. On the other hand,
Reference [5] characterizes the onset of instability by the time of occurrence of the first phase slip, a criterion
whose physical content is completely different fromours. An experimental work that probes the stability of
small oscillations would settle thesematters.

5. Conclusions

Our analysis of the stability diagram in theUAB×U plane reveals how the inter and intraspecies interaction
strengths affect the stability of a selectedQY state specified by fp and lp. In particular it shows that the dynamical
and energetic phase boundaries are positive branches of hyperbolas. In the dynamical case the hyperbola has

center at 0,
f

1

1 p
2-

-
⎜ ⎟⎛
⎝

⎞
⎠ and semi-major axes a

f

f1

p

p
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-
whereas in the energetic case has center at 0,

l

f

4 1

1

p
2

p
2

-
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⎞
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l f

f

4 1

1

p
2

p

p
2=

-

-

( )
. The experimental confirmation of these predictions are in principle

feasible through themechanismof Feshbach resonance. The stability in the rarefied limit ( f 1p  )was also
examined.Our study revealed that, in this limit, the energetic phase boundary is independent of interspecies
interaction strength suggesting thatwe have amixture of two non-mutually interacting gases:majority and
rarefiedminority components. The conclusion from this analysis is that when f 1p  , energetically stable two-

componentQY states does not evolve continuously to states of one component once there is always a seed of the
minority component. Besideswe have shown that the stability is dominated by theminority component.

Equally well, for afixed dynamics, the stability diagram in the SPS l 1∣ ∣ determines the stability of theQY
states as a function of l and f. As in the previous case we found analytic expressions for the dynamical and
energetic phase boundaries. An inspection of the stability diagram in the SPS l 1∣ ∣ reveals that (a)AllQY states are
dynamically stable; (b)Exist a lcrit in the sense that there is none energetically stableQY state with l lcrit>∣ ∣ . In
otherwords, lcrit is an upper bound of the possible values of l∣ ∣carried by an energetically stableQY state; (c) lcrit is
an increased function of u uABp p- ∣ ∣, therefore it decreases when u uABp p- ∣ ∣decreases, reaching the value
lcrit=1. This happenswhen u u 3ABp p- =∣ ∣ . Below this value all the energetically stableQY states disappear;
(d)There is a fcrit(l) in the sense that, for a given l, onlyQY states with f in the interval f f l0 crit <∣ ∣ ( ) are
energetically stable. As fcrit(l) is a decreased function of l∣ ∣, its largest value occur at l 1=∣ ∣ , diminishingwhen l∣ ∣
increases and vanishingwhen l lcrit=∣ ∣ .

The experimental confirmation of these predictions requires themeasurements of the stability of all QY
states which can be done. An example of this kind ofmeasurement was performed in the experiment described
in Reference [5]where they selectQY states with l=3 andmeasure the stability as a function of the population
imbalance. In otherwords they go along the straight line l=3 in the SPS l 1∣ ∣ . The conflict between ourwork
andReference [5] about the nature of the critical value of population imbalance can be clarified by an
experiment designed to determine the stability of the normalmodes of themixture.

In summary, the analysis of the properties of the stability diagrams in these two planes shows its
straightforward physical interpretation and experimental relevancewhich emphasizes the importance of a
choice of planes guided by physical considerations.

ORCID iDs

ETDMatsushita https://orcid.org/0000-0003-3154-7693

References

[1] RamanathanA,Wright KC,Muniz S R, ZelanM,HillWT III, LobbC J,HelmersonK, PhillipsWDandCampbell GK2011 Phys. Rev.
Lett. 106 130401

