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RESUMO

Neste trabalho obtém-se a equagdo de um sistema pendular com excitagdo paramétrica vertical do suporte e
analisa-se a sua estabilidade a partir da variagdo da amplitude de excitag@io. Apresentam-se resultados de
simulag@io para diferentes faixas de valores da amplitude de excitagdo externa. As técnicas utilizadas para a
analise de estabilidade sdo o histérico no tempo, plano de fase, mapa de Poincaré, expoente de Lyapunov,

diagrama de bifurcagfo e mapa de estabilidade via multiplicadores de Floquet.

PALAVRAS CHAVES

Péndulo, equagio de Lagrange, bifurca¢des, multiplicadores de Floquet, mapa e seg¢io de Poincaré, expoentes

de Lyapunov, caos.
1. INTRODUCAO

Atualmente, sabe-se que as duas caracteristicas principais dos sistemas cadticos sdo a dependéncia sensitiva as
condi¢des iniciais e o confinamento das solugdes do sistema a uma regido do espago de fase. Anteriormente, as
instabilidades que apareciam em sistemas dindmicos eram consideradas como sendo obra do acaso ou fruto de
ruidos externos que nfo podiam ser evitados, e seu estudo sb6 era realizado apds varias hipoteses
simplificadoras, de forma a eliminar a instabilidade [1]-[4]. Com o atual desenvolvimento da informatica, pode-
se trabalhar com sistemas sem tantas simplificagdes, tornando os modelos descritos por equagdes diferenciais

mais proximos dos sistemas reais. A utilizagdo de equagdes diferenciais para modelar
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sistemas fisicos foi descrita por Sir Isaac Newton para estudar o movimento de sistemas. Ressalta-se que a
determinagdo do movimento resultante do sistema est4 ligada a solu¢do da equagdo diferencial associada ao
modelo do sistema. A obtengfo das equagdes do movimento ¢ a analise de estabilidade em sistemas dindmicos
sdo questdes fundamentais em problemas atuais de engenharia para verificar a ocorréncia de possiveis
comportamentos néo-lineares e/ou cadticos.

Neste trabalho analisa-se a estabilidade de um péndulo com excitagdo paramétrica vertical do suporte. Para a
obtengdo das equagdes do movimento utiliza-se a equagdo de Lagrange [5], [6] e as energias cinéticas e

potenciais do sistema. Resultados de simulagfo sdo apresentados para a analise de estabilidade.

2. EQUACOES DO SISTEMA DINAMICO ANALISADO

O sistema analisado ¢ um péndulo com excitagdo paramétrica vertical do suporte, sendo 6 o deslocamento
angular parametricamente excitado na dire¢fo vertical e u a excitagdo do suporte [7], [8], conforme ilustrado na

Fig.1.

m

Figura 1 - Representagdo esquematica de um sistema pendular com excitagiio paramétrica vertical do suporte

com um amortecimento 3.

2.1 Lagrangeano do Sistema

O Lagrangeano do sistema ¢ normalmente empregado para descrever as equagSes de movimento através da
energia cinética e potencial do sistema utilizando as leis de Newton.
A energia cinética e potencial total do sistema representado pela Fig.1 ¢ dada por

T=T +T,, V=V, +V, 1)



onde T, € a energia cinética em relagdo a coordenada x, T, ¢ a energia cinética em relagdo a coordenada y, V,

¢ a energia potencial em relagdo a coordenada x e ¥, € a energia potencial em relagéo a coordenada .

Para a posi¢do do péndulo em relagéo as coordenada x e y tem-se as seguintes expressdes

x=Isen(0),y =u—1cos(@).

As energias cinéticas em relag@io a ambas as coordenadas sdo dadas por
T, = %m(lé cos(9))*.T, = %m(z} +10sen(0))*.
A energia potencial do sistema representado pela Fig.1 ¢ dada por
V., =mgll(1-cos@)), V, = mgu .
A fung8o Lagrangeana dada por L=T-V € obtida utilizando (3) e (4) com

L= % m(1*6* + 2ul0 sen 6 +1i*) — (mgll(1— cos@) +u]) -

@

3)

4

(6)

Considerando o suporte parametricamente excitado com u = Acos(wt), sendo 4 a amplitude de excitagfo e »

a freqiiéncia, obtém-se
1 =-—Awsen(wt)
i =—Aw’ cos(at).
A equagdio de Lagrange em relagfio ao deslocamento angular 6 € dada por
al5) 56
Assim, substituindo (6) em (7) tem-se
§ + B0 + (1+ pcos(mt))sen(d) = 0

- Aw?

onde a amplitude de excitagdo ¢ dada por p =

(7)

(8)

Considerando (8) na forma espago de estado e definindo as varidveis de estado como §=x,, f=x, e t=x,

tem-se
J'Cl = x2
Xy =— [, — (14 pcos(mx;))sen(x,) .
%y =1

©)



3. RESULTADOS DE SIMULACOES

A analise da estabilidade do sistema pendular (9) ¢ feita a partir da variagdo da amplitude de excitagdo externa.
Verifica-se a faixa de valores da amplitude de excitagdo externa que o sistema perde estabilidade e alcanga um
regime cadtico. Os gréaficos a serem analisados sdo o histérico no tempo, plano de fase, mapa de Poincaré,
expoente de Lyapunov, diagrama de bifurcagfio ¢ a construgdo do diagrama de estabilidade através dos
multiplicadores de Floquet.

