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Neste trabalho obtém-se a equação de um sistema pendular com excitação paramétrica vertical do suporte e 

analisa-se a sua estabilidade a partir da variação da amplitude de excitação. Apresentam-se resultados de 

simulação para diferentes faixas de valores da amplitude de excitação externa. As técnicas utilizadas para a 

análise de estabilidade são o histórico no tempo, plano de fase, mapa de Poincaré, expoente de Lyapunov, 

diagrama de bifurcação e mapa de estabilidade via multiplicadores de Floquet. 
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1. INTRODUÇÃO 

Atualmente, sabe-se que as duas características principais dos sistemas caóticos são a dependência sensitiva às 

condições iniciais e o confinamento das soluções do sistema a uma região do espaço de fase. Anteriormente, as 

instabilidades que apareciam em sistemas dinâmicos eram consideradas como sendo obra do acaso ou fruto de 

ruídos externos que não podiam ser evitados, e seu estudo só era realizado após várias hipóteses 

simplificadoras, de forma a eliminar a instabilidade [1]-[4]. Com o atual desenvolvimento da informática, pode­

se trabalhar com sistemas sem tantas simplificações, tornando os modelos descritos por equações diferenciais 

mais próximos dos sistemas reais. A utilização de equações diferenciais para modelar 
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sistemas físicos foi descrita por Sir Isaac Newton para estudar o movimento de sistemas. Ressalta-se que a 

determinação do movimento resultante do sistema está ligada à solução da equação diferencial associada ao 

modelo do sistema. A obtenção das equações do movimento e a análise de estabilidade em sistemas dinâmicos 

são questões fundamentais em problemas atuais de engenharia para verificar a ocorrência de possíveis 

comportamentos não-lineares e/ou caóticos. 

Neste trabalho analisa-se a estabilidade de um pêndulo com excitação paramétrica vertical do suporte. Para a 

obtenção das equações do movimento utiliza-se a equação de Lagrange [5], [6] e as energias cinéticas e 

potenciais do sistema. Resultados de simulação são apresentados para a análise de estabilidade. 

2. EQUAÇÕES DO SISTEMA DINÂMICO ANALISADO 

O sistema analisado é um pêndulo com excitação paramétrica vertical do suporte, sendo e o deslocamento 

angular parametricamente excitado na direção vertical e u a excitação do suporte [7], [8], conforme ilustrado na 

Fig. l . 

m 

Figura 1 - Representação esquemática de um sistema pendular com excitação paramétrica vertical do suporte 

com um amortecimento f3 . 

2.1 Lagrangeano do Sistema 

O Lagrangeano do sistema é normalmente empregado para descrever as equações de movimento através da 

energia cinética e potencial do sistema utilizando as leis de Newton. 

A energia cinética e potencial total do sistema representado pela Fig.l é dada por 

(1) 
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onde Tr é a energia cinética em relação a coordenada x , Ty é a energia cinética em relação a coordenada y , Vr 

é a energia potencial em relação a coordenada x e VY é a energia potencial em relação a coordenada y . 

Para a posição do pêndulo em relação as coordenada x e y tem-se as seguintes expressões 

x = I sen( B) , y = u - I c os( e) . 

As energias cinéticas em relação a ambas as coordenadas são dadas por 

1 . 2 1 . 2 
T, =-m(/Bcos(B)) ,T>, =-m(it+/Bsen(B)). 

. 2 2 

A energia potencial do sistema representado pela Fig.l é dada por 

Vr =mg[/(1-cos(B))], V>' = mgu. 

A função Lagrangeana dada por L= T- v é obtida utilizando (3) e (4) com 

L= }_m(PiJ2 + 21i/Bsen8+1i2)-(mg[/(1-cos(B) + u]) · 
2 

(2) 

(3) 

(4) 

(6) 

Considerando o suporte parametricamente excitado com u = A cos( mt) , sendo A a amplitude de excitação e w 

a freqüência, obtém-se 

it = -Amsen(mt) 

ü = -Am2 cos(mt). 

A equação de Lagrange em relação ao deslocamento angular e é dada por 

~ ( :~)- :~ = - piJ . 

Assim, substituindo (6) em (7) tem-se 

O+ piJ + (1 + p cos( ú)f)) sen( B) =O 

onde a amplitude de excitação é dada por P =- Aw
2 

• 

I 

(7) 

(8) 

Considerando (8) na forma espaço de estado e definindo as variáveis de estado como e = x1 , é = x2 e t = x3 

tem-se 

x1 =x2 

x2 =-{Jx 2 -(I+ p cos(a!X3 )) sen(x1) • 

x3 = 1 

(9) 
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3. RESULTADOS DE SIMULAÇÕES 

A análise da estabilidade do sistema pendular (9) é feita a partir da variação da amplitude de excitação externa. 