[2] Moulder S, Beattie S, Smith RP, TammuzNandHadzibabic Z 2012Phys. Rev.A 86 013629
[3] Wright KC, Blakestad RB, LobbC J, PhillipsWDandCampbell GK 2013Phys. Rev. Lett. 110 025302
[4] MurrayN, KrygierM, EdwardsM,Wright KC,Campbell GK andClarkCW2013Phys. Rev.A 88 053615
[5] Beattie S,Moulder S, Fletcher R J andHadzibabic Z 2013Phys. Rev. Lett. 110 025301
[6] KanamotoR, SaitoH andUedaM2003Phys. Rev.A 68 043619
[7] Kavoulakis GM2003Phys. Rev.A 67 011601(R)
[8] Kavoulakis GM2004Phys. Rev.A 69 023613
[9] Bloch F 1973Phys. Rev.A 7 2187
[10] Smyrnakis J, Bargi S, Kavoulakis GM,MagiropoulosM,KärkkäinenK andReimann SM2009 Phys. Rev. Lett. 103 100404

10

J. Phys. Commun. 2 (2018) 035023 ETDMatsushita and E JV de Passos

https://orcid.org/0000-0003-3154-7693
https://orcid.org/0000-0003-3154-7693
https://orcid.org/0000-0003-3154-7693
https://orcid.org/0000-0003-3154-7693
https://doi.org/10.1103/PhysRevLett.106.130401
https://doi.org/10.1103/PhysRevA.86.013629
https://doi.org/10.1103/PhysRevLett.110.025302
https://doi.org/10.1103/PhysRevA.88.053615
https://doi.org/10.1103/PhysRevLett.110.025301
https://doi.org/10.1103/PhysRevA.68.043619
https://doi.org/10.1103/PhysRevA.67.011601
https://doi.org/10.1103/PhysRevA.69.023613
https://doi.org/10.1103/PhysRevA.7.2187
https://doi.org/10.1103/PhysRevLett.103.100404


[11] WuZandZaremba E 2013Phys. Rev.A 88 063640
[12] AnoshkinK,WuZ andZaremba E 2013Phys. Rev.A 88 013609
[13] Smyrnakis J,MagiropoulosM, Efremidis NK andKavoulakis GM2014 J. Phys. B: At.Mol. Opt. Phys. 47 215302
[14] AbadM, Sartori A, Finazzi S andRecati A 2014Phys. Rev.A 89 053602
[15] WuZ, Zaremba E, Smyrnakis J,MagiropoulosM, Efremidis NK andKavoulakis GM2015Phys. Rev.A 92 033630
[16] Tommasini P, de Passos E J V, de Toledo Piza A FR,HusseinMS andTimmermans E 2003Phys. Rev.A 67 023606
[17] Fetter A L 1999 in Bose–Einstein condensation in atomic gasesProc. of the International School of Physics Enrico Fermi, Course CXL ed

M Inguscio, S Stringari andCEWieman (Amsterdam: IOSPress) p 201
[18] WuBandNiuQ2001Phys. Rev.A 64 061603
[19] WuBandNiuQ2003New. J. Phys. 5 104
[20] ParaoanuG- S 2003Phys. Rev.A 67 023607
[21] Baharian S andBaymG2013Phys. Rev.A 87 013619
[22] Blaizot J P andRipkaG1986QuantumTheory of Finite Systems (Cambridge,MA:MITPress)

11

J. Phys. Commun. 2 (2018) 035023 ETDMatsushita and E JV de Passos

https://doi.org/10.1103/PhysRevA.88.063640
https://doi.org/10.1103/PhysRevA.88.013609
https://doi.org/10.1088/0953-4075/47/21/215302
https://doi.org/10.1103/PhysRevA.89.053602
https://doi.org/10.1103/PhysRevA.92.033630
https://doi.org/10.1103/PhysRevA.67.023606
https://doi.org/10.1103/PhysRevA.64.061603
https://doi.org/10.1088/1367-2630/5/1/104
https://doi.org/10.1103/PhysRevA.67.023607
https://doi.org/10.1103/PhysRevA.87.013619

	1. Introduction
	2. Bogoliubov stability criterion
	2.1. Dynamical stability criterion
	2.2. Energetic stability criterion

	3. Stability of a selected QY state as a function of the interaction strengths UAB and U
	3.1. Dynamical stability
	3.2. Energetic stability

	4. Stability of the QY states at fixed dynamics
	4.1. Dynamical Stability
	4.2. Energetic stability

	5. Conclusions
	References