O histdrico no tempo, plano de fase ¢ mapa de Poincaré para p = 0.1 sfo apresentados abaixo na Fig.2.
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Figura 2 - (a) Histdrico no tempo. (b) Plano de fase. (c) Mapa de Poincare.

Observa-se que o sistema converge para zero, o que pode caracterizar uma estabilidade. O valor dos expoentes

de Lyapunov sdo 4 =-0.0712, 4,=-00723 e A;=0. Concui-se entdo que o sistema estd com um

comportamento estavel, pois os expoentes de Lyapunov séo todos negativos.



Verifica-se a seguir o comportamento da solugdo do sistema (9) quando o valor da amplitude de excitagdo ¢é

p =0.3 como mostrado na Fig.3.
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Figura 3 - (a) Histérico no tempo. (b) Plano de fase. (c) Mapa de Poincaré.

Para o pardmetro p=0.3, observa-se na Fig.3 que o sistema ndo oscila em torno do zero. Ocorreu um ciclo

limite no plano de fase o que corresponde a um atrator de ponto fixo no mapa de Poincaré. O valor dos

expoentes de Lyapunov sfio 4, =-0.0721, 4, =-0.0715 e A, =0. Conclui-se entdo que o sistema ainda estd com

um comportamento estavel, pois os expoentes de Lyapunov so todos negativos.



Finalmente, observa-se a solugfo do sistema quando o valor da amplitude de excitagfio é p =1, como mostrado

na Fig.4 abaixo.
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Figura 4 - (a) Historico no tempo. (b) Plano de fase. (c) Mapa de Poincaré.

Observa-se que o atrator obtido no mapa de Poincaré teve um aumento no nimero de pontos, ndo podendo
afirmar que o sistema esta em um regime caotico. Para verificar a presenca de caos, calculou-se os expoentes de
Lyapunov. Os expoentes de Lyapunov obtidos foram 4, =+0.8641, 1, =-1.0085 ¢ 4, =0, pode-se entdo concluir

que o sistema apresenta com um comportamento cadtico, pois foi encontrado um expoente de Lyapunov

positivo.



Com o objetivo de observar a perda de estabilidade estrutural de (9), constréi-se o diagrama de bifurcagdo como

mostrado na Fig.5 abaixo.
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Figura 5 - Diagrama de bifurcag#o para diferentes intervalos de p. (a) p=0 até p

p

0.8.(b) p=08 até p=13.

No diagrama da Fig.5(a) observa-se que entre os valores p =[0.2;0.3] ocorre uma bifurcagfo, originando dois

novos bragos de solugdes estaveis. Ja no diagrama da Fig.5(b), observa-se uma nuvem de pontos, caracterizando

um comportamento caotico.

Para saber o tipo de bifurcago que ocorre no sistema deve-se analisar como os multiplicadores de Floquet

deixam o circulo raio unitario, dessa forma, constréi-se o diagrama de estabilidade da Fig.6 como segue.
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Figura 6 - Diagrama de estabilidade para 0< p<2.5 € 0.5<w<3.

Neste diagrama existem regides que determinam para que pardmetros o sistema deixa de ser estdvel e passa a

ser instavel, pode-se observar também os pontos de bifurcagSes e os tipos de bifurcagdes presentes no sistema,

sendo bifurcagdes do tipo duplicagdo de periodo (flip) e quebra de simetria.



Analisando o intervalo 0< p<2.5 observa-se que, para o pardmetro w=2, o ponto de bifurcagfo inicia em
p=0.2012 e o tipo de bifurcagfo presente no sistema € do tipo duplicaggo de periodo (flip), pois os valores dos

multiplicadores de Floquet obtidos s&o a5 =-0.72978 € a, =-1.00084 .

4, CONCLUSOES

Os resultados de analise de estabilidade obtidos na literatura foram reproduzidos via simulagdo computacional e
este mostraram que aumentando o valor da amplitude de excitag8o externa o sistema perde estabilidade até
entrar em um regime caotico. Neste trabalho acrescentou-se aos resultados existentes, a analise do péndulo via

expoentes de Lyapunov e diagrama de estabilidade construido a partir dos multiplicadores de Floquet.
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