Verifica-se a faixa de valores da amplitude de excitação externa que o sistema perde estabilidade e alcança um 

regime caótico. Os gráficos a serem analisados são o histórico no tempo, plano de fase, mapa de Poincaré, 

expoente de Lyapunov, diagrama de bifurcação e a construção do diagrama de estabilidade através dos 

multiplicadores de Floquet. 

O histórico no tempo, plano de fase e mapa de Poincaré para p = 0.1 são apresentados abaixo na Fig.2. 
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Figura 2- (a) Histórico no tempo. (b) Plano de fase. (c) Mapa de Poincaré. 

Observa-se que o sistema converge para zero, o que pode caracterizar uma estabilidade. O valor dos expoentes 

de Lyapunov são ..i.1 = -0.0712, ~ = -0.0723 e ~=o. Concui-se então que o sistema está com um 

comportamento estável, pois os expoentes de Lyapunov são todos negativos. 
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Verifica-se a seguir o comportamento da solução do sistema (9) quando o valor da amplitude de excitação é 

p = 0.3 como mostrado na Fig.3. 
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Figura 3 -(a) Histórico no tempo. (b) Plano de fase. (c) Mapa de Poincaré. 

Para o parâmetro p = 0.3, observa-se na Fig.3 que o sistema não oscila em torno do zero. Ocorreu um ciclo 

limite no plano de fase o que corresponde a um atrator de ponto fixo no mapa de Poincaré. O valor dos 

expoentes de Lyapunov são .41 = -0.0721, .4z = -0.0715 e Â:l =o. Conclui-se então que o sistema ainda está com 

um comportamento estável, pois os expoentes de Lyapunov são todos negativos. 
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Finalmente, observa-se a solução do sistema quando o valor da amplitude de excitação é p = 1, como mostrado 

na Fig.4 abaixo. 
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Figura 4- (a) Histórico no tempo. (b) Plano de fase. (c) Mapa de Poincaré. 

Observa-se que o atrator obtido no mapa de Poincaré teve um aumento no número de pontos, não podendo 

afirmar que o sistema está em um regime caótico. Para verificar a presença de caos, calculou-se os expoentes de 

Lyapunov. Os expoentes de Lyapunov obtidos foram ,i1 = +0.8641, Ã-2 = -1.0085 e Ã-3 =o, pode-se então concluir 

que o sistema apresenta com um comportamento caótico, pois foi encontrado um expoente de Lyapunov 

positivo. 
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Com o objetivo de observar a perda de estabilidade estrutural de (9), constrói-se o diagrama de bifurcação como 

mostrado na Fig.5 abaixo. 
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Figura 5 - Diagrama de bifurcação para diferentes intervalos de p . (a) p = o até p = o. 8 . (b) p = 0.8 até p = 1.3. 

No diagrama da Fig.S(a) observa-se que entre os valores p = [0.2;0.3] ocorre uma bifurcação, originando dois 

novos braços de soluções estáveis. Já no diagrama da Fig.S(b), observa-se uma nuvem de pontos, caracterizando 

um comportamento caótico. 

Para saber o tipo de bifurcação que ocorre no sistema deve-se analisar como os multiplicadores de Floquet 

deixam o círculo raio unitário, dessa forma, constrói-se o diagrama de estabilidade da Fig.6 como segue. 
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FREOUENCIA DE EXCITAÇAO 

Figura 6 - Diagrama de estabilidade para o < p < 2.5 e 0.5 < m < 3 . 

Neste diagrama existem regiões que determinam para que parâmetros o sistema deixa de ser estável e passa a 

ser instável, pode-se observar também os pontos de bifurcações e os tipos de bifurcações presentes no sistema, 

sendo bifurcações do tipo duplicação de período (jlip) e quebra de simetria. 
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Analisando o intervalo o< p < 2.5 observa-se que, para o parâmetro w = 2 , o ponto de bifurcação inicia em 

p = 0.2012 e o tipo de bifurcação presente no sistema é do tipo duplicação de período (jlip), pois os valores dos 

multiplicadores de Floquet obtidos são a 3 = -0.72978 e a 4 = -1.00084. 

4. CONCLUSÕES 

Os resultados de análise de estabilidade obtidos na literatura foram reproduzidos via simulação computacional e 

este mostraram que aumentando o valor da amplitude de excitação externa o sistema perde estabilidade até 

entrar em um regime caótico. Neste trabalho acrescentou-se aos resultados existentes, a análise do pêndulo via 

expoentes de Lyapunov e diagrama de estabilidade construído a partir dos multiplicadores de Floquet. 
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